
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014 1931

STFT Phase Reconstruction in Voiced Speech for an
Improved Single-Channel Speech Enhancement
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Abstract—The enhancement of speech which is corrupted by
noise is commonly performed in the short-time discrete Fourier
transform domain. In case only a single microphone signal is avail-
able, typically only the spectral amplitude is modified. However, it
has recently been shown that an improved spectral phase can as
well be utilized for speech enhancement, e.g., for phase-sensitive
amplitude estimation. In this paper, we therefore present a method
to reconstruct the spectral phase of voiced speech from only the
fundamental frequency and the noisy observation. The impor-
tance of the spectral phase is highlighted and we elaborate on the
reason why noise reduction can be achieved bymodifications of the
spectral phase. We show that, when the noisy phase is enhanced
using the proposed phase reconstruction, instrumental measures
predict an increase of speech quality over a range of signal to noise
ratios, even without explicit amplitude enhancement.

Index Terms—Noise reduction, phase estimation, signal recon-
struction, speech enhancement.

I. INTRODUCTION

I N this paper, we focus on the enhancement of single-
channel speech corrupted by additive noise. Besides

applications where only a single microphone is available,
e.g. due to limited battery capacity, computational power, or
space, single-channel speech enhancement is relevant also as a
post-processing step to multi-channel spatial processing. The
reduction of detrimental noise components is indispensable,
e.g. in hearing devices and smartphones, which are expected to
work reliably also in adverse acoustical situations.
Many well-known and frequently employed noise reduction

algorithms are formulated in the short-time discrete Fourier
transform (STFT) domain, since it allows for spectro-temporal
selective processing of sounds, while being intuitive to interpret
and fast to compute. The complex valued spectral coefficients
can be represented in terms of their amplitudes and phases. Fre-
quently, it is assumed that the enhancement of the noisy spectral
amplitude is perceptively more important than the enhancement
of the spectral phase [1]. Thus, research has mainly focused on
the estimation of the clean speech spectral amplitudes from the
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noisy observation, while the enhancement of the noisy spectral
phase attracted far less interest. The short-time spectral ampli-
tude estimator (STSA) and the -spectral amplitude estimator
(LSA) proposed by Ephraim and Malah [2], [3] are probably
the most popular examples of such amplitude enhancement
schemes. The authors also showed that for Gaussian distributed
real and imaginary parts of the clean and noise spectral co-
efficients, the minimum mean square error (MMSE) optimal
estimate of the clean spectral phase is the noisy phase itself,
justifying its use for signal reconstruction [2].
Nevertheless, in the recent past, research on the role of the

spectral phase picked up pace, e.g. [4]–[14]. Paliwal et al. [4]
investigated the importance of the spectral phase in speech en-
hancement and came to the conclusion “that research into better
phase spectrum estimation algorithms, while a challenging task,
could be worthwhile”. They showed that an enhanced spectral
phase can indeed lead to an increased speech quality. Motivated
by these findings, in this paper we present a novel approach to-
wards the enhancement of noise corrupted speech based on im-
proved spectral phases.
Because of signal correlations and since neighboring STFT

segments are typically overlapping by 50% or more, the spectral
coefficients of successive segments are correlated. Furthermore,
spectral coefficients of neighboring frequency bands show de-
pendencies due to the limited length of the signal segments and
the form of the spectral analysis window. This effect is known as
spectral leakage and affects both, spectral amplitudes as well as
phases. These relations are exploited by the approach of Griffin
and Lim [1], which iteratively estimates spectral phases given
the spectral amplitudes of a speech signal. For this, the STFT
and its inverse are repeatedly computed, where the spectral
amplitude is constrained to stay unchanged and only the phase is
updated. Over the years, various modifications of this approach
have been proposed. For a compact overview see [7]. It has been
reported that with the iterative approach of Griffin and Lim per-
ceptually good results can be achieved in case the clean spectral
amplitudes are perfectly known [7]. However, if the amplitudes
are estimated, as it is the case in noise reduction, the benefit is
limited [15]. A related approach on combined amplitude and
phase estimation in noise reduction and source separation is
known as consistent Wiener filtering [8], where the classical
Wiener filter is constrained to yield a consistent estimate of the
clean spectral coefficients, obeying the correct relations between
adjacent time-frequency points. Besides approaches aiming at
estimating the clean speech spectral phase, Sugiyama et al. [6]
also pointed out the importance of the spectral phase of the noise
components and proposed a noise reduction scheme based on
the randomization of the spectral phase of the noise.
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Also for single-channel speech separation, estimates of the
clean spectral phase have been shown to yield valuable infor-
mation that can effectively be employed to improve the sepa-
ration performance, e.g. [9], [10]. While [9] again relies on an
iterative procedure for estimating the spectral phases, in [10] a
non-iterative approach for two concurring sources incorporating
the group-delay function is proposed. For these approaches, the
spectral amplitudes of all sources need to be known.
In this contribution, evolving from our preliminary work in

[16], we first discuss visualizations of the speech spectral phase
to reveal structures in the phase and show that these phase struc-
tures are disturbed by additive noise. Then, a method to recover
the clean spectral phase of voiced speech along time and fre-
quency is presented. We again exploit the relations of neigh-
boring time-frequency points due to the structure of the STFT,
but also incorporate signal information using a harmonic model
for voiced speech. Independently of our work, employment of
harmonic-model-based spectral phase estimates has also been
proposed in [17]. There, the phase estimation is performed only
along time and only in the direct neighborhood of the harmonic
components. In contrast to that, our approach also reconstructs
the phase between the harmonic components across frequency
bands. We will show that this phase reconstruction between the
harmonics allows for an increased noise reduction during voiced
speech when the phase estimates are employed for speech en-
hancement. Note that for the proposed phase reconstruction al-
gorithm only the fundamental frequency of the speech signal
needs to be estimated. We explain why by only combining the
reconstructed phase with noisy amplitudes, noise between spec-
tral harmonics can be reduced, and show that this improves the
speech quality predicted by instrumental measures. Informal lis-
tening confirms the noise reduction during voiced speech at the
expense of a slightly synthetic sounding residual signal. These
artifacts are however effectively alleviated by incorporating un-
certainty about the phase estimate and by combination with am-
plitude enhancement [12]–[14].
This paper is organized as follows: In Section II, we introduce

the signal model and derive a novel, visually more informa-
tive representation of the spectral phase. An approach for phase
reconstruction along time is presented in Section III, followed
by phase reconstruction across frequency and a combination of
both in Section IV. In Section V, the proposed phase reconstruc-
tion methods are analyzed in detail and utilized for the reduc-
tion of noise. Then, our algorithms are evaluated on a database
of noise-corrupted speech in Section VI.

