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Fundamental Frequency Informed Speech
Enhancement in a Flexible Statistical Framework

Martin Krawczyk-Becker, Student Member, IEEE, and Timo Gerkmann, Senior Member, IEEE

Abstract—Conventional statistical clean speech estimators, like
the Wiener filter, are frequently used for the spectro-temporal
enhancement of noise corrupted speech. Most of these approaches
estimate the clean speech independently for each time-frequency
point, neglecting the structure of the underlying speech sound. In
this work, we derive a statistical estimator that explicitly takes into
account information about the characteristic structure of voiced
speech by means of a harmonic signal model. To this end, we also
present a way to estimate a harmonic model-based clean speech
representation and the corresponding error variance directly in
the short-time Fourier transform domain. The resulting estima-
tor is optimal in the minimum-mean-squared error sense and can
conveniently be formulated in terms of a multichannel Wiener
filter. The proposed estimator outperforms several reference algo-
rithms in terms of speech quality and intelligibility as predicted by
instrumental measures.

Index Terms—Speech enhancement, noise reduction, signal
reconstruction.

I. INTRODUCTION

R EAL-TIME capable algorithms that mitigate the detri-
mental effect of acoustic noise are a key component

to make communication devices like hearing aids or mobile
phones work reliably in adverse conditions. Over the years,
various approaches for the reduction of acoustic noise have
been proposed. Besides spatial methods that use multiple
microphone signals, single-channel noise reduction schemes
that utilize spectro-temporal cues are commonly employed
either in isolation if only a single microphone is available,
or to further enhance the output of a spatial preprocessing
stage. In this contribution we focus on single-microphone algo-
rithms that are formulated in the short-time discrete Fourier
transform (STFT) domain, which is commonly used due to
the low complexity and intuitive interpretation of this trans-
form. Among the most successful proposals are those based
on statistical assumptions of the speech and the noise, like
the Wiener filter or Ephraim and Malah’s short-time spec-
tral amplitude estimator (STSA) [1], which can be derived
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in a Bayesian framework. Both approaches assume that the
spectral coefficients of the speech and the noise are cir-
cularly complex Gaussian distributed, mutually independent,
and also independent from neighboring time-frequency points.
Inspired by the seminal work in [1], numerous extensions and
alternatives have been proposed over the past three decades.
Improvements have for example been achieved by using more
elaborate models for the distribution of the speech and by tak-
ing into account the compressive character of the human ear
in the optimization function, see e.g. [2] and the references
therein.

The achievable performance of these techniques is however
limited, since the assumption that neighboring time-frequency
points are mutually independent is not fulfilled in practice.
For example, correlations between neighboring time-frequency
points are inevitable for overlapping STFT segments of finite
length. Alternative estimators that explicitly consider the corre-
lations of neighboring spectral coefficients have been presented
e.g. in [3]–[5], where the estimation problem is formulated in
terms of a single-microphone minimum variance distortionless
response (MVDR) beamformer. These algorithms benefit from
incorporating more information at the price of a more challeng-
ing parameter estimation and a higher complexity. Besides the
correlations due to the STFT analysis, the speech signal itself
may show characteristic spectro-temporal structures, e.g. for
voiced speech. A different approach to exploiting such struc-
tures has for example been proposed in [6], where the parame-
ters of a sinusoidal model are iteratively estimated from a noisy
observation to recover the clean speech signal. Furthermore, in
[7], signal-adaptive filters (and filterbanks) for the time-domain
enhancement of noise corrupted periodic signals, like voiced
speech, are derived. More specifically, a sinusoidal model is
used as the target signal in the error criterion of the filter
design. In contrast to traditional statistical estimators like the
Wiener filter, such sinusoidal model-based approaches explic-
itly take into account the structure of the underlying speech
sound. This additional a priori knowledge about the observed
signals can lead to improvements over conventional statisti-
cal estimators as long as the employed signal model holds.
For example, a harmonic model, i.e. a sinusoidal model for
which the frequencies of the sinusoids are integer multiples of
the fundamental frequency, is well suited to represent voiced
speech. Its applicability to fricatives and transients is however
limited, which may lead to suboptimal speech enhancement
results.

