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ith the advancement of technology, both 
assisted listening devices and speech com-

munication devices are becoming more por-
table and also more frequently used. As a 

consequence, users of devices such as hearing 
aids, cochlear implants, and mobile telephones, expect their 
devices to work robustly anywhere and at any time. This holds in 
particular for challenging noisy environments like a cafeteria, a 
restaurant, a subway, a factory, or in traffic. One way to making 
assisted listening devices robust to noise is to apply speech 
enhancement algorithms. To improve the corrupted speech, spa-
tial diversity can be exploited by a constructive combination of 
microphone signals (so-called beamforming), and by exploiting 
the different spectrotemporal properties of speech and noise. 
Here, we focus on single-channel speech enhancement algorithms 
which rely on spectrotemporal properties. On the one hand, these 

algorithms can be employed when the miniaturization of devices 
only allows for using a single microphone. On the other hand, 
when multiple microphones are available, single-channel algo-
rithms can be employed as a postprocessor at the output of a 
beamformer. To exploit the short-term stationary properties of 
natural sounds, many of these approaches process the signal in a 
time-frequency representation, most frequently the short-time 
discrete Fourier transform (STFT) domain. In this domain, the 
coefficients of the signal are complex-valued, and can therefore be 
represented by their absolute value (referred to in the literature 
both as STFT magnitude and STFT amplitude) and their phase. 
While the modeling and processing of the STFT magnitude has 
been the center of interest in the past three decades, phase has 
been largely ignored. 

In this article, we review the role of phase processing for 
speech enhancement in the context of assisted listening and 
speech communication devices. We explain why most of the 
research conducted in this field used to focus on estimating 
spectral magnitudes in the STFT domain, and why recently 
phase processing is attracting increasing interest in the speech 
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enhancement community. Further-
more, we review both early and 
recent methods for phase process-
ing in speech enhancement. We aim 
to show that phase processing is an 
exciting field of research with the 
potential to make assisted listening 
and speech communication devices 
more robust in acoustically challen-
ging environments. 

INTRODUCTION
Let us first consider the common speech enhancement setup con-
sisting of STFT analysis, spectral modification, and subsequent 
inverse STFT (iSTFT) resynthesis. The analyzed digital signal 

,x n^ h  with time index ,n  is chopped into L  segments with a 
length of N  samples, overlapping by N R-  samples, where R  
denotes the segment shift. Each segment ,  is multiplied with the 
appropriately shifted analysis window ( )w n Ra ,-  and trans-
formed into the frequency domain by applying the discrete Fou-
rier transform (DFT), yielding the complex-valued STFT 
coefficients X C,k !,  for every segment ,  and frequency band .k  
To compactly describe this procedure, we define the STFT opera-
tor: .X xSTFT= ^ h  Here, x  is a vector containing the complete 
time-domain signal x n^ h and X  is an N L#  matrix of all ,X ,k ,  
which we will refer to as the spectrogram. Since we are interested 
in real-valued acoustic signals, we consider only complex symmet-
ric spectrograms  ,X CS N L! 1 #  where S  denotes the subset of 
spectrograms for which X X, ,N k k=, ,-  for all ,  and ,k  with X  
being the complex conjugate of .X  

After some processing, such as magnitude improvement, is 
applied on the STFT coefficients, a modified spectrogram XM  is 
obtained. From XM  a time-domain signal can be resynthesized 

through an iSTFT operation, denoted 
by x ( ) .XiSTFT=K M  For this, the 
inverse DFT of the STFT coefficients 
is computed and each segment is 
multiplied by a synthesis window 

( );w n Rs ,-  the windowed segments 
are then overlapped and added to 
obtain the modified time-domain sig-
nal. A final renormalization step is 

performed to ensure that, if no processing is applied to the spectral 
coefficients, there is perfect reconstruction of the input signal, 
i.e.,   .x xiSTFT STFT =^ ^ hh  The renormalization term, equal to 

,w n qR w n qR
q sa + +

3

3

=-

+ ^ ^h h/  is R -periodic and can be 
included in the synthesis window. A common choice for both 
w na ^ h and w ns ^ h is the square-root Hann window, which for 
overlaps such that /N R N!  (e.g., 50%, 75%, etc.) only requires 
normalization by a scalar. If the spectrogram is modified, using the 
same window for synthesis as for analysis can be shown to lead to a 
resynthesized signal whose spectrogram is closest to XM  in the 
least-squares sense [1]. This fact will turn out to be important for 
the iterative phase estimation approaches discussed later. 

Until recently, in STFT-based speech enhancement, the focus 
was on modifying only the magnitude of the STFT components, 
because it was generally considered that most of the insight 
about the structure of the signal could be obtained from the mag-
nitude, while little information could be obtained from the phase 
component. This would seem to be substantiated by Figure 1 
when considering only (a) and (b), where the STFT magnitude (a) 
and STFT phase (b) of a clean speech excerpt are depicted. In 
contrast to the magnitude spectrogram, the phase spectrogram 
appears to show only little temporal and spectral regularities. 
There are nonetheless distinct structures inherent to the spectral 
phase, but they are hidden to a great extent because the phase is 

[FIG1]  (a) Magnitude spectrogram, (b) phase spectrogram, (c) group delay, and (d) IF deviation of the utterance ”glowed jewel-bright” 
using a segment length of 32 ms and a shift of 4 ms. 
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With the advancement of 
technology, both assisted 

listening devices and speech 
communication devices are 

becoming more portable and  
also more frequently used.
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wrapped to its principle value, i.e.,   .X, ,
X
k k+# #r z r- =, ,  To 

reveal these structures, alternative representations have been pro-
posed, which consider phase relations between neighboring 
time-frequency points instead of absolute phases. Two examples 
of such representations are depicted in Figure 1(c) and (d). In 
(c), the negative derivative of the phase along frequency, known 
as the group delay, is shown. It has been shown to be a useful 
tool for speech enhancement, e.g., by Yegnanarayana and Mur-
thy [2]. Besides the group delay, the derivative of the phase 
along time, i.e.,   the instantaneous frequency (IF), also unveils 
structures in the spectral phase. For an improved visualization, 
in (d), we do not show the IF, but rather its deviation from the 
respective center frequency in Hz, which reduces wrapping 
along frequency [3], [4]. It is interesting to remark that the tem-
poral as well as the spectral derivatives of the phase both reveal 
structures similar to those in the magnitude spectrogram in (a). 
Please note that both phase transformations are invertible and 
thus carry the same information as the phase itself. No additional 
prior knowledge has been injected. 