II. SIGNAL MODEL AND NOTATION

We assume that at each time instance the clean speech
signal is degraded by additive noise and that only
the noisy mixture is observed. The noisy
observation is separated into segments of samples, using a
hop size of samples. Each segment is first multiplied with an
analysis window and then transformed using the discrete
Fourier transform (DFT). The resulting STFT representation is
denoted as

(1)

Fig. 1. Amplitude and phase spectrogram (top), instantaneous frequency and
baseband phase difference (BPD) (bottom) for a clean speech signal. The BPD
reveals structures in the phase that are related to those of the amplitude spectro-
gram, especially for voiced sounds.

with segment index , frequency index , and the normalized
angular frequencies , corresponding to the center
frequencies of the STFT bands. Note that with

, the DFT length can also be chosen larger than
the segment length resulting in so called zero-padding. We
denote the complex spectral coefficients of , , and by the
corresponding capital letters which can be described in terms of
their amplitudes , , , and phases , , :

(2)

Further, estimates are denoted by a hat symbol, e.g. is an es-
timate of .

A. Representations of the Phase in the STFT Domain

In Fig. 1 we present the amplitude spectrogram (top left)
together with the spectrogram of the spectral phase (top right)
for a clean speech signal . In contrast to the amplitude
spectrum, the phase spectrum of clean speech shows only very
little temporal or spectral structure. This is, at least in parts,
due to the wrapping of the phase to its principal value between

. However, there exist various proposals aiming at a
more accessible representation of the spectral phase. Exam-
ples are the instantaneous-frequency-deviation [18] and the
group-delay-deviation [19].
Let us now interpret the STFT as a band-pass filter bank

with bands, where defines the prototype low-pass [20].
The output of each band-pass corresponds to a complex-valued,
narrow-band signal, which is subsampled by a factor . If we
now compute the temporal derivative of the phase, we obtain
the instantaneous frequency (IF) of each band. In the discrete
case, the temporal derivative can be approximated by the phase
difference between two successive segments:

(3)

where denotes the principal value operator, mapping
the phase difference onto , and gives
the phase of the argument. The IF for our example sentence
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Fig. 2. From left to right, amplitude spectra of clean, noisy, and enhanced speech using either the proposed phase reconstruction or the true clean speech phase
in (17) are presented in the upper line, together with the corresponding BPD in the lower line. The speech signal is degraded by traffic noise at a global SNR
of 0 dB. Note that the noise reduction between the harmonics—visible at the top of the third column—is achieved by phase reconstruction alone, no amplitude
enhancement is applied.

is presented at the bottom left of Fig. 1, where some structure
becomes visible.
The IF can be used for example for fundamental frequency

detection [21]. However, for segment shifts of , the band-
pass signals are sub-sampled, which leads to IF values outside
of in higher frequency bands. Since the IF is limited
to its principle value, wrapping effects along frequency occur,
limiting its use for visualization. In order to improve the acces-
sibility of the phase information, in [16] we propose to modulate
each STFT band into the baseband:

(4)

Following the filter bank interpretation, each band of is
in the baseband, avoiding the increase of the temporal phase
difference towards higher bands and thus also the wrapping that
is observed for the IF in Fig. 1. The phase difference of the
baseband representation from one segment to the next gives
the baseband phase difference (BPD),

(5)

The BPD is shown at the bottom right of Fig. 1. It can be
seen that temporal as well as spectral structures inherent in
the phase are revealed by the use of the BPD, effectively
avoiding wrapping along frequency. The observed structures
show strong similarities to the ones of the amplitude spectrum.
This is especially prominent during voiced speech segments,
where the harmonic structure is well represented. Envelope and
formant structures however are less pronounced as compared
to the amplitude spectrum. Note that the BPD transformation is
invertible. No information is added or lost with respect to the
phase itself.

B. Harmonic Model in the STFT Domain

In Fig. 2, we show that the structure within the BPD during
voiced speech can get lost due to additive noise. For that, we
present the clean (1st column) and the noisy signal (2nd column)
in terms of their amplitude and BPD spectra. Here, for traffic
noise at 0 dB SNR, not only the amplitude but also the spectral

phase is deteriorated. The goal of this paper is to recover the
structures of the clean phase of voiced speech from only
the noisy signal . The 3rd and 4th column of Fig. 2 already
show the results obtained after the reconstruction of the spectral
phase, and will be discussed in detail in Section V.
We model voiced speech as a weighted superposition of sev-

eral sinusoids at the fundamental frequency and integer mul-
tiples of it, the harmonic frequencies . This
harmonic signal model is frequently employed in speech pro-
cessing, e.g. [22]–[25], and we can denote it in the time domain
as

(6)

with the number of harmonics , real-valued amplitude ,
normalized angular frequency , and the
initial time domain phase of harmonic component .
The transformation of (6) into the STFT domain yields

(7)

where we assume the harmonic frequencies and amplitudes to
be constant over the length of one signal segment . Note that we
formulate the harmonic model in the STFT domain to allow for
combinations of the proposed phase reconstruction with spectral
amplitude estimators, e.g. [11], [12], [14].