There are several approaches that use a harmonic signal
model in a more robust way, alleviating its limitations in
unvoiced sounds. For example, in [8], the output of [7] is
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Fig. 1. Block diagram illustrating the proposed STFT-domain estimator for a
single time-frequency point. In addition to the noisy observation Y1, a harmonic
model is used to create a second speech representation Y2, which incorporates
information about the fundamental frequency. Both signals are combined using
an MWF, i.e. an MVDR filter followed by a single-channel post processing.

not directly used as the enhanced signal, but rather subtracted
from the noisy input signal to facilitate the estimation of the
noise statistics. This enhanced estimate is then employed in a
more robust signal-independent filtering method [9]. In [10],
for voiced speech a harmonic signal model is used to design a
frequency dependent residual noise floor as well as a spectral
gain that protects harmonic components. This is achieved by
means of an adaptive comb-filter, which applies less attenuation
in the vicinity of a speech component. In unvoiced regions and
silence, [10] falls back to a Wiener-like enhancement scheme.
A general method to combine two or more speech enhance-
ment algorithms to accumulate their individual strengths has
been proposed in [11], where ensemble learning techniques are
used to merge the separate enhancement results. For example,
a support vector machine is trained to estimate an improved
spectro-temporal binary mask based on the spectral weighting
of the individual enhancement schemes, which are all applied
in parallel.

Two approaches that explicitly combine a harmonic signal
model with a statistical estimator for STFT domain speech
enhancement have been proposed in [12], [13], where a har-
monic model is used to estimate a deterministic speech com-
ponent. In [12] a statistical estimator and a harmonic model
based estimator are employed in parallel and mixed accord-
ing to the time-frequency dependent probability that the current
speech sound is either stochastic, deterministic, or absent. In
[13] the speech is modeled by means of a harmonic plus noise
model, where the noise represents unvoiced speech, leading to
non-zero-mean spectral coefficients of voiced speech. A min-
imum mean squared error (MMSE) optimal estimator of the
amplitudes of the non-zero-mean spectral speech coefficients
is derived and combined with a maximum likelihood estimate
of the spectral phase.

Also in this paper, extending our work in [14], we aim at
getting the best of harmonic model based estimators and sta-
tistical estimators. The main novelty of this paper is that we
propose to use the harmonic model based signal as an additional
input when formulating a multichannel Wiener filter (MWF).
Here, one channel is the noisy observation and the other chan-
nel is the harmonic model based signal reconstruction. The
MWF can then be decomposed into an MVDR filtering that
optimally combines the input signals and a single-channel
post-filter (see Fig. 1). This general formulation also enables
the integration of multiple microphones and state-of-the-art

single-channel filters that incorporate super-Gaussian speech
models and the compressive character of the human auditory
system. See e.g. [2] for an overview of single-channel filters.
Further novelties are the presentation of an intuitive and com-
putationally cheap way to estimate the harmonic model directly
in the STFT domain, and the way we obtain the error variance
of the harmonic model.

In the following section, we introduce the theoretical basics
together with the general enhancement framework. The deriva-
tion of the STFT domain harmonic model is presented in
Sec. III, followed by the estimation of the noise covariance
matrix in Sec. IV. The proposed estimator is analyzed in detail
in Sec. V and is evaluated and compared to other approaches in
Sec. VI before this work is concluded in Sec. VII.

II. SIGNAL MODEL AND PROPOSED FRAMEWORK

In the STFT domain, i.e. after chopping the time-domain
microphone signal into overlapping segments, applying a spec-
tral analysis window, and computing the discrete Fourier trans-
form (DFT), we define the observed noisy microphone signal as

Y1 (k, �) = S (k, �) + V1 (k, �) . (1)

In each time-frequency point (k, �) the clean speech signal
S (k, �) is corrupted by additive noise V1 (k, �), with frequency
index k and segment index �.

Single-channel MMSE optimal clean speech estimators are
typically derived by finding the expected value of the spectral
speech coefficients S (k, �), or a function f (S (k, �)), given the
noisy microphone signal. Implicitly, also the speech variance
σ2
S (k, �) = E

(|S (k, �) |2), and the noise variance σ2
V1

(k, �) =

E
(|V1 (k, �) |2

)
are given, where E(·) denotes statistical expec-

tation. Note that the speech and noise variances can also be
interpreted as power spectral densities [15]. Assuming that
neighboring time-frequency points are independent, this can be
formulated as

f̂(S) = E
(
f(S)|Y1, σ

2
S, σ

2
V1

)
, (2)

where we dropped k and � for brevity, as the processing is
carried out separately for each time-frequency point. This nota-
tional convenience is used for the remainder of this work
wherever appropriate. Further, the hat symbol is used to denote
estimates, i.e. Ŝ is an estimate of S.

