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Bayesian Estimation of Clean Speech Spectral
Coefficients Given a Priori Knowledge of the Phase

Timo Gerkmann, Member, IEEE

Abstract—While most short-time discrete Fourier trans-
form-based single-channel speech enhancement algorithms only
modify the noisy spectral amplitude, in recent years the interest in
phase processing has increased in the field. The goal of this paper
is twofold. First, we derive Bayesian probability density functions
and estimators for the clean speech phase when different amounts
of prior knowledge about the speech and noise amplitudes is given.
Second, we derive a joint Bayesian estimator of the clean speech
amplitudes and phases, when uncertain a priori knowledge on the
phase is available. Instrumental measures predict that by incor-
porating uncertain prior information of the phase, the quality
and intelligibility of processed speech can be improved both over
traditional phase insensitive approaches, and approaches that
treat prior information on the phase as deterministic.

Index Terms—Noise reduction, phase estimation, signal recon-
struction, speech enhancement.

I. INTRODUCTION

T HE enhancement of corrupted speech is a very important
part of today’s mobile communication devices, such as

hearing aids or cell phones. This is because additive noise
degrades the quality and also the intelligibility of speech. The
goal of speech enhancement algorithms is to reduce the noise
while preserving the speech signal. Especially when only one
microphone signal is available this is a difficult task, and many
proposals and improvements for single channel speech en-
hancement algorithms arose in the past decades. In this paper,
we derive statistically optimal estimators for the clean speech
spectral coefficients and clean speech spectral phases for single
channel speech enhancement in the short time discrete Fourier
transform (STFT)-domain. Examples for statistical estimation
schemes are maximum likelihood (ML) estimation as well
as the Bayesian maximum a posteriori (MAP) and minimum
mean squared error (MMSE) estimators (see e.g., [1, sections
5.12 and 11.4]).
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The role of the phase has been widely discussed, both in
the signal model [2], and also for single channel speech en-
hancement [3], [4]. Lotter and Vary [5] as well as Erkelens et
al. [6] showed that complex speech coefficients can be well
modeled by a circular symmetric probability density function
(PDF). The assumption of a circular symmetric PDF implies
that the phase is uniformly distributed, from which it follows
that the MMSE-optimal estimate of the clean phase is in fact
the noisy phase [7]–[9]. Consequently, under the assumption of
a circular symmetric distribution, MMSE estimators of complex
speech coefficients alter only the magnitude of the noisy spec-
tral coefficients while the noisy phase remains unchanged. The
most prominent example is the Wiener filter ( e.g., [1, Section
11.4.3]). Furthermore, in perceptual experiments conducted by
Wang and Lim [3], it was shown that improving the phase does
not improve the performance of single channel speech enhance-
ment algorithms. Also for these reasons, most subsequent re-
search addressed an improved estimation of spectral amplitudes,
while leaving the phase of the noisy signal unchanged.
More recently, Paliwal et al. again conducted experiments

where the noisy phase is exchanged by the clean speech phase
in speech enhancement algorithms [10]. However, as opposed
to [3], they used a more redundant spectral representation in
the STFT-domain (by means of a larger segment overlap and
zero-padding) and could now show that employing the clean
speech phase improves noise reduction algorithms significantly.
From this it follows that if we have an estimate of the clean
phase, potentially, we can also improve speech enhancement al-
gorithms. However, blind estimators of the clean speech phase
are rare. When the clean speech amplitude is known, Griffin and
Lim showed that the clean speech phase can be reconstructed
by iterative STFT analysis and synthesis [11]. Many variants
and improvements for iterative phase estimation have been pro-
posed over the years. A nice overview is given in [12]. Re-
cent improvements are given for instance in [13], [14]. In [15],
[16] we follow a different approach and propose to reconstruct
the clean speech phase on and between speech spectral har-
monics based on a sinusoidal model of voiced speech. The basic
idea of [15] is that in the STFT-domain the difference between
the harmonic frequencies of voiced speech and the STFT-band
center-frequencies is captured by the phase. Thus, with the al-
gorithm proposed in [15] the STFT-phase is reconstructed from
only the noisy observation and an estimate of the speech funda-
mental frequency. A general problem with both iterative and
sinusoidal model based phase enhancement is that erroneous
phase estimates may yield annoying artifacts in the synthesized
speech signal [13], [15]. However, in [17] we showed that the
phase estimate can also be employed only to improve Bayesian
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amplitude estimation, which is less prone to artifacts. Therefore,
in [17], [18] we propose to employ the phase estimate only for
an improved amplitude estimation but to still use the phase of
the noisy observation when going from the STFT-domain back
to time-domain.
Of course, it is desirable to obtain a phase estimate that can