The observed structures in the spectral phase can well be 
explained by employing models of the underlying signal, e.g., by 
sinusoidal models in the case of voiced speech [5]. Besides the 
structures in the phase that are caused by signal characteristics, 
neighboring time-frequency points also show dependencies due 
to the STFT analysis: first, because of the finite length of the seg-
ments, neighboring frequency bands are not independent; sec-
ond, successive segments overlap and hence share partly the 
same signal information. This introduces particular spectrotem-
poral relations between STFT coefficients within and across 
frames of the spectrogram, regardless of the signal. If the spectro-
gram is modified, these relations are not guaranteed to be main-
tained and the modified spectrogram XM  may not correspond to 
the STFT of any time-domain signal anymore. As a consequence, 
the resynthesized signal may have a spectrogram ( ),XG M  where 

	 ( )  : ( ( )),X XSTFT iSTFTG =M M 	 (1)

which is different from the desired spectrogram ,XM  as illus-
trated in Figure 2. Such spectrograms are called inconsistent, 
while consistent spectrograms verify X XG =^ h  and can be 
obtained from a time-domain signal. 

Since the majority of speech enhancement approaches only 
modify the magnitude, the mismatch between the enhanced 
magnitude and the degraded phase will most likely lead to an 
inconsistent spectrogram. This implies that even if the esti-
mated magnitudes | |XM  are optimal with respect to some objec-
tive function, the magnitude spectrogram of the synthesized 
time-domain signal is not, as | ( ) | | |X XG !M M  (where | · |  denotes 
the element-wise absolute value). To maintain consistency, and 
thus also optimality, the STFT phase has to be taken into 
account as well. 

As a final illustration emphasizing the power of phase, it is 
interesting to remark that, from a particular magnitude spectro-
gram, it is possible to reconstruct virtually any time-domain signal 
with a carefully crafted phase. For instance, one can derive a 

magnitude spectrogram from that of a speech signal such that it 
yields either a speech signal similar to the original or a piece of 
rock music, depending on the choice of the phase. The point here 
is to exploit the inconsistency between magnitude and phase to 
make contributions of neighboring frames cancel each other just 
enough to reconstruct the energy profile of the target sound. 
Reconstruction is thus done up to a scaling factor, and quality is 
good albeit limited by dynamic range issues. An audio demonstra-
tion is available in http://www.jonathanleroux.org/research/ 
LeRoux2011ASJ03_sound_transfer.html. 

SPEECH ENHANCEMENT IN THE STFT DOMAIN
Speech enhancement is a field of research with a long-standing 
history. In this section, we will wrap up the different fields of 
research that have led to remarkable progress over the years. 
For a more detailed treatment and references to the original 
publications, see [6]. 

In the STFT domain, noisy spectral coefficients can, for 
instance, be improved using spectral subtraction or using mini-
mum mean squared error (MMSE) estimators of the clean 
speech spectral coefficients [6, Ch. 4]. Examples of the latter are 
the Wiener filter as an estimator of the complex speech coeffi-
cients and the short-time spectral amplitude estimator [7]. 
These MMSE estimators are driven by estimates of the speech 
and noise power spectral densities (PSDs). The noise PSDs can 
be estimated in speech pauses as signaled by a voice activity 
detector, by searching for spectral minima in each subband, or 
based on the speech presence probability [6, Ch. 6]. With the 
noise PSD at hand, the speech PSD can be estimated by sub-
tracting the noise PSD from the periodogram of the noisy sig-
nal. This has been shown to be the maximum likelihood (ML) 
optimal estimator of the clean speech PSD when considering 
isolated and independent time-frequency points and complex 
Gaussian distributed speech and noise coefficients [6, Sec. 4.2]. 
To reduce outliers, the ML speech PSD estimate is often 
smoothed, for instance, using the decision-directed approach 
[7] or more advanced smoothing techniques [6, Ch. 7]. 

Over the years, many improvements have been proposed 
resulting in a considerable progress thanks to better statistical 
models of speech and noise [6, Ch. 3], improved estimation of 
speech and noise PSDs [6, Ch. 6 and 7], combination with speech 
presence probability estimators [6, Ch. 5], and integration of per-
ceptual models [6, Sec. 2.3.3]. Recent years have seen an explosion 
of interest in data-driven methods, with model-based approaches 
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[FIG2]  An illustration of the notion of consistency.
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such as nonnegative matrix factorization, hidden Markov models, 
and discriminative approaches such as deep neural networks. 
However, mainstream approaches have tended to ignore the 
phase, mainly due to the difficulty of modeling it and the lack of 
clarity about its importance, as discussed next. 

RISE, DECLINE, AND RENAISSANCE OF PHASE 
PROCESSING FOR SPEECH ENHANCEMENT
The first proposals for noise reduction in the STFT domain arose in 
the late 1970s. While the spectral subtraction approaches only mod-
ified the spectral magnitudes, the role of the STFT phase was also 
actively researched at the time. In particular, several authors inves-
tigated conditions under which a signal is uniquely specified by only 
its phase or only its magnitude and proposed iterative algorithms 
for signal reconstruction from either one or the other (e.g., [1], [8], 
and references therein). For minimum or maximum phase systems, 
log-magnitude and phase are related through the Hilbert trans-
form, meaning that only the spectral phase (or only the spectral 
magnitude) is required to reconstruct the entire signal. But the 
constraint of purely minimum or maximum phase is too restrictive 
for real audio signals, and Quatieri [8] showed that more con-
straints are needed for mixed-phase signals. For instance, imposing 
a causality or a finite-length constraint on the signal and specifying 
a few samples of the phase or the signal itself is in some cases suffi-
cient to uniquely characterize the entire phase function from only 
the magnitude. Quatieri [8] also showed how to exploit such con-
straints to estimate a signal from its spectral magnitude: assuming 
some time-domain samples are known, and starting with an initial 
phase estimate and the known spectral magnitude, the signal is 
transformed to the time domain, where the given set of known 
samples is used to replace the corresponding time-domain samples. 
Then the time-domain signal is transformed back to the frequency 
domain, where the resulting magnitude is replaced by the known 
magnitude. This procedure is repeated for a certain number of iter-
ations. In the case of the STFT domain, the correlation between 
overlapping short-time analysis segments can be exploited to derive 
similar iterative algorithms that do not require time-domain sam-
ples to be known. A popular example of such methods is that of 
Griffin and Lim (GL) [1], which we describe in more detail later 
along with more recent approaches. While algorithms such as GL 
can also be employed with magnitudes that are estimated rather 
than measured from an actual signal, the quality of the synthesized 
speech and the estimated phase strongly depends on the accuracy of 
the estimated speech spectral magnitudes and artifacts such as 
echo, smearing, and modulations may occur [9]. 