III. PHASE RECONSTRUCTION ALONG TIME

In the STFT formulation of the harmonic model in (7), each
frequency band depends on all harmonic components. This is
due to the finite length of the STFT signal segments and the
limited sideband attenuation of the prototype low-pass filter de-
fined by the analysis window . Thus, to analytically solve
(7) for the spectral phase , the fundamental frequency, all
amplitudes , and all initial time-domain phases need to
be known. However, the amplitudes are unknown in prac-
tice and hard to estimate in the presence of noise. We therefore
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Fig. 3. Symbolic spectrum of a signal with 3 harmonic components. The shifted
prototype lowpass of band is effectively suppressing all harmonics but

. Hence, band is dominated only by the harmonic , while all other
signal components can be neglected, justifying the simplification made in (9).

propose to simplify the STFT representation of the harmonic
model to avoid the need of knowing the amplitudes .
For this, we assume that each harmonic dominates the fre-

quency bands in its direct neighborhood and that the influence
of all other harmonics to this neighborhood can be neglected.
This assumption is well satisfied in case the frequency resolu-
tion of the STFT is high enough and the sideband attenuation
of the band-pass filters is large enough to separate the spectral
harmonics. This concept is depicted in Fig. 3, where we can see
the symbolic spectrum of a harmonic signal with har-
monics. For the case shown in Fig. 3, the band-pass filters
defined by the analysis window are steep enough to avoid
relevant overlap of neighboring harmonic components. How-
ever, the spectral resolution of the STFT and the choice of
impose a lower limit on the fundamental frequency for which
this assumption holds. For example, the distance between the
center frequencies of two adjacent STFT bands is 31.25 Hz for
a segment length of 32 ms, which is sufficient to resolve the har-
monics for typical speech sounds and analysis windows.
To allow for a compact notation of the simplified signal

model, we introduce

(8)

which is the harmonic component that is closest to the
center frequency of band . Accordingly, the harmonic com-
ponent dominates band . The amplitude and phase of this
harmonic are denoted as and . Following this concept,
the STFT of the harmonic model (7) reduces to

(9)

with non-integer , mapping the har-
monic frequencies to the index notation. Further, in (9)
the DFT of the analysis window modulated by the dominant
harmonic frequency, , is denoted as

. Note that is only an integer if

equals exactly one of the center frequencies of the STFT
filter bank .
From (9) it can be seen that although the underlying signal

consists of harmonics, each band itself now depends only on
one single harmonic. Assuming that the fundamental frequency
changes only slowly over time, i.e. , the phase
difference between two successive segments is given by

(10)

Note that the wrapped phase difference becomes zero
if the segment shift is an integer multiple of the dominant
harmonics period length, i.e. , with . For
all other harmonic frequencies, the phase difference will differ
from zero. We can reformulate (10) to get

(11)

With (11) we can reconstruct the spectral phase of a harmonic
signal based on the fundamental frequency and the segment
shift , given that we have a phase estimate at a single signal
segment , i.e. . In an on-line speech enhancement setup,
this segment could be the onset of a voiced sound. Obtaining
the initial estimate at the onset of a harmonic signal in the pres-
ence of noise, , however is a challenging task.
For a harmonic signal, the spectral energy is concentrated on

the spectral harmonics. Thus, in frequency bands that directly

contain a spectral harmonic, , the

signal energy depicts a local maximum, and thus these bands
are most likely to exhibit high local SNRs. In these bands we
propose to use the noisy phase as an initial estimate of the clean
spectral phase at the onset of a voiced sound, .
From this initial value the spectral phase of consecutive seg-
ments is then reconstructed using (11). It is worth noting that
the alignment of phases of harmonic components over consec-
utive segments has also been discussed in the context of sinu-
soidal signal analysis and synthesis, e.g. [26], and has for in-
stance been employed for low bit rate audio coding [27]. In be-
tween these bands, however, the signal energy is typically low,
and thus the local SNR is likely to be low as well. Accordingly,
the noisy phase can be strongly deteriorated by the noise and
does not yield a good initialization of the clean phase. This limits
the applicability of the temporal phase reconstruction (11). We
therefore introduce an alternative method that overcomes this
problem by reconstructing the spectral phases between the har-
monic components in the following section.

IV. PHASE RECONSTRUCTION ALONG FREQUENCY

Due to the finite length of the STFT segments and the form of
the analysis window , some energy of the harmonic com-
ponents also leaks into neighboring frequency bands. In this
section, we want to utilize this effect to reconstruct the spec-
tral phase across frequency. Since the reconstruction across fre-
quencies can be performed independently for every signal seg-
ment, we drop the index to allow for a compact notation.
Again, we assume that the frequency resolution of the STFT
and the analysis window are chosen such that the spec-
tral harmonics can still be separated. Accordingly, each band is



KRAWCZYK AND GERKMANN: STFT PHASE RECONSTRUCTION IN VOICED SPEECH 1935

Fig. 4. Symbolic spectrogram visualizing the combined phase estimation ap-
proach. In bands containing harmonic components (red) the phase is esti-
mated along segments (11). Based on this estimate, the spectral phase of bands
in between (blue) is then inferred across frequency (13).

dominated only by the closest harmonic component, and we can
thus again employ our simplified signal model (9). From (9) it
can be seen that the spectral phases,

(12)

of bands that are dominated by the same harmonic are
directly related via the spectral phase of the shifted analysis
window . Accordingly, we can infer the spectral phase of
a band from its neighbors by accounting for the phase shift in-
troduced by the spectral representation of the analysis window
. Starting from bands that contain harmonic components,

we obtain the spectral phases in the surrounding bands ,
with integer , via

(13)

In order for to cover all frequency bands associated to the
same spectral harmonic, here we choose , with
denoting the ceiling function. For instance, for the example

in Fig. 4 is one.
For a noisy speech signal, (13) is initialized with the noisy

spectral phase in bands containing harmonic components,
, again assuming that the local SNR is relatively high

as compared to the neighboring bands. In this way, we utilize
phase information in high SNR bands to infer the spectral
phase in the surrounding, low SNR bands . Next, we dis-
cuss how the spectral phase of the analysis window, and

, can be obtained for integer as well as non-integer .