be robustly combined with the enhanced amplitudes without in-
troducing artifacts. To achieve this, the key idea of this paper
is to incorporate uncertain prior knowledge about the phase by
means of a Bayesian phase enhancement framework. The prior
information about the phase can for instance be obtained using
the sinusoidal model based phase reconstruction algorithm [15],
[16].
This paper is structured as follows. We start by discussing

phase estimation when prior knowledge on the spectral am-
plitudes of speech and noise are given (Section II). In the re-
mainder, we drop this requirement and treat both speech and
noise as unknown random variables. While in Section III we
derive ML and MAP estimators of the clean speech phase, in
Section IV, we derive the joint MMSE estimator of the clean
speech amplitude and phase when uncertain prior knowledge
of the clean speech spectral phase is given. In Section V, we
evaluate the clean speech estimator proposed in Section IV for
different signal to noise ratios (SNRs) and noise types.

II. PHASE ESTIMATION WITH KNOWN SPECTRAL AMPLITUDES

This section starts by defining the signal model and notation.
Then, we discuss the case of phase estimation when both the
speech and noise spectral amplitudes are known. Afterwards,
we derive the phase posterior under a Gaussian noise model for
known speech spectral amplitudes.

A. Signal Model and Notation

We assume that the complex STFT coefficients of the noisy
speech are given by an additive superposition of uncorrelated
zero-mean speech and noise coefficients, and , as

(1)

where is the segment index and is the frequency index. In the
sequel, we omit the time index and frequency index unless
needed. The complex coefficients can be represented by their
amplitudes and phases denoted as

(2)

Furthermore, we denote random variables by capital letters, e.g.,
, and their realizations by the corresponding lower case

letters, e.g., .

B. Phase Estimation Given the Noisy Speech as Well as the
Speech and Noise Amplitudes

It is interesting to note that even in the idealistic case of
known speech and noise amplitudes, the clean speech phase can
not be uniquely obtained. In fact, there exist two possible solu-
tions for the phase. This is illustrated in Fig. 1, where the pos-
sible realizations of the complex clean speech and noise coeffi-
cients are shown. As the corresponding amplitudes are assumed
to be known, possible realizations of the complex speech and

Fig. 1. Possible realizations of the complex speech and noise coefficients,
and , when the speech and noise amplitudes and are known while their
phases are unknown (Section II-B). In this example we chose
and . The solid (blue) circle represents possible locations for the complex
speech coefficients, the black arrow represents the complex noisy observation

, and the dashed (red) circle represents possible locations for
the complex noise-related coefficients . As per definition ,
two possible realizations for the speech and noise complex coefficients exist,
given by the two intersections of the circles, i.e., when .

noise coefficients are given by circles. As furthermore it must
hold that , two solutions for the speech and noise
phases are valid. These two solutions are given by the intersec-
tions of the two circles in Fig. 1. This phase ambiguity can be
resolved for instance by minimizing the group delay [19]. How-
ever, assuming that the speech and noise spectral amplitudes are
known is a rather limiting assumption, as in practice only esti-
mates are available.

C. Phase Posterior for a Known Speech Amplitude

Now, we start relaxing the requirements on prior amplitude
knowledge and model the noise as a complex Gaussian
random variable with given variance, while the speech ampli-
tudes are still treated as being known. We show that under these
assumptions the speech phase posterior is given by a von Mises
distribution. In Fig. 2 we illustrate the considered scenario of a
known spectral amplitude but complex Gaussian distributed
noise coefficients . Again, the black arrow represents the
noisy observation, and the solid circle represents the possible
realizations of the complex speech coefficients , i.e.,
when the speech amplitude is known, but the speech phase
is unknown. The scatter plot represents where the
complex noise coefficients are sampled from a circular
complex Gaussian distribution. Valid representations of are
those that fulfill , i.e., those dots of the scatter plot
that lie on the solid circle. Tracking the solid circle by eye, one
may already see that most of the scattered dots on the solid
circle are in the direction of the noisy observation. Thus, we
expect that also the phase distribution will
not be uniform. In this section, we show that
results in a von Mises distribution with mean-direction .
To derive the PDF of the speech phase when the clean speech

amplitude and the noisy observation are given, we employ
Bayes’ theorem as

(3)