To explore the relevance of phase estimation for speech 
enhancement, Wang and Lim [10] performed listening experi-
ments where the magnitude of a noisy speech signal at a certain 
signal-to-noise ratio (SNR) was combined with the phase of the 
same speech signal but distorted by noise at a different SNR. Lis-
teners were asked to compare this artificial test stimulus to a noisy 
reference speech signal and to set the SNR of the reference such 
that the perceived quality was the same for the reference and the 
test stimulus. The result of this experiment was that the SNR gain 
obtained by mixing noisy magnitudes with a less distorted phase 

resulted in typical SNR improvements of 1 dB or less. Hence, 
Wang and Lim concluded that improving phase was not critical in 
speech enhancement [10]. Similarly, Vary [11] showed that only 
for local SNRs below 6 dB a certain roughness could be perceived 
if the noisy phase was kept unchanged. Finally, Ephraim and 
Malah [7] investigated the role of phase improvement from a sta-
tistical perspective: they showed that, under a zero-mean circular 
Gaussian speech and noise model and assuming that time-fre-
quency points are mutually independent given the speech and 
noise PSDs, the MMSE estimate of the complex exponential of the 
speech phase has an argument equal to the noisy phase. Also, for 
more general models for the speech magnitudes with the same 
circularity assumption, it has been shown that the noisy phase is 
the ML optimal estimator of the clean speech phase, e.g.,  [12]. 
Note, however, that the independence assumption does not hold in 
general, and especially not for overlapping STFT frames, where 
part of the relationship is actually deterministic. 

As a consequence of these observations, subsequent research in 
speech enhancement focused mainly on improving magnitude 
estimation, while phase estimation received far less attention for 
the next two decades. Even methods that considered phase, either 
by use of complex domain models, or by integrating out phase in 
log-magnitude-based models in a sophisticated way [13], ultimately 
used the noisy phase because of similar circularity assumptions. 

However, as the performance of magnitude-only methods can 
only go so far without considering phase, and with the increase in 
computational power of assisted listening and speech communica-
tion devices, all options for improvements are back on the table. 
Therefore, researchers started reinvestigating the role of the STFT 
phase for speech intelligibility and quality [14], [15]. For instance, 
Kazama et al. [14] investigated the influence of the STFT segment 
length on the role of phase for speech intelligibility for a segment 
overlap of 50%. They found that, while for signal segments 
between 4 ms and 64 ms the STFT magnitude spectrum is more 
important than the phase spectrum, for segments shorter than 
2 ms and segments longer than 128 ms, the phase spectrum is 
more important. These results are consistent with Wang and Lim’s 
earlier conclusions [10]. To focus on practical applications, Paliwal 
et al. [15] investigated signal segments of 32 ms length, but in con-
trast to Wang and Lim [10] and Kazama et al. [14], they used a seg-
ment overlap of 7/8th instead of 1/2 in the STFT analysis, and they 
also zero-padded the time segments before computing the Fourier 
transform. With this increased redundancy in the STFT, the perfor-
mance of existing magnitude-based speech enhancement can be 
significantly improved [15] if combined with enhanced phases. For 
instance, Paliwal et. al [15, case 4] report an improvement of 0.2 
points of the mean opinion score (MOS) predicted by the instru-
mental “perceptual evaluation of speech quality” (PESQ) measure 
for white Gaussian noise at an SNR of 0 dB when combining an 
MMSE estimate of the clean speech magnitude with the oracle 
clean speech phase in a perfectly reconstructing STFT framework. 

Paliwal et al.’s research confirmed the importance of develop-
ing and improving phase processing algorithms. This has recently 
been the focus of research by multiple groups. We now survey the 
main directions that have been investigated so far: better and 
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faster phase estimation from magnitude, modeling of the signal 
phase, group delay and transient processing, and joint estimation 
of phase and magnitude. 

ITERATIVE ALGORITHMS FOR PHASE ESTIMATION
Among the first proposals for phase estimation are iterative 
approaches, which aim at estimating a time-domain signal 
whose STFT magnitude is as close as possible to a target one 
[1], [8]. Indeed, if the STFT magni-
tude of two signals are close, the 
signals will in general be perceptu-
ally close as well. Thus, finding a 
signal whose STFT magnitude is 
close to a target one is considered a 
valid goal when looking to obtain a 
signal that “sounds” like that target 
magnitude. This motivated intense 
research on algorithms to estimate 
signals (or equivalently a corresponding phase) given target 
magnitudes, with applications such as speech enhancement or 
timescale modification. In the case of speech enhancement, the 
magnitude is typically obtained through one of the many mag-
nitude estimation algorithms mentioned earlier, while some 
estimate of the phase, such as that of the noisy mixture, may 
further be exploited for initialization or as side information. 

The most well known and fundamental of these approaches 
is that of Griffin and Lim [1], which consists in applying STFT 
synthesis and analysis iteratively while retaining information 
about the updated phases and replacing the updated magni-
tudes by the given ones. This exploits correlations between 
neighboring STFT frames to lead to an estimate of the spectral 
phases and the time-domain signal. 

Given a target magnitude spectrogram ,A  Griffin and Lim 
formulated the problem as that of estimating a real-valued time-
domain signal x  such that the magnitude of its STFT X  is closest 
to A  in the least-squares sense, i.e., estimating a signal x  which 
minimizes the squared distance 

	 ( , ) || | | .x Ad X A
,

, ,
k

k k
2= -

,

, ,/ 	 (2)

They proposed an iterative procedure which can be proven to min-
imize, at least locally, this distance. Starting from an initial signal 
estimate x( )0  such as random noise, iterate the following compu-
tations: compute the STFT X( )i  of the signal estimate x( )i  at step 
;i  compute the phase estimate ( )iz  as the phase of ,X( )i  

;X( ) ( )i i+z =  compute the signal estimate x( )i 1+  at step i 1+  as 
the iSTFT of .Aej ( )iz  Using the operator G  defined in (1), this can 
be reformulated as 

	 ( ) .AeG( )i 1 j ( )i

+z = z+ 	 (3)

This procedure can be proven to be nonincreasing as well for a 
measure of inconsistency of the spectrogram Aej ( )iz  defined 
directly in the time-frequency domain: 

	 ( ) ( ) .A Ae eI G j j
2
2

z = -z z 	 (4)

Indeed, one can easily show that ( , ) ( ) ( , ) .x A x Ad dI( ) ( ) ( )i i i1 # #z+  
Interestingly, if only parts of the phase are updated according to (3), 
the nondecreasing property still holds for ( ),I z  but whether it still 
does for ( , )x Ad  has not been established. 

Due to the extreme simplicity of its implementation and to its 
perceptually relatively good results, GL was used as the standard 
benchmark and a starting point for multiple extensions in the 
three decades that have followed, even after better and only mar-

ginally more involved algorithms 
had been devised. Most of the algo-
rithms that have been developed 
since attempted to fix GL’s issues, of 
which there are several: first, conver-
gence typically requires many itera-
tions; second, GL does not provide a 
good initial estimate, starting from 
random phases with no considera-
tions for cross-frame dependencies; 

third, the updates rely on computing STFTs, which are computa-
tionally costly even when implemented using fast Fourier trans-
forms (FFTs); fourth, the updates are typically performed on whole 
frames, without emphasis on local regularities; and finally, the 
original version of GL processes signals in batch mode. 