A. Obtaining the Spectral Phase of the Analysis Window

For harmonic frequencies that directly fall onto a center fre-
quency of an STFT band, is an integer value. Thus, we can
simply apply the DFT to the analysis window and directly take

and from for each and .

For the general case of arbitrary harmonic frequencies, is
usually not an integer and does not fall onto the STFT
frequency grid. Thus, cannot be taken directly from the

DFT of anymore. We will first discuss the relevance of
a simple linear phase assumption. Then, an analytic solution
for a frequently used class of symmetric analysis windows is
presented, followed by a general approach for arbitrary window
functions.
1) Linear Phase Assumption: In spectral analysis and

enhancement of speech signals, symmetric windows are em-
ployed most frequently. First, let us consider a non-causal,
real-valued window function with a length of samples
which is symmetric around . Such a window func-
tion depicts a real-valued discrete-time Fourier transform
(DTFT) representation . To make the window func-
tion causal it is shifted in time by samples, leading to

. From this formulation and
knowing that is real-valued, it might seem reasonable
to draw the desired window phases directly from the

linear phase term , independent of the actual form
of the symmetric window function. For a DFT length of
samples we would expect a phase shift between two bands of

,
which is independent of band index . This phase difference
could then be employed for phase reconstruction along fre-
quency in (13).
However, although is real-valued, still its sign might

change along frequency, introducing phase jumps of . Thus,
we reformulate the DTFT of the causal window as

(14)

where is 1 for and for . From (14) it can
be seen that even for symmetric window functions the spectral
phase of the window is not only given by , but also de-
pends on the form of the window. In order to analytically obtain

and we therefore need to know the exact DTFT

of the window function . Still, the linear phase assump-
tion might serve as a sufficient approximation when aiming at a
fast and simple solution.
2) Symmetric Half-Cosine-Based Window Functions: Here

we present an analytic solution for the computation of spectral
phases for some frequently employed symmetric analysis win-
dows, including the rectangular, Hann, and Hamming windows.
All three belong to the same class of window functions that can
be expressed as, see e.g. [28, Section III]:

(15)
with giving a rectangular window, a
Hann window, and a Hamming window. Here,

denotes a causal rectangular function that is
1 for . Note that in contrast to [28, Section III]
the definition in (15) is chosen such that the period length
of the cosine is exactly two times the window length. This
allows for a periodic extension of the window, which is desired
in segment-based signal processing which aims at perfect
reconstruction.
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Using basic properties of Fourier analysis and simple alge-
braic computations, the DTFT of (15) can be formulated as

(16)

with the special cases and
. From (16) we can see that we

have a linear phase term and a nonlinear part inside
the brackets with phase jumps at the poles of the fractions.
Using (16), the spectral phases of the analysis window

and , which are needed for the phase reconstruction
across frequencies (13), can now be computed analytically.
3) General Window Functions: For the general case of

arbitrary, possibly non-symmetric and thus non-linear phase
windows for which no closed-form transfer function is avail-
able, the analytic approach can not be applied to estimate the
window’s spectral phase. To still allow for the usage of such
analysis windows, like e.g. the frequently used square-root
Hann window, we compute the DFT of with a large
amount of zero padding, achieving a high density, quasi-con-
tinuous, sampling of .

B. Combined Phase Reconstruction Along Time and
Frequency

So far, we reconstruct the spectral phase across frequency in
each segment separately. However, we can also combine the
phase reconstruction across frequencies with the phase recon-
struction along time in Section III, in order to obtain a compre-
hensive phase estimation framework. This is depicted in Fig. 4.
First, voiced sounds are detected and the fundamental frequency
is estimated. At the onset of a voiced sound in segment , the

phase is reconstructed across frequency bands (13) based on the
noisy phase of bands . The phase of the consecutive segment
is reconstructed along time (11) only for bands that contain har-
monic components. The reconstructed phase is then employed
to infer also the spectral phase of frequency bands between the
harmonics via (13). This procedure is repeated until the end of
the voiced sound is reached.

V. ANALYSIS AND APPLICATION TO SPEECH ENHANCEMENT

In this section, we focus on the principles underlying the pro-
posed phase reconstruction as well as on how and why noise
reduction can be achieved with the help of phase processing. In
contrast to most common speech enhancement schemes which
modify the spectral amplitude but leave the spectral phase un-
touched, here we achieve noise reduction by only modifying the
spectral phase. Moreover, the proposed phase reconstruction al-
gorithm is defined in the STFT domain, such that it can easily
be combined with STFT-based amplitude estimators, leading
to an improved overall speech enhancement performance, e.g.
[11]–[14].
With the proposed algorithm we can reconstruct the clean

speech spectral phase of voiced sounds from the noisy

observation . To demonstrate its validity, the reconstructed

phase is combined with the noisy amplitude , giving

(17)

Then, is transformed into the time domain and each
segment is multiplied with a synthesis window. The enhanced
signal is finally obtained via overlapping and adding the
individual segments.
The effect of using the improved phase is presented in Fig. 2,

where the clean, the noisy, and the enhanced signal are shown
in terms of their amplitude and BPD spectra (from left to right).
After reanalyzing the enhanced time domain signal, we can see
that improving the spectral phase reduces the noise between
spectral harmonics (upper panel of the third column of Fig. 2).
Further, the structures in the spectral phase are effectively re-
covered (lower panel of the third column of Fig. 2). Again, let
us emphasize that the observed noise reduction is obtained only
by modifying the spectral phase—no amplitude estimation is
applied. For comparison, we also present the result when the
true clean speech phase is employed in (17) (right column
of Fig. 2).