For circularly complex Gaussian distributed and mutually
independent speech and noise coefficients, the posterior proba-
bility of the speech component is (e.g. [16, Chap. 3.11])

p
(
S|Y1, σ

2
S, σ

2
V1

)
= N

(
σ2
S

σ2
S + σ2

V1

Y1,
σ2
Sσ

2
V1

σ2
S + σ2

V1

)
= N

(
ŜW , σ2

W

)
, (3)

where N
(
ŜW , σ2

W

)
denotes a Gaussian distribution with the

Wiener filter estimate as its mean

ŜW =
σ2
S

σ2
S + σ2

V1

Y1 (4)



942 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016

and the variance

σ2
W = σ2

Sσ
2
V1

/
(
σ2
S + σ2

V1

)
. (5)

Accordingly, the MMSE optimal estimator (2) for f (S) = S
is the Wiener filter in this case. Under the same distribu-
tional assumptions, the STSA [1] can be obtained from (2) for
f (S) = |S|.

The assumption of independent time-frequency points
greatly simplifies the derivations and computations, but at the
same time limits the achievable improvement as neither spectral
nor temporal structures of the underlying speech sound, such
as the characteristic harmonic structure of voiced speech, are
utilized. In voiced speech most energy is concentrated around
the fundamental frequency f0 and integer multiples of it, i.e.
the harmonic frequencies. The temporal continuity of voiced
speech with respect to typical STFT segment lengths as well as
the spectral sparsity are strong cues that yield valuable infor-
mation for the enhancement of noise corrupted speech. In this
work, we utilize this information to derive an improved MMSE
optimal clean speech estimator. For this, we first create an STFT
domain representation of the clean speech signal based on a
harmonic-model, i.e. a weighted superposition of sinusoids at
the harmonic frequencies, which we denote as

Y2 = S + V2. (6)

Here, V2 = Y2 − S is the difference between the speech sig-
nal Y2, reconstructed using the harmonic model, and the true
clean speech S. With the use of the harmonic model the
spectro-temporal structure of voiced speech is explicitly taken
into account in Y2. Y2 is then considered as a second, again
noisy, observation in addition to the microphone signal Y1.
This interpretation gives us the possibility to formulate novel
single-microphone clean speech estimators in a multichannel
framework, using Y1 and Y2 as input channels as depicted
in Fig. 1. In this way, we can incorporate information about
the speech’s spectro-temporal structure inherent in Y2 into an
MMSE optimal clean speech estimator.

In general, the proposed principle can be extended to mul-
tiple microphone signals and also more signal models, e.g. for
other speech sounds like stop-consonants. Thus, to retain and
to highlight the generality of the proposed approach, we first
present a general multichannel framework for M input signals.
After the general formulation we focus on the specific case of
only a single microphone and a statistical and a harmonic model
based representation of the clean speech.

A. General Multichannel Framework

In the STFT domain Y = [Y1 Y2 . . . YM ]T ∈ CM×1

denotes the column vector of M noisy observations of a single
desired speech signal S ∈ C at time-frequency bin (k, �),
with transposition operator (·)T. Here we use bold letters
and symbols to distinguish vectors and matrices from scalar
quantities. Each element of Y can either be a microphone
signal or any model-based representation of the desired speech
signal. Introducing the vector a = [a1 a2 . . . aM ]T ∈ CM×1

and the noise vector V = [V1 V2 . . . VM ]T ∈ CM×1 we can
write the observation vector as

Y = aS + V , (7)

which corresponds to an additive superposition of the weighted
speech signal and the noise in each observation. We denote the
covariance matrix of the noise as

ΦV = E
(
V V H

) ∈ CM×M , (8)

where V H is the conjugate transpose of V .
For mutually independent circularly complex Gaussian dis-

tributed speech and noise, the MMSE optimal estimator of the
complex clean speech coefficients S is known to be the MWF,
e.g. [17], [18]

Ŝ = E
(
S|Y ,ΦV , σ

2
S,a
)
= HH

MWFY (9)

=
σ2
S

σ2
S +

(
aHΦ−1

V a
)−1︸ ︷︷ ︸

HWF

aHΦ−1
V

aHΦ−1
V a︸ ︷︷ ︸

HH
MVDR

Y (10)

= HWF ŜMVDR. (11)

The MWF HMWF can be factorized into a multichannel
MVDR filtering HMVDR and a spectro-temporal post process-
ing HWF on the scalar MVDR output ŜMVDR = HH

MVDRY
[17]. Here, HWF resembles the traditional single-channel
Wiener filter,

HWF =
σ2
S

σ2
S +Σ

, (12)

with the noise variance

Σ =
(
aHΦ−1

V a
)−1

(13)

and the unaltered speech variance σ2
S at the output of the MVDR

filter ŜMVDR.
If the speech is not Gaussian distributed or we are interested

e.g. in the speech spectral amplitude rather than the complex
speech coefficients, the MWF is not MMSE optimal anymore.
However, Balan and Rosca [19] showed that for the signal
model in (7) and Gaussian noise the output of an MVDR beam-
former supplies sufficient statistics for S and functions f (S).
From this statement it follows that an estimator of S (or any
function f (S)) that is optimal in the MMSE sense in the single-
channel case is also optimal in the multichannel case when it is
applied to the MVDR output. This also holds for non-Gaussian
speech priors p(S) [18] and allows us to incorporate more
advanced post-processing schemes than the traditional Wiener
filter in (11). To focus on the general idea and principles of the
proposed estimator, in this paper we however only discuss the
well known MWF.