On this last point, it is interesting to note that Griffin and Lim 
did actually hint at how to modify their algorithm to use it for 
online applications. They described briefly in [1] and with more 
details in [16] how to sequentially update the phase using “cas-
caded processors” that each take care of one iteration; their partic-
ular proposal however still incurs an algorithmic delay of I  times 
the window length if performing I  iterations. In [16], Griffin also 
presented several methods that he referred to as “sequential esti-
mation methods”: these only incur a single frame delay and could 
thus be used for online application, the best performing one being 
reported as on par with batch GL. 

While one can already see in Griffin’s account [16] several ele-
ments to modify GL into an algorithm that can lead to high qual-
ity reconstruction in a real-time setting, such as sliding-block 
analysis across the signal and the use of windows that compensate 
for partially reconstructed frames, these ideas seem to have gone 
largely unnoticed and it is not until much later that they were 
incorporated into more refined methods. Beauregard, Zhu, and 
Wyse proposed consecutively two algorithms for real-time signal 
reconstruction from STFT magnitude, the real-time iterative spec-
trogram inversion (RTISI) algorithm and RTISI with look ahead 
(RTISI-LA) [17]. RTISI aims at improving the original batch GL in 
two respects: allowing for online implementation, and generating 
better initial phase estimates. The algorithm considers the frames 
sequentially in order, and at frame ,,  it only uses information 
from the current frame’s magnitude and the previous overlapping 
frames. The initial phase estimate ( )0

z,  for frame ,  is obtained as 
the phase of the partial reconstruction from the previous frames, 
windowed by an analysis window, which already ensures some 
consistency between the phases of the current and previous 
frames. An iterative procedure similar to GL is then applied, lim-
ited to the current frame’s phase: at each iteration, frame , ’s 

finding a signal whose  
STFT magnitude is close to  

a target one is considered a  
valid goal when looking to 

obtain a signal that “sounds”  
like that target magnitude. 
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contribution to the signal is obtained by the inverse DFT of the 
phase ( )i

z,  combined with the target magnitude; frame , ’s contri-
bution is then combined by overlap-add to the contribution of the 
previous frames, leading to a signal estimate for frame , ; the 
phase ( )i 1

z,
+  is estimated as the phase of this signal estimate to 

which the analysis window is applied. 
RTISI does lead to better results than GL for the first few itera-

tions, but it quickly reaches a plateau and is ultimately signifi-
cantly outperformed by GL. This is mainly due to the fact that 
RTISI does not consider information from future frames at all, 
even though the contribution of these future frames will later on 
be added to that of the past and current frames, effectively altering 
the estimation performed earlier. Its authors thus proposed an 
extension to RTISI including an M  frame look-ahead, RTISI-LA. 
Instead of considering only the current frame as active, RTISI-LA 
performs GL-type updates on the phases in a block of multiple 
frames. The contribution of future frames outside the block is dis-
carded during the updates, because the absence of a reliable phase 
estimate for them is regarded as likely to make their contribution 
more of a disturbance than a useful clue. This creates an asymme-
try, which Zhu et al.  [17] proposed to partially compensate by 
using asymmetric analysis windows with a reverse effect. Although 
the procedure relies on heuristic considerations, the authors show 
that it leads to much better performance than GL for a given 
number of iterations per block. 

While RTISI and RTISI-LA were successful in overcoming 
GL’s issues regarding online processing and poor initialization, 
they did not tackle the problems of heavy reliance on costly FFT 
computations and lack of care for local regularities in the time-
frequency domain. Solving these problems was difficult in the 
context of classical approaches relying on enforcing constraints 
both in the time-frequency domain (to impose a given magni-
tude) and the time domain (to ensure that magnitude and phase 
are consistent), because they inherently had to go back and 
forth between the two domains, processing whole frames at a 
time. A solution was proposed by Le Roux et al. [18], whose key 
idea was to bypass the time domain altogether and reformulate 
the problem within the time-frequency domain. The standard 
operation of classical iterative approaches, i.e., computing the 
STFT of the signal obtained by iSTFT from a given spectrogram, 
can indeed be considered as a linear operator in the time-fre-
quency domain. Le Roux et al. noticed that the result of that 
operation at each time-frequency bin can be well approximated 
by a local weighted sum (LWS) with complex coefficients on a 
small neighborhood of that bin in the original spectrogram. 
While the very small number of terms in the sum does not suf-
fice to reduce the complexity of the operation compared to using 
FFTs, the locality of the sum opens the door to selectively updat-
ing certain time-frequency bins, as well as to immediately propa-
gating the updated value for a bin in the computations of its 
neighbors’ updates. Taking advantage of the sparseness of natu-
ral sound signals, Le Roux et al. showed in particular that focus-
ing first on updating only the bins with high energy not only 
reduced greatly the complexity of each iteration, but also could 
lead to better initializations, the high energy regions serving as 

anchors for lower energy ones. While the LWS algorithm was 
originally proposed as an extension to GL for batch-mode com-
putations, the authors later showed that it could be effectively 
used in online mode as well in combination with RTISI-LA [19]. 
Interestingly, a different prioritization of the updates based on 
energy, at the frame level instead of the bin level, was also suc-
cessfully used by Gnann and Spiertz to improve RTISI-LA [20]. 

Recently, several authors investigated signal reconstruction 
from magnitudes with specific task-related side information. Those 
developed in the context of source separation are of particular inter-
est to this article. Gunawan and Sen [21] proposed the multiple 
input spectrogram inversion (MISI) algorithm to reconstruct mul-
tiple signals from their magnitude spectrograms and their mixture 
signal. The phase of the mixture signal acts as very powerful side 
information, which can be exploited by imposing that the recon-
structed complex spectrograms add up to the mixture complex 
spectrogram when estimating their phases, leading to much better 
reconstruction quality than in situations where the mixture signal 
is not available. Sturmel and Daudet’s partitioned phase retrieval 
(PPR) method [9] also handles the reconstruction of multiple 
sources. Their proposal was to reconstruct the phase of the magni-
tude spectrogram obtained by Wiener filtering by applying a GL-
like algorithm, which keeps the mixture phase in high SNR regions 
as a good estimate for the corresponding source and only updates 
the phase in low- to mid-SNR regions. Both methods, however, 
only modify the phase of the sources, and thus implicitly assume 
that the input magnitude spectrograms are close to the true source 
spectrograms, which is not realistic in general in the context of 
blind or semiblind source separation. Sturmel and Daudet proposed 
to extend MISI to allow for modifications of both the magnitude 
and phase, leading to the informed source separation using iterative 
reconstruction (ISSIR) method [22], and showed that it is efficient 
in the context of informed source separation where a quantized ver-
sion of the oracle magnitude spectrograms is available. Methods to 
jointly estimate phase and magnitude for blind source separation 
and speech enhancement will be presented later. 