A. Why do we Achieve Noise Reduction by Phase
Reconstruction?

In spectro-temporal speech enhancement, successive signal
segments commonly overlap by 50% or more. Consequently, at
least one half of the current signal segment is a shifted version
of the previous segment . Accordingly, overlapping seg-
ments — and also their spectral representations — are not in-
dependent of each other. When synthesizing the desired signal
using the overlap-add framework, the overlapping parts need to
be correctly aligned to achieve perfect superposition. Since the
temporal structure as well as the alignment are encoded in the
spectral phase, distorted phases in consecutive segments lead to
a suboptimal superposition of the desired signal, resulting in a
distorted time-domain signal.
In Section III, we propose to estimate the clean spectral

phase of voiced sounds from segment to segment in bands
containing harmonic components using (11). Applying equa-
tion (11) corresponds to shifting each harmonic component
in the current segment such that it is correctly aligned to the
same component of the preceding segment. On the one hand
we ensure that the harmonic components of adjacent segments
add up constructively. On the other hand noise components
in these bands do not add up constructively, since relations of
the phases of the noise between segments are not preserved.
This effect is most prominent between the spectral harmonics,
i.e. for frequency bands . In these bands the speech
signal has only little energy and the noise is dominant. Accord-
ingly, the noisy phase is close to the noise phase .
Hence, when using the noisy phase for signal reconstruction,
the noise components of consecutive segments are almost
perfectly aligned, which leads to a constructive superposition
during overlap-add. When we now employ the reconstructed
phase obtained via (13) in the noise-dominated bands between
harmonics, destructive interference of noise components is
achieved, explaining the noise reduction that is observed in
Fig. 2.
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Fig. 5. Differences of a noisy and an enhanced segment to the clean harmonic
signal with Hz (left column) together with the signals’ amplitude
spectra (right column). Thewhite Gaussian noise at 0 dB SNR is already reduced
between the harmonics after application of a synthesis window (middle). Further
noise reduction is observed after overlapping and adding neighboring segments
(bottom).

The degree of noise reduction that can be achieved by phase
reconstruction alone depends particularly on the amount of
overlap. The higher the overlap is, the more consecutive signal
segments are added up when reconstructing the time-domain
signal. Thus, the effect of destructive interference of adjacent
noise components increases with increasing overlap, while the
desired signal still adds up constructively. From our experience,
an overlap of 7/8th of the segment length results in a good
trade-off between noise reduction and additional processing
load.
Independently of the overlap, noise reduction is also achieved

when we apply a spectral synthesis window after phase recon-
struction. This is depicted in Fig. 5 for a harmonic signal in
white noise at 0 dB SNR with Hz, ,
square root Hann windows for analysis and synthesis, a seg-
ment length of 32 ms and an overlap of 28 ms. The amplitude
spectra for a single STFT segment of the clean, the noisy, and the
enhanced signal employing the reconstructed phase (right) are
presented together with the time-domain deviations of the noisy
and the enhanced signal from the clean reference (left). It can be
seen that phase reconstruction leads to noise components at the
segment boundaries (top left), which are suppressed by the syn-
thesis window, resulting in noise reduction between harmonics
(middle). After overlap-add of neighboring segments, the noise
is further reduced (bottom). This effect is most visible in the
frequency domain in the right column. For the given example,
the SNR is improved by 4 dB after application of the synthesis
window and by 8 dB after overlap-add.
Besides these effects, also the length and the form of the

employed analysis window play an important role. The
choice of determines the spectral resolution, and thus also
how well harmonic components can be resolved. For long win-
dows with strong side-band attenuation, harmonics are well re-
solved and the assumption of a single dominant component per

frequency band is well fulfilled. On the contrary, in [4] a Cheby-
chev window with a low dynamic range has been shown to be
a promising choice for phase based speech enhancement. How-
ever, such windows depict only a low side-band attenuation and
are thus not suited for our application since the spectral har-
monics are not well separated.

B. Limits of the Proposed Approach

The harmonic model is frequently employed in speech pro-
cessing and holds well for many voiced speech sounds. How-
ever, mixed excitation signals can not be perfectly described
in terms of the harmonic model (6), and the enhanced signal
might thus sound more harmonic than the actual speech signal.
Furthermore, for the proposed phase reconstruction to work re-
liably even in adverse acoustic scenarios, a robust fundamental
frequency estimator is essential. Here, we employ PEFAC [29],
a fundamental frequency estimator which showed to be robust
even to high levels of noise. A common issue in sinusoidal
modeling is that the influence of fundamental frequency esti-
mation errors increases for higher harmonics , since

. Accordingly, we also expect
phase estimates based on a harmonic model to be more precise
in low frequencies as compared to high frequencies. Thus, the
proposed enhancement scheme is most effective in lower fre-
quency regions. Note that it is possible to limit the number of
harmonics of the signal model in order to avoid phase re-
construction where the estimated frequencies are not suffi-
ciently reliable anymore. can be chosen independently of the
observed signal or estimated on-line, e.g. in combination with
the fundamental frequency [30]. In order to keep the complexity
of the algorithm as low as possible, in this paper we do not es-
timate , but choose it such that the harmonic model covers
the frequency range up to 4 kHz, i.e. . Here,
denotes the flooring operator. The choice of the number of har-
monics is a trade-off between noise reduction and speech distor-
tions in higher frequency components. Note that reconstructing
the spectral phase along time (11) is potentially more sensitive
to fundamental frequency estimation errors than the reconstruc-
tion across frequencies (13), since estimation errors may accu-
mulate from segment to segment.
Since a harmonic signal model is employed, the phase-based

speech enhancement considered here is applicable only for
voiced sounds. In unvoiced sounds, the phase cannot be recon-
structed and the noisy phase is not modified. Hence, the noisy
signal is enhanced only during voiced speech. At transitions
from enhanced voiced sounds to unprocessed unvoiced sounds
we consequently observe sudden changes of the noise power.
This effect is most prominent in severe noise conditions and
can be observed in the upper panel of the 3rd column of Fig. 2.
This issue is alleviated when combining the phase enhancement
with amplitude enhancement as proposed in e.g. [13], [14].
There, the complete signal is enhanced, dampening the differ-
ences between voiced and unvoiced speech parts and possibly
increasing the overall improvement.