Assuming a complex Gaussian distribution for both the speech
and noise spectral coefficients, the numerator and denominator
of the right hand side of (3) are well known: the numerator is
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Fig. 2. Possible realizations of the complex speech and noise coefficients,
and , when the speech amplitude is known while its phase is unknown
and is modeled by a complex Gaussian (Section II-C). In this example we
chose while the noise variance is . The solid (blue) circle repre-
sents possible locations for the complex speech coefficients, the black arrow rep-
resents the complex noisy observation , and the scatter plot
represents possible locations for the complex noise-related coefficients .

recognized as the Gaussian posterior function trans-
formed to the polar domain, while the denominator is recog-
nized as a Rice distribution. To see this, we start with the speech
posterior and Bayes’ theorem

(4)

To model the PDFs in (4), under the Gaussian assumption with
noise power spectral density (PSD) , the likeli-
hood of complex speech coefficients can be written as ( e.g., [1])

(5)

and with the speech prior distribution can be
written as

(6)

With these assumptions, also the evidence is complex Gaussian
distributed, as

(7)

where we assume that speech and noise are uncorrelated, such
that . Using (5)–(7) in (4), after
some basic algebraic computations, we also obtain a complex
Gaussian distribution for the posterior of the clean speech com-
plex coefficients (e.g., [20]), as

(8)

with mean , Wiener’s gain-function

(9)

and variance

(10)

Fig. 3. Monte Carlo simulation of and the derived von
Mises distribution (13). An excellent fit can be observed. As in Fig. 2

, , , and we set .

After transforming (8) to the polar domain, i.e.,
we obtain our model for the numerator of (3)

(11)

The denominator of (3), , can be obtained by integrating
(11) over the phase . Then, with [21, eq. (3.339)] we obtain
the well-known Rice distribution

(12)

with the modified Bessel function of the first kind [21, eq.
(8.445)].
Finally, dividing (11) by (12), we can solve (3), and obtain

the phase posterior for a known speech amplitude:

(13)

Thus, for a known speech amplitude, the clean speech phase
posterior (13) is recognized as a von Mises distribution [22]

(14)

with mean-direction and the concentration param-
eter , where the circular variance decreases with
increasing concentration . In Fig. 3 we demonstrate the va-
lidity of our derivations by comparing the derived posterior to
a Monte Carlo simulation. The parameters are the same as in
Fig. 2. Note that the von Mises distribution is symmetric around
its mean-direction, and the mean-direction is also the mode of
the von Mises distribution. Thus, for a known speech amplitude
both the MAP-optimal estimate of the clean speech phase as
well as the MMSE-optimal estimate of the clean speech phase
are given by the noisy phase.

III. PHASE ESTIMATION FOR UNKNOWN SPEECH AND
NOISE AMPLITUDES

As in practice, the assumption of known speech spectral am-
plitudes is often not fulfilled, in the remainder of this paper our
focus is on statistical estimators that treat both speech and noise
amplitudes as unknown random variables. This situation is illus-
trated in Fig. 4. In this section, we first derive the ML estimator
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Fig. 4. Illustration of the situation that the spectral amplitudes and are un-
known (Sections III, IV–V). The light (blue) scatter plot represents realizations
of the complex Gaussian random variable with variance , while the
darker (red) scatter plot represents realizations of the complex Gaussian random
variable with variance . The arrow indicates the noisy observa-
tion .

of the clean speech phase and then combine the derived likeli-
hood with uncertain prior knowledge on the clean speech phase
to obtain a MAP-optimal phase estimator.