SINUSOIDAL MODEL-BASED PHASE ESTIMATION
In contrast to the iterative approaches presented in the previous 
section, sinusoidal model-based phase estimation [4] does not 
require estimates of the clean speech spectral magnitudes. 
Instead, the clean spectral phase is estimated using only an esti-
mate of the fundamental frequency, which can be obtained from 
the degraded signal. However, since usage of the sinusoidal model 
is reasonable only for voiced sounds, these approaches do not 
provide valid spectral phase estimates for unvoiced sounds, like 
fricatives or plosives. 

For a single sinusoid, ,sin n {X +^ h  with normalized angular 
frequency ,X  the phase difference between two samples 
n n R2 1= +  is given by ( ) ( ) .n n R2 1z z zD X= - =  For a har-
monic signal, H  sinusoids at integer multiples of the normalized 
angular fundamental frequency ,0X  i.e., ( )h 1h

0 !X X= +

, ,0 2rh6  are present at the same time: 

	 ,coss n A n n nh

h

H
h h

0

1

$ {X= +
=

-

^ ^ ^ ^h h h h/ 	 (5)
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with real-valued amplitude Ah  and initial time-domain phase h{  
for harmonic component .h  Due to the fixed relation between the 
frequencies, (5) is also referred to as the harmonic model, which is 
a special case of the more general sinusoidal model. The harmonic 
frequencies and amplitudes are assumed to be slowly changing 
over time with respect to the length N  of an STFT signal segment 
and we define /A A R N 2h h ,= +, ^ h and /R N 2h h ,X X= +, ^ h as 
the representative harmonic amplitudes and frequencies for the 
th,  signal segment.

In speech enhancement, the sinusoidal model has, for instance, 
been employed in [23], where the model parameters are iteratively 
estimated from a noisy observation in the STFT domain, and the 
enhanced signal is synthesized using (5). In the absence of noise, 
synthesis results are reported to be almost indistinguishable from 
the clean speech signal, underlining the capability of (5) to accu-
rately model voiced human speech. In contrast to [23], we now dis-
cuss how the sinusoidal model (5) can be employed to directly 
reconstruct the STFT phase. If the frequency resolution of the 
STFT is high enough to resolve the harmonic frequencies hX  in 
(5), in each frequency band k  only a single harmonic component 
is dominant. The normalized angular frequency hX,  of the har-
monic that dominates frequency band k  is denoted as 

	 | / | ,argmin k N2,k
h

h
rX X= -, ,

X,

" ,N 	 (6)

i.e., the harmonic frequency that is closest to the center frequency 
/k N2r  of the kth frequency band. Interpreting the STFT of a sig-

nal as the output of a complex filter bank subsampled by the hop 
size ,R  the spectral phase ,k

Sz ,  changes from segment to segment 
according to 

	 ,mod modR, , , , ,k k k k k
2

1
2

1
S S S Sz z z zX D= + = +, , , ,,

r r
- -^ ^h hN 	 (7)

where the modulo operator mod
2
$

r
^ h wraps the phase to values 

between 0 and 2r.
When the clean signal s n^ h is deteriorated by noise, the spec-

tral phases and thus the temporal phase differences ,k
SzD ,  are dete-

riorated as well. With an estimate of the fundamental frequency at 
hand, however, the temporal phase relations in each band can be 
restored using (7) recursively from segment to segment. 

Almost 50 years ago, a similar approach for the propagation of 
the spectral phase along time was taken in the phase vocoder [5] 
for time-scaling or pitch-shifting of acoustic signals. The temporal 
STFT phase difference is modified according to 

	 ,, , ,k k k1
S S Sz z a zD= +, , ,-
t t 	 (8)

where in this context, ,
S
kzD ,  is often referred to as the IF. By scaling 

,
S
kzD ,  with the positive real-valued factor ,a  the IF of the signal 

component is either increased 12a^ h or decreased .11a^ h  
Comparing (7) to (8), the phase estimation along time for speech 
enhancement can be expressed in terms of a phase vocoder with a 
scaling factor of .1a =  However, the application is completely dif-
ferent: instead of deliberately modifying the original phase, the clean 
speech phase is estimated from a noisy observation. It is worth not-
ing that for the original phase vocoder, in contrast to 

phase estimation in speech enhancement, no fundamental frequency 
estimate is needed, as the phase difference , , ,k k k 1

S S Sz z zD = -, , ,-  can 
be taken directly from the clean original signal. 

For an accurate estimation of the clean spectral phase along 
segments using (7) a proper initialization is necessary [4]. In 
voiced sounds, the bands between spectral harmonics contain only 
little signal energy and, in the presence of noise, these bands are 
likely to be dominated by the noise component, i.e., ,, ,k k

Y N.z z, ,  
where ,k

Yz ,  and ,k
Nz ,  are the spectral phases of the noisy mixture 

and the noise, respectively. Even though the phase might be set 
consistent within each band, the spectral relations across fre-
quency bands are distorted already at the initialization stage. 
Directly applying (7) to every frequency band therefore does not 
necessarily yield phase estimates that could be employed for phase-
based speech enhancement [4]. 

In the phase vocoder, this problem can be alleviated by aligning 
phases of neighboring frequency bands relative to each other, 
which is known as phase locking, e.g., [24]. There, the phase is 
evolved along time only in frequency bands that directly contain 
harmonic components. The phase in the surrounding bands, 
which are dominated by the same harmonic, is then set relative to 
the modified phase. For this, the spectral phase relations of the 
original signal are imposed on the modified phase spectrum. 

In the context of speech enhancement, the same principle has 
been incorporated to improve the estimation of the clean speech 
spectral phase [4]. However, since only a noisy signal is observed, 
the clean speech phase relations across frequency bands are not 
readily available. To overcome this limitation, again the sinusoidal 
model is employed. The spectrum of a harmonic signal segment is 
given by the cyclic convolution of a comb-function with the trans-
fer function of the analysis window, which causes spectral leakage. 
The spectral leakage induces relations not only between the ampli-
tudes, but also between the phases of neighboring bands. It can be 
shown that phases of bands that are dominated by the same 

[FIG3]  Symbolic spectrogram illustrating the sinusoidal model-
based phase estimation [4]. Starting from the noisy phase at the 
onset of a voiced sound in segment ,0,  in bands containing 
harmonic components (red) the phase is estimated along 
segments. Based on the temporal estimates, the spectral phase 
of bands between the harmonics (blue) is then inferred across 
frequency.