VI. EVALUATION

To evaluate the potential of the proposed phase reconstruc-
tion in speech enhancement, we consider 128 sentences of the
TIMIT [32] core set, one half uttered by female speakers and
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Fig. 6. Improvement of PESQ and fwSNRseg relative to the noisy input for non-stationary traffic noise at various SNRs. The noisy amplitude is combined with an
estimate of the clean speech phase reconstructed along time (“time”), along frequency (“frequency”), or via the combined approach outlined in Fig. 4 (“combi”),
where the fundamental frequency is blindly estimated on the noisy signal. In contrast, for the results denoted by “oracle “ the fundamental frequency is taken
from the annotation in [31]. For comparison, we also include the case where the noisy amplitude is combined with the true clean speech phase (“clean phase”) as
well as a traditional amplitude enhancement scheme (“ampl. enh.”). In the first three columns, the evaluation is performed only on voiced speech, first separately
for female and male speakers and then combined for both genders. The results evaluated on the complete signals are presented in the last column.

Fig. 7. Improvement of PESQ and frequency weighted SNR relative to the
noisy input for babble noise at various SNRs. The presented results are based
on the complete signals for both genders. For the legend, please refer to Fig. 6.

the other half by male speakers. The speech samples are deteri-
orated by babble noise and non-stationary traffic noise recorded
at a busy street crossing, respectively, at various SNRs. As we
reconstruct the phase only up to 4 kHz, the noisy speech is mod-
ified only in this frequency region and we thus choose a sam-
pling rate of kHz. The noisy signals are split into seg-
ments of 32 ms with a segment shift of 4 ms, corresponding to
a relative overlap of 7/8th and . For analysis and
synthesis we apply a square-root Hann window. The improve-
ment of speech quality is instrumentally evaluated using the Per-
ceptual Evaluation of Speech Quality (PESQ) [33] and the fre-
quency-weighted segmental SNR (fwSNRseg) [34] as imple-
mented in [35]. Although PESQ has originally been developed
for the evaluation of coded speech, it has been shown to corre-
late also with the quality of enhanced speech [36]. The improve-
ments relative to the noisy input signal are reported for traffic
noise in Fig. 6 and for babble noise in Fig. 7.
For the enhancement of the noisy speech we combine the

reconstructed spectral phase with the noisy spectral amplitude
according to (17). The fundamental frequency is blindly esti-
mated on the noisy speech using the noise robust fundamental
frequency estimator PEFAC [29]. The spectral phase is recon-
structed either along time (11) in each STFT band separately,

across frequency based on the noisy phase in bands (13), or
via the combined approach presented in Section IV-B, denoted
as “time”, “frequency”, and “combi”, respectively. The spectral
phase of the analysis window that is needed for the phase
reconstruction across frequencies is obtained via zero-padding
as discussed in Section IV-A3. We also investigate the influ-
ence of fundamental frequency estimation errors. For this, we
present both, the enhancement results obtained using the blind
fundamental frequency estimates as well as the outcome when
the ground truth annotation for the fundamental frequency [29],
[31], denoted as “oracle ,” is employed.
For both noise types, the purely temporal phase reconstruc-

tion is outperformed by the other two approaches, since for the
noise dominated bands between the harmonics the noisy phase
does not yield a decent initial estimate for (11), as discussed
in Section III. This may lead to audible artifacts in the output
signal. The reconstruction across frequencies (13) and the com-
bined approach achieve comparable results, showing improve-
ments for almost all situations considered here. Towards higher
SNRs the frequency-only reconstruction shows the tendency to
slightly outperform the combined approach. This can be ex-
plained by the increasing SNR on the harmonic components in
bands , hence already yields a very good ini-
tialization for (13).
In Fig. 6 it can further be seen that the proposed approach

is most effective for female speakers (left column), where for
voiced sounds an improvement of more than 0.4 PESQ points
and up to 5 dB fwSNRseg can be achieved when using blindly
estimated fundamental frequencies. This observation can be ex-
plained by the typically higher fundamental frequency of fe-
male voices as compared to male voices. In the spectral domain,
the harmonic components are further apart and thus better re-
solved by the STFT, which is beneficial for the applicability of
the model-based phase reconstruction. Furthermore, we achieve
noise reduction mainly between spectral harmonics. For higher
fundamental frequencies there are more noise dominated STFT
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bands between neighboring harmonics and consequently more
noise reduction can be achieved.
When including both genders in the evaluation, blind im-

provements of roughly 0.3 PESQ points and up to 3 dB fwS-
NRseg are obtained (3rd column). Since the proposed phase re-
construction is applicable only for voiced speech, we can also
reduce the noise only during voiced parts. Accordingly, when
we consider the complete signals for the evaluation, the rela-
tive improvements reduce (4th column). Still, around 0.2 PESQ
improvement and 1 dB to 2 dB fwSNRseg improvement are
achieved for the phase reconstruction across frequencies. The
results for babble noise in Fig. 7 are computed on the complete
signals, not distinguishing between female and male speakers.
The general trends are similar, however, the blind results tend
to be slightly lower than for traffic noise, especially for the
fwSNRseg.
Informal listening shows that the improvement reflected in

the instrumental measures is indeed achieved by the reduction
of noise between the harmonics, gained at the expense of some
signal distortions. These artifacts mainly stem from the mis-
match between the unprocessed noisy amplitudes and the re-
constructed phase. Utilizing the estimated phase in a complete
enhancement setup that also estimates the spectral amplitude
[12] and incorporates uncertainty about the phase estimate [14]
therefore strongly mitigates the signal distortions.
In general, both, the proposed phase reconstruction across

frequencies and the combined approach, work reliably with
blindly estimated fundamental frequencies. Nevertheless,
the algorithms can still benefit from more precise estimates,
especially at low SNRs, where oracle information about the
fundamental frequency results in considerable improvements
relative to the blind case, as can be seen in Fig. 6 and Fig. 7.
In addition to the results for the proposed algorithms, we also