A. Maximum Likelihood Phase Estimation

To derive the phase likelihood , we again em-
ploy Bayes’ theorem, as

(15)

As empirically shown in [5], [6], the PDF of isolated com-
plex speech coefficients is circular symmetric, meaning that
amplitudes and phases are independent, i.e.,

. Then (15) simplifies to:

(16)

Assuming a complex Gaussian distribution for the noise spectral
coefficients, the PDF is also Gaussian and
given in (5). As in [23], [24] we propose to model the speech
spectral amplitudes by a -distribution

(17)

with the Gamma function [21, Eq. (8.31)], and shape
parameter . Setting allows us to model heavy-tailed
(i.e., super-Gaussian) speech priors. Note that for complex
Gaussian distributed speech coefficients, the speech amplitudes
are Rayleigh distributed, which is the special case of the -dis-
tribution when . Using the -distribution (17) and the
Gaussian distribution (5) in (16), we obtain

(18)

with . Note that in our notation
in (18) resembles the conditioned joint PDF

of the real and imaginary parts of , written as a function of
the amplitudes and phases . The integral in (18) can be
solved with [21, eq. (3.462.1)] yielding the likelihood

(19)
with

(20)

the parabolic cylinder function [21, Eq. (9.241.2)]

(21)

and the a priori SNR . Note that the argument
contains the phase difference .
In Fig. 5, to demonstrate the validity of our derivation, we

compare the derived distribution to a Monte Carlo simulation;
an excellent fit can be observed. It can be seen that for large
SNRs the maximum of the likelihood is in the direction of the
clean speech phase. However clearly, for low SNRs, the like-
lihood contains less information about the clean speech phase
and asymptotically approaches a circular distribution. With the
likelihood at hand, we can formulate the ML estimator of the
clean speech phase

(22)

where we dropped all factors in (19) that are independent of .
For the parabolic cylinder function is a
positive monotonically decreasing function of [25]. The factor

is also positive and increases exponentially with .
Thus, the ML solution is given by the lowest negative , i.e.,
when the cosine in (20) is maximized. From this it follows that
theML-optimal estimator is the phase of the noisy signal . As
the factor increases rapidly in , we can also relax
the restriction meaning that

(23)

holds for any .

B. Maximum a Posteriori Phase Estimation

In this section, we employ the derived likelihood function
(19) to formulate a posterior distribution that incorporates a
priori knowledge on the speech spectral phase. With this poste-
rior we can then obtain aMAP estimate of the clean speech spec-
tral phase which yields a trade-off between the noisy phase
and the mean-direction of the phase prior distribution, denoted
by . The mean-direction can be obtained from blind phase
reconstruction algorithms such as [15], [16]. Another option
could be to first obtain a phase estimate using consistent Wiener
filtering [14], and to then employ it in the proposed scheme as
uncertain prior phase information. However, the conceptual ad-
vantage of using [15] in this context is that we do not need an
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Fig. 5. The scatter plot results from a Monte Carlo simulation of the noisy
observation when the clean speech phase is given. The contour plots represent
the derived distribution for the likelihood in (19) with . (a)
, , . (b) , , .

estimate of the speech amplitudes to obtain the prior phase in-
formation. Instead the prior phase information is obtained from
only the noisy observation and an estimate of the speech funda-
mental frequency, which can be obtained, e.g., using [26].
Given prior information on the phase , with Bayes’

theorem the posterior distribution can be written as

(24)

As, after the integration over , the denominator of (24) is not
a function of anymore, we only need to maximize the nu-
merator of (24) to obtain the MAP-optimal phase estimate. For
this, we need a model for the phase prior . We
propose to model this prior by a von Mises distribution which,
for a given angular mean and concentration, is the maximum en-
tropy distribution [22, Section 3.5.4]. Leaving out all quantities
that are independent of , we obtain the MAP estimator

(25)
with given in (20). The concentration parameter in (14) can
be used to incorporate the uncertainty of the prior phase infor-
mation . In this context, implies a large certainty
about the prior phase information, and as a consequence, the

MAP estimator yields . On the contrary,
implies a large uncertainty about the prior phase informa-

tion and the MAP estimator yields the noisy phase

. For any other the MAP-esti-
mator yields values between the phase of the noisy observation

and the prior phase information . Furthermore,
for a fixed , the influence of the phase prior is SNR dependent.
As can be seen in Fig. 5, for lower SNRs the phase likelihood

is less informative than for higher SNRs. As a result, for low
SNRs, the phase prior has a stronger influence on the MAP esti-
mator than for higher SNRs. While analytically solving (25) for

is difficult, we can find the maximum for instance by
a brute-force search over a set of candidate phases. The price,
however, is an increased computational complexity.