Voiced

0
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harmonic are directly related to each 
other through the phase response of 
the analysis window ;k

Wz  see, e.g., [4] 
for more details. Accordingly, starting 
from a phase estimate at a band that 
contains a spectral harmonic, possi-
bly obtained using (7), the phase of 
the surrounding bands can be inferred by accounting for the phase 
shift introduced by the analysis window. For this, only the funda-
mental frequency and the phase response k

Wz  are required, of 
which the latter can be obtained offline either from the window’s 
discrete-time Fourier transform (DTFT) or from its DFT with a 
large amount of zero padding. The complete setup of [4] is illus-
trated in Figure 3. 

It can be argued that for speech enhancement, the phase recon-
struction across frequency bands between harmonics is more 
important than the temporal reconstruction on the harmonics: on 
the one hand, the local SNR in bands that directly contain har-
monics is rather large for many realistic SNR situations, i.e.,  

., ,k k
Y S.z z, ,  Thus, the temporal alignment of the harmonic com-

ponents is maintained rather well in the noisy signal. Further, the 
noisy phase ,k

Yz ,  in these bands typically yields a good starting 
point for the phase reconstruction along frequency. On the other 
hand, frequency bands between harmonics are likely to be domi-
nated by the noise, i.e.,   ,, ,k k

Y N.z z, ,  and the clean phase relations 
across bands are strongly disturbed. Here, the possible benefit of 
the phase reconstruction is much larger. 

Even though the employed model is simple and limited to 
purely voiced speech sounds, the obtained phase estimates yield 
valuable information about the clean speech signal that can be 
employed for advanced speech enhancement algorithms. Interest-
ingly, even the sole enhancement of the spectral phase can lead to a 
considerable reduction of noise between harmonic components of 
voiced speech after overlap-add [4]. This is because the speech 
components of successive segments are adding up constructively 
after the phase modifications, while the noise components suffer 
from destructive interference, since the phase relations of the noise 
have been destroyed. However, speech distortions are also intro-
duced, which are substantially reduced when the estimated phase 
is combined with an enhanced magnitude, as, e.g., in [25]. Besides 
its value for signal reconstruction, the estimated phase can also be 
utilized as additional information for phase-aware magnitude esti-
mation [25] and even for the estimation of clean speech complex 
coefficients [12], which will be discussed in more detail later. 

GROUP DELAY AND TRANSIENT PROCESSING
Structures in the phase are not limited to voiced sounds, but are 
also present for other sounds, like impulses or transients. These 
structures are well captured by the group delay, which can be seen 
in Figure 1(c), rendering it a useful representation for phase pro-
cessing. For example, the group delay has been employed to facili-
tate clean speech phase estimation in phase-sensitive noise 
reduction [26]. It can be shown geometrically that if the spectral 
magnitudes of speech and noise are known, only two possible 
combinations of phase values remain, both of which perfectly 

explain the observed spectral coeffi-
cients of the mixture. In [26] (and 
the references therein), Mowlaee and 
Saedi proposed to solve this ambigu-
ity by choosing the phase combin-
ation that minimizes a function of 
the group delay. 

Besides phase estimation, the group delay has successfully been 
employed for the detection of transients sounds, such as sounds of 
short duration and speech onsets. To illustrate the role of the phase 
for transient sounds, let us consider a single impulse as the sim-
plest example. The DFT of such a pulse is ,Ae N

n k2j 0r-  where n0  is 
the shift of the peak relative to the beginning of the current seg-
ment and A  denotes the spectral magnitude. Hence, we observe a 
linear phase with a constant slope of .( / )Nn2 0r-  For impulsive 
signals, we accordingly expect a phase difference across frequency 
bands that is approximately constant, i.e., a constant group delay. 
That this is the case also for real speech sounds can be seen in Fig-
ure 1(c), where transient sounds show vertical lines with almost 
equal group delay. 

For the detection of impulsive sounds, in [27] a linearity index 
kLIz ^ h is defined, which measures the deviation of the observed 

phase difference across frequencies to the one that is expected for 
an impulse at ,n0  i.e., ( / ) .Nn2 0r-  The observed phase differ-
ences are weighted with the spectral magnitude and averaged over 
frequency to obtain an estimate of the time domain offset .n0  Only 
if kLIz ^ h is close to zero, i.e.,  the observed phase fits well to the 
expected linear phase, an impulsive sound is detected. The detec-
tion can be made either at a segment level or for each time-
frequency point separately. While the former states if an impulsive 
sound is present in the current signal segment or not, the latter 
allows to localize frequency regions that are dominated by an 
impulsive sound, such as a narrowband onset. 

Apart from the group delay, the IF, which corresponds to the 
temporal derivative of the phase, has also been employed for the 
detection of transient sounds, e.g., in [28] and the references 
therein. For steady-state signals, like voiced sounds, the IF is 
changing only slowly over time, due to the temporal correlation of 
the overlapping segments. When a transient is encountered, how-
ever, the most current segment differs significantly from previous 
segments and thus the IF also changes abruptly. This can be 
observed in Figure 1(d), where at speech onsets thin vertical lines 
appear in the IF deviation. Hence, the change of the IF from seg-
ment to segment—and its distribution—allow for the detection of 
transient sounds, such as note onsets [28]. 

The phase of transient sounds is not only relevant for detection, 
but also for the reduction of transient noise. In low SNR time-fre-
quency regions, the observed noisy phase is close to the approxi-
mately linear phase of the transient noise. This can lead to artifacts 
in the enhanced signal if only the spectral magnitude is improved 
and the noisy phase is used for signal reconstruction: usage of the 
phase of the transient noise reshapes the enhanced time-domain 
signal in an uncontrolled way, such that it may again depict an 
undesired transient behavior. Even for a perfect magnitude esti-
mate, the interfering noise is not perfectly suppressed if the phase 

The phase of transient  
sounds is not only relevant  

for detection, but also  
for the reduction of  

transient noise.
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is not processed alongside. To illustrate this, let us consider a 
speech signal degraded by an impulse train with a period length of 

,T0  which is nonzero every N T fs0 0=  samples. In Figure 4, the 
noisy signal (a) is presented together with the result obtained 
when combining the true clean speech STFT magnitudes with the 
noisy phase (b). Even though the clean magnitude is employed, 
which represents the best possible result for phase-blind magni-
tude enhancement, the time-domain signal still depicts residual 
impulses, which are caused by the noisy phase. In regions where 
the enhanced spectral magnitude is close to zero, i.e.,   in speech 
absence, the phase is not relevant and the peaks are well sup-
pressed. During speech presence, however, the spectral magnitude 
is nonzero and the phase becomes important. Accordingly, the 
residual impulses are most prominent in regions with some speech 
energy at low local SNRs, where the noisy phase is close to the 
phase of the impulsive noise. 