present the improvement that is achieved when the clean speech
phase is perfectly known, which is denoted as “clean phase”.
For that, we employ the true clean speech phase in (17).
Interestingly, it can be stated that, specifically for low SNRs,
the usage of the true clean speech phase can be outperformed
by the model-based reconstruction during voiced speech in case
the true fundamental frequency is known, e.g., the first column
of Fig. 6. This is a crucial finding, as it suggests that the clean
speech spectral phase is not always the best solution for phase-
only noise reduction via (17): when the model-based phase is
employed, more noise reduction is achieved during harmonics
than for the clean speech phase, but potentially also more speech
distortions are introduced (cf. the last two columns of Fig. 2).
At low SNRs, the increased noise reduction outweighs possible
speech distortions. For increasing SNRs, however, the speech
distortions become increasingly important. Thus, the gap be-
tween usage of the clean phase and the reconstructed phase re-
duces, eventually rendering the clean speech phase the better
choice at high SNRs.
In a final step, we compare the proposed phase enhancement

to traditional spectral amplitude enhancement, denoted as
“ampl. enh.” in Fig. 6. Here we employ the LSA with a lower
limit of dB on the spectral gain function for the estimation
of the clean speech amplitudes [3]. For this, we estimate the
noise power according to [37] and the a priori SNR using the
decision directed approach [2]. While the frequency weighted

SNR improvement in Fig. 6 and Fig. 7 is lower than or equal to
that of the best performing blind phase enhancement scheme,
PESQ scores indicate that amplitude enhancement achieves a
higher perceptual quality, especially for increasing SNRs. The
latter is also confirmed by informal listening. In particular, the
fact that in phase processing noise reduction is only achieved
in voiced speech leads to unpleasant switching effects. For a
perceptual comparison the reader is referred to [38], where
listening examples together with code for the proposed phase
reconstruction can be found.

VII. CONCLUSIONS

In this contribution we presented a method for the reconstruc-
tion of the spectral phase of voiced speech utilizing a harmonic
model. Structures inherent in the clean speech spectral phase
are revealed by the baseband phase difference and reconstructed
using the proposed algorithm. The underlying principles as well
as the importance of the enhancement of the spectral phase have
been pointed out. We showed that by only reconstructing the
spectral phase, noise between harmonics of voiced speech can
effectively be suppressed.
Besides the sole enhancement of spectral phases presented

here, in [11] we showed that the proposed phase reconstruc-
tion may also be combined with spectral amplitude estimators
to further increase the speech enhancement performance. Fur-
thermore, the reconstructed phase yields valuable information
which can be utilized for improved, phase-sensitive amplitude
estimators [12] or even estimators of the complex spectral co-
efficients [14]. Such combinations can potentially outperform
conventional amplitude-based enhancement schemes and also
the phase-only noise reduction presented here. The limitation
to phase-based noise reduction, however, allows for a deeper
understanding of the underlying principles detached from the
influence of amplitude enhancement and shows that by blindly
modifying the spectral phase, noise reduction can be achieved.

REFERENCES

[1] D. W. Griffin and J. S. Lim, “Signal estimation from modified short-
time Fourier transform,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-32, no. 2, pp. 236–243, Apr. 1984.

[2] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, pp.
1109–1121, Dec. 1984.

[3] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-33, no. 2, pp. 443–445,
Apr. 1985.

[4] K. Paliwal, K. Wójcicki, and B. Shannon, “The importance of phase
in speech enhancement,” ELSEVIER Speech Commun., vol. 53, no. 4,
pp. 465–494, Apr. 2011.

[5] M. Kazama, S. Gotoh, M. Tohyama, and T. Houtgast, “On the signif-
icance of phase in the short term Fourier spectrum for speech intelli-
gibility,” J. Acoust. Soc. Amer., vol. 127, no. 3, pp. 1432–1439, Mar.
2010.

[6] A. Sugiyama and R. Miyahara, “Phase randomization - a new para-
digm for single-channel signal enhancement,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Vancouver, BC, Canada,
May 2013, pp. 7487–7491.

[7] N. Sturmel and L. Daudet, “Signal reconstruction from STFT mag-
nitude: A state of the art,” in Proc. Int. Conf. Digital Audio Effects
(DAFx), Paris, France, Sep. 2011, pp. 375–386.

[8] J. Le Roux and E. Vincent, “Consistent Wiener filtering for audio
source separation,” IEEE Signal Process. Lett., vol. 20, no. 3, pp.
217–220, Mar. 2013.



1940 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

[9] D. Gunawan and D. Sen, “Iterative phase estimation for the synthesis
of separated sources from single-channel mixtures,” IEEE Signal
Process. Lett., vol. 17, no. 5, pp. 421–424, May 2010.

[10] P. Mowlaee, R. Saeidi, and R. Martin, “Phase estimation for signal
reconstruction in single-channel speech separation,” in Proc. ISCA In-
terspeech, Portland, OR, USA, Sep. 2012.

[11] T. Gerkmann, M. Krawczyk, and R. Rehr, “Phase estimation in speech
enhancement — unimportant, important, or impossible?,” in Proc.
IEEE Conv. Elect. Electron. Eng. Israel, Eilat, Israel, Nov. 2012.

[12] T. Gerkmann and M. Krawczyk, “MMSE-optimal spectral amplitude
estimation given the STFT-phase,” IEEE Signal Process. Lett., vol. 20,
no. 2, pp. 129–132, Feb. 2013.

[13] M. Krawczyk, R. Rehr, and T. Gerkmann, “Phase-sensitive real-time
capable speech enhancement under voiced-unvoiced uncertainty,” in
Proc. EURASIP Eur. Signal Process. Conf. (EUSIPCO), Marrakech,
Morocco, Sep. 2013.

[14] T. Gerkmann, “Bayesian estimation of clean speech spectral coeffi-
cients given a priori knowledge of the phase,” IEEE Trans. Signal
Process., vol. 62, no. 16, pp. 4199–4208, Aug 2014.