IV. JOINT AMPLITUDE AND PHASE ESTIMATION

While in the previous sections we looked at phase estimation
independently of amplitude estimation, in this section we aim at
estimating the clean speech amplitude and phase jointly in order
to get an estimator of the (C)omplex spectral speech coefficients
given (U)ncertain (P)hase information (CUP). While the basic
idea of the CUP estimator has been published in [27], here we
present a more detailed analysis, derivation, and evaluation.
A CUP estimator can be obtained by solving ,

where denotes a priori information of the clean speech phase.
Again, this prior phase information can be obtained using the
phase reconstruction algorithm [15], [16]. Instead of finding the
MMSE estimate of the complex speech coefficients, Ephraim
and Malah [28] argued that estimating logarithmically com-
pressed spectral amplitudes is perceptually advantageous. You
et al. [29] generalized the logarithmic amplitude compression
[28] by employing a compression parameter . As in [17], [24]
we adopt this idea, but now derive a joint estimator of com-
pressed speech amplitudes and the clean speech phase, as

(26)

In order to solve (26), we need to model the joint posterior of
the amplitude and phase given the prior phase information .
This joint posterior can be rewritten with Bayes’
theorem, as

(27)

Thus, to find a model for , we need models for
and . To find a model for , we

assume that if the clean speech phase is given, the speech
phase prior gives no further information on , i.e.,

(28)

As the noise coefficients are assumed to be complex Gaussian
distributed, the PDF is also Gaussian and given in (5).
From the observation that complex speech coefficients exhibit
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a circular symmetric distribution, it follows that amplitudes
and phases are independent [6]. Then, the joint PDF of the
clean speech amplitude, phase, and the phase estimate can be
rewritten as

(29)

Using (28) and (29) in (27) the posterior results in

(30)

where is canceled out, as it is not part of the integral.
Using (30) in (26) results in

(31)

As in [17], [23], [24] and Section III-B we model the speech
amplitudes to be -distributed (17) as this allows us
to model heavy-tailed speech priors by setting . As in
Section III-B, the distribution of the clean speech phase around
the prior phase information can be modeled by the vonMises
distribution (14), where the concentration parameter in (14)
allows incorporating the uncertainty about the prior phase in-
formation .
With (5), (17), and [21, Eq. (3.462.1)], similar to [17] the

integral over the amplitude can be solved and we get the CUP:

(32)

where is defined as in (20). As in (19), is the para-
bolic cylinder function, is the a priori SNR, and the
argument contains the phase difference . The
speech-estimate is then obtained as

(33)

A. Implementation of the Proposed CUP Estimator

Solving the integral over the speech spectral phase in (32)
is quite difficult, as it involves the integration over the parabolic
cylinder function. However, as the phase has a limited span be-
tween , the integral in (32) can be solved nu-
merically with high precision. Furthermore, in practice, speech
enhancement gain functions that involve computationally com-
plex special functions are commonly precomputed and tabu-
lated anyways. Thus, we propose to solve the integral in (32)
numerically and store the result in a table. For a given shape
parameter and compression parameter , this table has four
dimensions, the a priori SNR , the a posteriori SNR ,
the concentration parameter , and the phase difference .
During runtime, the computational complexity is thus very low
and given by a table look-up. In addition, as we solve the in-
tegral (32) numerically, we are also flexible with respect to the
choice of the phase prior distribution . In this work, we
employ the von Mises distribution (14) with concentration pa-
rameter . The mean-direction of the prior distribution is given
by , which can be obtained, e.g., using [15]. As in Section III,
the concentration parameter controls the influence of the prior
on the final result. For , the prior has no influence on the
result, while for the prior dominates the result.