Recently, Sugiyama and Miyahara proposed the concept of 
phase randomization to overcome this issue; see, e.g., [27] and 
references therein. First, time-frequency points that are domi-
nated by speech are identified by finding spectral peaks in the 
noisy signal. These peaks are excluded from the phase randomi-
zation to avoid speech distortions. To further narrow down 
time-frequency regions where randomization of the spectral 
phase is sensible, phase-based transient detection can be 
employed as well [27]. Then, the spectral phase in bins classified 
as dominated by transient noise is randomized by adding a 
phase term that is uniformly distributed between r-  and .r  In 
this way, the approximately linear phase of the dominant noise 
component is neutralized. The effect of phase randomization is 
depicted in Figure 4(c), where a perfect magnitude estimate is 
combined with the modified phase for signal reconstruction. It 
can be seen that the residual peaks that are present when the 
noisy phase is employed are strongly attenuated, showing that 
phase randomization can indeed lead to a considerable increase 
of noise reduction, especially in low local SNRs. It is interesting 
to note that while the previously described iterative and sinusoi-
dal model-based approaches aim at estimating the phase of the 
clean speech signal, the phase randomization approach merely 
aims at reducing the impact of the phase of the noise on the 

enhanced speech signal. Although the presented example is just 
a simple toy experiment, it still highlights the potential of phase 
randomization toward an improved suppression of transient 
noise, which has also been observed for real-world impulsive 
noise, like tapping noise on a touchscreen [27]. 

RELATION BETWEEN PHASE- AND  
MAGNITUDE ESTIMATION
So far, we have discussed phase estimation using iterative 
approaches, sinusoidal model-based approaches, and group 
delay approaches; we now address the question of how STFT 
phase estimation can best be employed to improve speech 
enhancement. The most obvious way to do this is to combine 
enhanced speech spectral magnitudes in the STFT domain with 
the estimated or reconstructed STFT phases. It is interesting to 
note that Wang and Lim [10] already stated that obtaining a 
more accurate phase estimate than the noisy phase is not worth 
the effort “if the estimate is used to reconstruct a signal by 
combining it with an independently estimated magnitude [...]. 
However, if a significantly different approach is used to exploit 
the phase information such as using the phase estimate to fur-
ther improve the magnitude estimate, then a more accurate 
estimation of phase may be important” [10]. However, at that 
point it was not clear how a phase estimate could be employed 
to improve magnitude estimation. 

Gerkmann and Krawczyk [25] derived an MMSE estimator of 
the spectral magnitude when an estimate of the clean speech 
phase is available, referred to as phase-sensitive or phase-aware 
magnitude estimation. They were able to show that the informa-
tion of the speech spectral phase can be employed to derive an 
improved magnitude estimator that is capable of reducing noise 
outliers that are not tracked by the noise PSD estimator. In babble 
noise, in a blind setup, the PESQ MOS can be improved by 0.25 
points in voiced speech at 0 dB input SNR [25]. Further experi-
mental results are given in the following section. 

Instead of estimating phase and magnitude separately, one may 
argue that they should ideally be jointly estimated. The first step in 
this direction was proposed by Le Roux and Vincent [29] and refer-
ences therein in the context of Wiener filtering for speech 

[FIG4]  (a) Speech degraded by a click train. (b) Signal obtained by combination of the clean speech spectral magnitude with the noisy 
phase. (c) Signal after supplemental phase randomization. Samples that contain a click are highlighted in red.
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enhancement. As a classical Wiener 
filter only changes the magnitudes in 
the STFT domain, the modified spec-
trum XN  is inconsistent, meaning 
that ( ( )) .X XSTFT iSTFT !N N  In con-
trast to this, in [29] the relationship 
between STFT coefficients across 
time and frequency is taken into 
account, leading to the consistent 
Wiener filter [29], which modifies 
both the magnitude and the phase of 
the noisy observation to obtain the separated speech. Wiener filter 
optimization is formulated as a maximum a posteriori problem 
under Gaussian assumptions, and a consistency-enforcing term is 
added either through a hard constraint or a soft penalty. Optimiza-
tion is respectively performed directly on the signal in the time 
domain or jointly on phase and magnitude in the complex time-
frequency domain, through a conjugate gradient method with a 
well-chosen preconditioner. Thanks to this joint optimization, the 
consistent Wiener filter was shown to lead to an improved separ-
ation performance compared to the classical Wiener filter and 
other methods that attempt to use phase information in combin-
ation with variance estimates [9], [21], [22], in an oracle scenario 
as well as in a blind scenario where the speech spectrum is 
obtained by spectral subtraction from a stationary estimate of the 
noise spectrum. 

To combine phase-sensitive magnitude estimation and iterative 
approaches, Mowlaee and Saeidi [26] proposed placing the phase-
sensitive magnitude estimator into the loop of an iterative 
approach that enforces consistency. Starting with an initial group-
delay-based phase estimate, they proposed to estimate the clean 
speech spectral magnitude using a phase-sensitive magnitude esti-
mator similar to [25]. After computing the iSTFT and the STFT 
they reestimated the clean speech phase, and from this reestimate 

the magnitudes. With this approach, 
convergence is reached after only  
few iterations. 

Another way to jointly estimate 
magnitudes and phases is to derive 
a joint MMSE estimator of magni-
tudes and phases directly in the 
STFT domain when an uncertain 
initial phase estimate is available. 
This phase-aware complex estima-
tor is referred to as the complex 

estimator with uncertain phase (CUP) [12]. The initial phase 
estimate can be obtained by an estimator based on signal charac-
teristics, such as the sinusoidal model-based approach [4]. Using 
this joint MMSE estimator [12], no STFT iterations are required. 
The resulting magnitude estimate is a nonlinear tradeoff 
between a phase-blind and a phase-aware magnitude estimator, 
while the resulting phase is a tradeoff between the noisy phase 
and the initial phase estimate. These tradeoffs are controlled by 
the uncertainty of the initial phase estimate, avoid processing 
artifacts, and lead to an improvement in predicted speech quality 
[12]. Experimental results for the CUP estimator are given in the 
following section. 

EXPERIMENTAL RESULTS
In this section, we demonstrate the potential of phase processing 
to improve speech enhancement algorithms. To focus only on the 
differences due to the incorporation of the spectral phases, we 
choose algorithms that employ the same statistical models and 
PSD estimators: for the estimation of the noise PSD we choose the 
speech presence probability-based estimator with fixed priors (see 
[6, Sec. 6.3] and references therein) while for the speech PSD we 
choose the decision-directed approach [7]. We assume a complex 
Gaussian distribution for the noise STFT coefficients and a heavy-
tailed |-distribution for the speech magnitudes. Furthermore, we 
use an MMSE estimate of the square root of the magnitudes to 
incorporate the compressive character of the human auditory sys-
tem. These models are employed in the phase-blind magnitude 
estimator [30], the phase-aware magnitude estimator [25], and the 
phase-aware CUP [12]. We use a sampling rate of 8 kHz and 32 ms 
spectral analysis windows with 7/8th overlap to facilitate phase 
estimation. To assess the speech quality, we employ PESQ as an 
instrumental measure that has been originally proposed for speech 
coding applications but has been show to correlate with subjective 
listening tests also for enhanced speech signals. The results are 
averaged over pink noise modulated at 0.5 Hz, stationary pink 
noise, babble noise, and factory noise, where the latter three are 
obtained from the NOISEX-92 database. To have a fair balance 
between male and female speakers, per noise type, the first 100 
male and the first 100 female utterances from dialect region 6 of 
the Texas Instruments and Massachusetts Institute of Technology 
(TIMIT) training database are employed. The initial phase estimate 
is obtained based on a sinusoidal model [4], which only yields a 
phase estimate in voiced speech. The fundamental frequency is 
estimated using PEFAC from the voicebox  toolkit (http://www.