[15] D. Griffin, D. Deadrick, and J. Lim, “Speech synthesis from short-time
Fourier transform magnitude and its application to speech processing,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Mar. 1984, vol. 9, pp. 61–64.

[16] M. Krawczyk and T. Gerkmann, “STFT phase improvement for single
channel speech enhancement,” in Proc. Int. Workshop Acoust. Echo,
Noise Control (IWAENC), Aachen, Germany, Sep. 2012.

[17] E. Mehmetcik and T. Çiloğlu, “Speech enhancement by maintaining
phase continuity,” in Proc. Meetings Acoust. Soc. Amer., Nov. 2012,
vol. 18, no. 055002.

[18] A. P. Stark and K. K. Paliwal, “Speech analysis using instantaneous
frequency deviation,” in Proc. ISCA Interspeech, Brisbane, Australia,
Sep. 2008, vol. 9, pp. 2602–2605.

[19] A. P. Stark and K. K. Paliwal, “Group-delay-deviation based spectral
analysis of speech,” in Proc. ISCA Interspeech, Brighton, U.K., Sep.
2009, vol. 10, pp. 1083–1086.

[20] P. Vary, “Noise suppression by spectral magnitude estimation–mech-
anism and theoretical limits,” ELSEVIER Signal Process., vol. 8, pp.
387–400, May 1985.

[21] F. J. Charpentier, “Pitch detection using the short-term phase spec-
trum,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Tokyo, Japan, Apr. 1986, pp. 113–116.

[22] T. Quatieri and R. McAulay, “Noise reduction using a soft-decision
sine-wave vector quantizer,” in IProc. EEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), Apr. 1990, vol. 2, pp. 821–824.

[23] M. E. Deisher and A. S. Spanias, “Speech enhancement using state-
based estimation and sinusoidal modeling,” J. Acoust. Soc. Amer., vol.
102, no. 2, pp. 1141–1148, 1997.

[24] J. Jensen and J. H. Hansen, “Speech enhancement using a constrained
iterative sinusoidal model,” IEEE Trans. Speech Audio Process., vol.
9, no. 7, pp. 731–740, Oct. 2001.

[25] M. McCallum and B. Guillemin, “Stochastic-deterministic MMSE
STFT speech enhancement with general a priori information,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 21, no. 7, pp. 1445–1457,
Jul. 2013.

[26] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on
a sinusoidal representation,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-34, no. 4, pp. 744–754, Aug 1986.

[27] K. Hamdy, M. Ali, and A. Tewfik, “Low bit rate high quality audio
coding with combined harmonic and wavelet representations,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), May 1996,
vol. 2, pp. 1045–1048.

[28] P. Vary and R. Martin, Digital Speech Transmission: Enhancement,
Coding And Error Concealment. Chichester, West Sussex, U.K.:
Wiley, 2006.

[29] S. Gonzalez and M. Brookes, “PEFAC—A pitch estimation algorithm
robust to high levels of noise,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 22, no. 2, pp. 518–530, Feb. 2014.

[30] M. Christensen, J. Hojvang, A. Jakobsson, and S. Jensen, “Joint
fundamental frequency and order estimation using optimal filtering,”
EURASIP J. Adv. Signal Process., vol. 2011, no. 1, p. 13, 2011.

[31] S. Gonzalez, “Pitch of the core TIMIT database set,” [Online]. Avail-
able: http://www.ee.ic.ac.uk/hp/staff/dmb/data/TIMITfxv.zip Feb.
2014

[32] J. S. Garofolo, “DARPA TIMIT acoustic-phonetic speech database,”
Nat. Insti. of Stand. and Technol. (NIST) 1988.

[33] ITU-T, “Perceptual evaluation of speech quality (PESQ),” ITU-T Rec.
P.862 2001.

[34] J. Tribolet, P. Noll, B. McDermott, and R. Crochiere, “A study of com-
plexity and quality of speech waveform coders,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), Apr. 1978, vol. 3,
pp. 586–590.

[35] M. Brookes, “VOICEBOX: A speech processing toolbox for
MATLAB,” [Online]. Available: http://www.ee.ic.ac.uk/hp/staff/
dmb/voicebox/voicebox.html

[36] Y. Hu and P. Loizou, “Evaluation of objective quality measures for
speech enhancement,” IEEE Trans. Audio, Speech, Lang. Process., vol.
16, no. 1, pp. 229–238, Jan. 2008.

[37] T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-based noise
power estimation with low complexity and low tracking delay,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 4, pp. 1383–1393,
May 2012.

[38] M. Krawczyk and T. Gerkmann, “STFT phase reconstruction based on
a harmonic model: Listening examples and code,” [Online]. Available:
http://www.speech.uni-oldenburg.de/phasereconstruction.html

Martin Krawczyk studied electrical and informa-
tion engineering at the Ruhr-Universität Bochum,
Germany. His major was communication technology
with a focus on audio processing and he received
his Dipl.-Ing. degree in August 2011. From January
2010 to July 2010 he was with Siemens Corporate
Research in Princeton, NJ, USA. Since November
2011, he has been pursuing a Ph.D. in the field
of speech enhancement and noise reduction at the
Universität Oldenburg, Oldenburg, Germany.

Timo Gerkmann studied electrical engineering at
the universities of Bremen and Bochum, Germany.
He received his Dipl.-Ing. degree in 2004 and his
Dr.-Ing. degree in 2010 both at the Institute of
Communication Acoustics (IKA) at the Ruhr-Uni-
versität Bochum, Bochum, Germany. In 2005, he
was with Siemens Corporate Research in Princeton,
NJ, USA. From 2010 to 2011, Dr. Gerkmann was
a postdoctoral researcher at the Sound and Image
Processing Lab at the Royal Institute of Technology
(KTH), Stockholm, Sweden. Since 2011, he has

been a professor for Speech Signal Processing at the Universität Oldenburg,
Oldenburg, Germany. His main research interests are digital speech and audio
processing, including speech enhancement, modeling of speech signals, and
hearing devices.