B. Analysis of the Proposed CUP Estimator

In Fig. 6 we plot the corresponding input-output curves pa-
rameterized by the concentration parameter of the phase prior
as a function of the noisy input with phase for

.
Three cases are interesting to observe, , , and

. For the phase prior distribution is uni-
form and, as a consequence, the prior phase information is
largely uncertain and therefore does not have an influence on
the estimation of the clean speech phase and amplitude. Thus,
for , when no amplitude compression is employed
( ) and Gaussian speech priors are implied ( ), the
behavior of the proposed estimator resembles the Wiener filter:
recall that for theWiener filter (9), the complex clean speech co-
efficients are estimated as , i.e., we
have a linear relation between the noisy magnitude and
the estimated amplitude . At the same time the
estimated phase is the noisy phase, i.e., .
The same behavior is visible for and in Fig. 6.
In contrast, for the von Mises prior distribution (14) ap-
proaches a delta function with its peak at the mean-direction .
As a result, for the amplitude of the estimated complex
coefficients is identical to the estimator proposed in [17], while
the estimated phase equals the mean-direction of the von Mises
prior distribution, i.e., .
The advantage of the proposed approach is that we can now

compromise a deterministic phase prior ( ) and a uni-
formly distributed phase prior ( ), by setting .
The proposed estimator thus allows to incorporate prior infor-
mation about the speech spectral phase denoted by , but also
allows us to incorporate an uncertainty about the prior phase in-
formation which can be controlled via . Small values



GERKMANN: BAYESIAN ESTIMATION OF CLEAN SPEECH SPECTRAL COEFFICIENTS GIVEN a Priori KNOWLEDGE OF THE PHASE 4205

Fig. 6. Amplitude and phase responses of the CUP estimator (32) for
and for different values of the concentration pa-

rameter in (14). For the amplitude estimate approaches the behavior
of a Wiener filter (left) and the phase estimate results in (right).
For the amplitude estimate approaches the result in [17] (left) and the
phase estimate results in (right). Amplitude and phase responses for

and (a) , (b) , (c) , (d) .

reflect a large uncertainty about the prior phase information ,
while the opposite is true for .

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the ” pro-
posed CUP estimator (32)“ for complex speech coefficients
at a sampling rate of . For this we process 100
sentences from female speakers and 100 sentences from male
speakers taken from dialect region 6 of the TIMIT database
[30]. These 200 sentences are corrupted by pink noise, modu-
lated pink noise, nonstationary factory noise, and babble noise
at different SNRs. The modulated pink noise is obtained by
first creating Gaussian distributed stationary pink noise, and
then multiplying it with the amplitude modulation function

. Here, is the time-domain sample

index, and we set the modulation frequency to .
The remaining noises are taken from the Noisex-92 database
[31]. As Paliwal et al. [10] indicated that improving the phase
is particularly beneficial if the segment overlap is larger than
50%, for the spectral analysis and synthesis we use square-root
Hann windows with 7/8th overlap. For lower frame overlaps,
also the performance gain obtained by modifying the spectral
phase will be lower. The chosen segment length is 32 ms
without zero-padding, resulting in dis-
crete Fourier coefficients, which is sufficiently large to resolve
the spectral harmonics of male and female speakers. While
we use the increased overlap for phase estimation and signal
reconstruction, the noise PSD and speech PSD estimates are
only updated every 16 ms to be able to use standard approaches.
We estimate the noise PSD based on a speech presence
probability estimate with fixed priors [32], and the a priori SNR

using the decision-directed approach [8] with the
smoothing factor 0.96. While in [8] a factor of 0.98 was pro-
posed, we only use a factor of 0.96 to reduce speech distortions.
To limit speech distortions further, all applied gain functions
are limited to be larger than . To model the heavy-tailed
distribution of speech amplitudes, we set the shape parameter
of the amplitude PDF (17) to . This value was proposed
in [24] as it yields a good trade-off between outliers and clarity
of speech. Further, to incorporate the compressive character of
the auditory system, we set the compression parameter in (32)
to . This value was proposed in [24] as it yields a good
trade-off between noise reduction and speech distortions. The
settings of are also known as the super-Gaussian
amplitude root (SUGAR) estimator [24]. For the estimation
of the prior phase information we employ the sinusoidal
model based approach [15], where here we only employ the
phase reconstruction along frequency. This phase estimator
relies on an estimate of the fundamental frequency in voiced
speech which we estimate using the PEFAC algorithm [26].
The “proposed CUP estimator (32)” allows us to incorporate