[FIG5]  The PESQ improvement over the noisy input. The results 
are averaged over four noise types. Evaluated (a) on voiced 
speech and (b) on the entire signal.
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ee.ic.ac.uk/hp/staff/dmb/voicebox/
voicebox.html). Because with [4] we 
only have a phase estimate in voiced 
sounds, we show the improvement in 
voiced segments alongside the overall 
improvement for entire utterances in 
Figure 5. When the fundamental fre-
quency estimator detects unvoiced 
speech segments, the estimators fall 
back to a phase-blind estimation. 
Thus, if evaluated over entire signals, 
the results of the phase-aware esti-
mators will get closer to the phase-blind approaches while the 
general trends remain. 

It can be seen that employing phase information to improve 
magnitude estimation [25] can indeed improve PESQ. The domi-
nant benefit of the phase-aware magnitude estimators is that the 
phase provides additional information to distinguish between noise 
outliers and speech. Thus, the stronger the outliers after process-
ing with phase-blind approaches, the larger the potential benefit of 
phase-aware processing. While here we show the average result 
over four noise types, a consistent improvement for the tested non-
stationary noise types has been observed. While in stationary pink 
noise the PESQ scores are virtually unchanged, the largest 
improvements are achieved in babble. This is because babble 
bursts are often of high energy and may result in large outliers in 
phase-blind magnitude estimation that can be reduced by exploit-
ing the additional information in the phase. 

When an initial phase estimate is also employed as uncertain 
prior information when improving the spectral phase as proposed 
in the phase-aware complex estimator CUP [12], the performance 
can be improved further. The CUP estimator [12] employs the 
probability of a signal segment being voiced to control the cer-
tainty of the initial phase estimate. In unvoiced speech, the uncer-
tainty is largest, effectively resulting in a phase-blind estimator. 
Therefore, again, we can only expect a PESQ improvement in 
voiced speech. Compared to phase-blind magnitude estimation 
[30] in voiced speech and at an input SNR of 0 dB, an improve-
ment in PESQ by 0.12 points is achieved when all parameters are 
blindly estimated, while 0.18 points are gained with an oracle fun-
damental frequency. Considering that the improvement of the 
phase-blind estimator improves PESQ by 0.46 points, the addi-
tional improvement of 0.18 points by incorporating phase infor-
mation in voiced speech is remarkable (factor 1.4), and 
demonstrates the potential of phase processing for the improve-
ment of speech enhancement algorithms. While the average 
improvements using phase processing are still moderate, in spe-
cific scenarios, e.g., in voiced sounds or impulsive noise, phase pro-
cessing can help to reduce noise more effectively than using 
phase-blind approaches. Audio examples can be found at www.
speech.uni-oldenburg.de/pasp.html. 

FUTURE DIRECTIONS
While the majority of single-channel STFT domain speech 
enhancement algorithms only address the modification of STFT 

magnitudes, in this article we 
reviewed methods that also involve 
STFT phase modifications. We 
showed that phase estimation could 
be done mainly based on models of 
the signal or by exploiting redun-
dancy in the STFT representation. 
Examples for model-based algo-
rithms are sinusoidal model-based 
approaches, and approaches that 
employ the group delay. By contrast, 
iterative approaches mainly rely on 

the spectrotemporal correlations introduced by the redundancy 
of the STFT representation with overlapping signal segments. 
While the results of the instrumental evaluations indicate that a 
sophisticated utilization of phase information can lead to 
improvements in speech quality, for a conclusive assessment, for-
mal listening tests are required, rendering the subjective evalu-
ation of particularly promising phase-aware algorithms a 
necessity for future research. 

Despite recent advances, there are still many open issues in 
phase processing. For instance, similar to magnitude estimation, 
phase estimation is still difficult in very low SNRs. A promising 
approach for performance improvement is to join the different 
types of phase processing approaches, such as by including more 
explicit signal models into iterative phase estimation approaches or 
vice versa. A first step in this direction is presented in [26]. As 
another example, while the consistent Wiener filter only exploits 
the phase structure of the STFT representation, an exciting chal-
lenge going forward is to integrate models of the phase structure of 
the signal itself into a joint optimization framework. 

Modern machine-learning approaches such as deep neural net-
works, which have proven to be very successful in improving 
speech recognition performance, have recently been shown to lead 
to state-of-the-art performance for speech enhancement using a 
magnitude-based approach. The natural next step is to extend their 
use to phase estimation to further improve performance. On top of 
the fact that they are data driven, which reduces the necessity for 
modeling assumptions that may be inaccurate, a great advantage 
of such methods over the iterative approaches for phase estimation 
presented here or approaches based on nonnegative matrix factori-
zation or Gaussian mixture models, is that they can typically be 
efficiently evaluated at test time. 

Indeed, striving for fast, lightweight algorithms is critical in the 
context of assisted listening and speech communication devices, 
where special requirements with respect to complexity and latency 
persist. While more and more computational power will be availa-
ble with improved technology, for economic reasons as well as to 
limit power consumption, it is always of interest to keep the com-
plexity as low as possible. Thus, more research in reducing com-
plexity remains of interest. Complexity reduction could be 
obtained, for instance, by decreasing the overlap of the STFT analy-
sis, but its impact on performance of phase estimation algorithms 
is not well studied. On the other hand, the lower bound on the 
latency of the algorithms is dominated by the window lengths in 

A promising approach  
for performance improvement  

is to join the different  
types of phase processing  

approaches, such as by  
including more explicit  

signal models into iterative  
phase estimation  

approaches or vice versa. 
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STFT analysis and synthesis. Further research could therefore also 
address phase estimation using low latency filter banks. 

After many years in the shadow of magnitude-centric speech 
enhancement, phase-aware signal processing is now burgeoning 
and expanding quickly: with still many aspects to explore, it is an 
exciting area of research that is likely to lead to important break-
throughs and push speech processing forward. Supplemental 
material and further references can be found at www.speech. 
uni-oldenburg.de/pasp.html. 
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