the uncertainty about our prior phase information controlled
by the concentration parameter . Large values for reflect a
high certainty about the prior phase information, while
means that we are uncertain about the prior. The certainty of
the phase estimate obtained with [15] depends on the certainty
about the frequency of each spectral harmonic in voiced speech.
These harmonic frequencies are obtained based on multiples of
the estimate of the fundamental frequency, meaning that any
error in the fundamental frequency estimation is multiplied by
the harmonic number. Thus, at high frequencies also the phase
estimate is more prone to errors. To reflect this increased un-
certainty, we choose to be larger for low frequencies than for
high frequencies. As the phase estimator [15] does not yield rea-
sonable phase estimates in unvoiced speech, we adapt the value
of using the probability that a signal frame contains voiced
speech , which we also obtain using PEFAC [26]. Thus,
to account for the increased uncertainty of the prior phase infor-
mation in high frequencies and unvoiced speech, the uncer-
tainty parameter is set to

(34)
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Fig. 7. Instrumental evaluation of the perceptual speech quality for different
input SNRs and noise types averaged over 200 sentences (100 spoken by fe-
male speakers and 100 spoken by male speakers) from the TIMIT database at

. We show the improvement in PESQL over the unprocessed noisy
speech. (a) Pink noise. (b) Modulated pink Gaussian noise. (c) Nonstationary
factory noise. (d) Babble noise.

The values of 4 and 2 are chosen to yield a good trade-off be-
tween artifacts and noise reduction. For this, values in the range

were tested.
We compare the “proposed CUP estimator (32)” to three com-

peting methods. The first competing method “phase insensitive
[24]” is a state-of-the-art amplitude enhancement scheme with
the same distributional assumptions on the noise coefficients
and the speech amplitudes as employed in the “proposed CUP
estimator (32)”. However, in contrast to the “proposed CUP es-
timator (32)” the speech phase is considered to be uniformly
distributed. As a consequence, the phase of the noisy signal is
not employed for amplitude estimation and also not modified in
the STFT-domain enhancement.
The second competing algorithm is the phase-sensitive am-

plitude estimation scheme derived in [17], [18] which we denote
as “phase-sensitive [18]”. In this method, just as in the “pro-
posed CUP estimator (32)”, the phase reconstruction algorithm
[15] is employed to obtain a phase estimate. However, in con-
trast to the “proposed CUP estimator (32)”, the prior phase in-
formation is treated as being deterministic. While the phase-

sensitive gain function is derived in [17], in [18] we combine the
phase-sensitive gain function in voiced speech with the phase-
insensitive gain function [24] in unvoiced speech based on the
probability that a segment is voiced , estimated using
PEFAC [26]. Note that in [18] the prior phase information is
only employed to improve amplitude estimation, while still the
noisy phase is used for signal synthesis, as .
The third method we use for comparison is also based on the

phase-sensitive amplitude estimation scheme [18]. However,
while in [18] the prior phase information is only employed
to improve amplitude estimation, in the third method, when-
ever PEFAC signals voiced speech, we use the clean speech
phase prior information also for signal synthesis, as

. This method is denoted as “phase-sensitive [18]
” and is equivalent to the CUP estimator when setting
.

The performance is evaluated using the perceptual evaluation
of speech quality as provided in Loizou’s book [33], which we
denote by PESQL, and the short-time objective intelligibility
(STOI) measure [34]. We show the improvements in PESQL
(Fig. 7) and STOI (Fig. 8) relative to the unprocessed noisy
speech. It can be seen that incorporating phase information for
an improved amplitude estimation using the “phase-sensitive
[18]” approach outperforms the “phase insensitive [24]” ap-
proach both in terms of predicted quality and intelligibility. The
PESQL benefit of the “phase-sensitive [18]” estimator is largest
for babble noise. At this point, it is interesting to note that the
phase-sensitive amplitude estimator can only yield a benefit to
the phase-insensitive counterpart in voiced speech. Hence, as
voiced speech has most of its energy in low frequencies, at a
sampling rate of and in voiced speech the ben-
efit of the phase-sensitive approaches is even more pronounced
(see e.g., [17]) as compared to the results shown here. If the
clean speech phase prior information is treated as being
deterministic and is also used for signal synthesis using the
“phase-sensitive [18] ” approach, in low SNRs the
PESQL improvement of the phase-sensitive approaches can be
improved even further. However, in high SNRs, employing the
deterministically treated clean speech phase estimate for signal
synthesis degrades speech quality. As reported in [15], [17], in-
formal listening confirms that artifacts may occur when the esti-
mated phase is directly employed for signal synthesis instead of
the phase of the noisy observation. Furthermore, STOI always
predicts a decreased intelligibility for the “phase-sensitive [18]

” approach.
However, with the “proposed CUP estimator (32)”, where we

also consider the uncertainty about the prior phase information
, even larger quality improvements are predicted in low

SNRs and the quality degradation in high SNRs is avoided.
Furthermore, STOI also predicts the largest improvements
in intelligibility for the CUP estimator. Informal listening
confirms that artifacts are reduced by taking the uncertainty of
the phase estimate into account. Audio examples are provided
at http://speech.uniol.de/cupestimator.html. Finally, it is inter-
esting to note that the negative STOI scores in babble noise
can be avoided by estimating the speech PSD using temporal
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Fig. 8. Evaluation using the short-time objective intelligibility (STOI) measure
[34] for the same setup as in Fig. 7 (a) Pink noise. (b) Modulated pink Gaussian
noise. (c) Nonstationary factory noise. (d) Babble noise.

Fig. 9. PESQL and STOI for babble noise when temporal cepstrum smoothing
[35], [36] is employed for speech PSD estimation.

cepstrum smoothing [35], [36], instead of the decision directed
approach [8]. These results are given in Fig. 9.

VI. SUMMARY AND CONCLUSIONS

While most algorithms for STFT-domain speech enhance-
ment modify only the spectral amplitude, more attention is

drawn recently towards phase processing. In this paper we
addressed the problem of phase estimation and phase-sensitive
speech enhancement from a Bayesian perspective. We analyzed
the phase estimation problem for different degrees of prior
knowledge about the speech and noise coefficients. First, we
considered the scenario that besides the noisy observation both
the speech and noise spectral amplitudes are perfectly known.
It is interesting to note that even in this idealistic case, the
phase estimation problem is still ambiguous. This ambiguity
can be mended, for instance by incorporating the group delay
[19]. Next, we considered the case where only perfect knowl-
edge of the clean speech amplitudes is given while the noisy
coefficients follow a complex Gaussian distribution. We show
that the resulting posterior density of the clean speech phase is
given by a von Mises distribution with its mean-direction given
by the phase of the noisy signal. Subsequently, we analyzed the
most relevant scenario for speech enhancement, where both the
speech and noise amplitudes are unknown random variables.
For this scenario we derived the ML and MAP estimators for
the clean speech phase when the complex noise coefficients
are Gaussian distributed and the speech amplitudes are -dis-
tributed. While the ML-optimal estimate is shown to be the
phase of the noisy observation, the MAP estimator allows for
incorporating prior knowledge of the phase. This prior clean
speech phase information can be obtained for instance using the
phase reconstruction algorithm [15], [16]. The MAP-optimal
phase estimate then results in a trade-off between the phase of
the noisy observation and the prior information on the phase,
controlled by the uncertainty of this prior information. Finally,
we derived a joint MMSE-optimal estimator of the clean speech
amplitude and phase, when uncertain prior knowledge of the
clean speech phase is given. While combining a deterministic
clean speech phase estimate with enhanced amplitudes may
yield artifacts in the reconstructed speech, incorporating the
uncertainty of the prior phase estimate with the proposed
Bayesian estimators reduces these artifacts. Furthermore, for
a large range of SNRs and noise types, we showed that this
“proposed CUP estimator (32)” improves the instrumentally
predicted speech quality and speech intelligibility further.
It is interesting to note that the proposed estimators can also

be employed if multiple microphones are present. This is be-
cause under a Gaussian noise model, the output of an minimum
variance distortionless response (MVDR) beamformer provides
sufficient statistics for functions of the clean speech spectral co-
efficients [37]. Thus, while the estimators in this paper are de-
rived for a single channel observation, if multiple microphones
are available it is also statistically optimal to apply the derived
single channel estimators at the output of an MVDR beam-
former. Another interesting extension of the proposed estima-
tors is a scenario where multiple speakers are present. In this
scenario, perspectively, the proposed estimators can still be used
when a multi-pitch tracker (e.g., [38]) is employed to estimate
the prior phase information using [15].
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