B. Combination of a Single Microphone Signal and a
Harmonic Model

Now let us consider the case of only a single microphone sig-
nal Y1 and a harmonic model based speech signal representation
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Y2, i.e. we set M = 2. In the multi-microphone literature, the
vector a is typically referred to as the propagation vector and
corresponds to the (relative) acoustical transfer function from
the source to the microphones. Such acoustic transfer functions
can reach from a simple delay according to the direction of
arrival of the source (far field in free field condition) to an indi-
vidualized head related transfer function in a reverberant room.
Here, however, the context is different. In our case, from (1) and
(6) it follows that a = [1 1]T.

To obtain the new estimator, we first need to compute the har-
monic model Y2 as well as estimates of the speech variance σ2

S

and of the noise covariance matrix ΦV . For the estimation of the
speech variance σ2

S and the acoustic noise variance σ2
V1

we can
apply common single-channel methods to Y1, e.g. the decision-
directed approach [1] and the speech presence probability based
noise variance estimator [20], respectively. For the computation
of the harmonic model Y2, different methods can be employed,
see e.g. [6], [12], [13]. In the following sections we present a
new and computationally inexpensive way to estimate Y2 and
the complete noise covariance matrix ΦV directly in the STFT
domain. The proposed estimation scheme reduces the compu-
tational overhead as compared to time-domain formulations by
avoiding additional DFTs and allows for a detailed, frequency
dependent analysis.

III. STFT-DOMAIN HARMONIC MODEL

A harmonic model is a common tool to accurately describe
a voiced speech signal in the time-domain, e.g. [6], [21], [22].
The clean speech signal is modeled as a sum of H harmonic
components at the fundamental frequency f0 and integer mul-
tiples of it, the harmonic frequencies fh = (h+ 1)f0. The �-th
time-domain segment after applying the STFT analysis window
q (n) is given by

y2,� (n) = q (n)

H−1∑
h=0

2Ah,� cos

(
2π

fh
fs

n+ ϕh,�

)
, (14)

with sampling rate fs, the initial phase ϕh,� of component
h at the beginning of segment �, and sample index n ∈
[0, . . . , N − 1]. The fundamental frequency can for example be
estimated using [23]. For simplicity we assume that the har-
monic model spans the whole frequency range up to fs/2, i.e.

we set H = floor
(

fs
2f0

)
. We further assume that f0 and the

real-valued harmonic amplitudes Ah,� are constant over the
length N of one signal segment �.

A signal segment y2,� (n) can be interpreted as the result
of multiplying a stationary, infinitely long and continuous har-
monic signal with a discrete and finite length spectral analysis
window q (n). With cos (x) = 0.5

(
ejx + e−jx

)
, the Fourier

transform of such a continuous harmonic signal is a weighted
pulse train at the harmonic frequencies and their negative
counterparts. The time-domain multiplication with q (n) cor-
responds to a cyclic convolution of this pulse train and the
frequency response Q of the analysis window, sampled at the
center frequencies of the STFT bands, giving [22]

Y2 (k) =
H−1∑
h=0

Ahe
jφhQk−κh

+Ahe
−jφhQk+κh

≈ Ak
he

jφk
hQk−κk

h
, (15)

where we again drop the segment index � and denote the spec-
tral phase of the h-th harmonic component as φh. Further, the
real-valued κh = Nfh

fs
maps the harmonic frequency fh to our

index notation, i.e. Qk−κh
denotes the frequency response of

q (n) shifted by 2πfh/fs in band k. The frequency responses
Q at the desired frequencies can either be obtained analytically
for specific analysis windows or by interpolating the discrete
Fourier transform of q (n) via zero padding, see e.g. [22]. For
the approximation in (15) we assume that the segment length N
is large enough to resolve neighboring harmonic components in
the spectral domain. We further assume that in each band k only
the closest harmonic component is dominant and neglect the
influence of all other components, which leads to the simplifi-
cation in (15). The harmonic component that is closest to band

k is found via h = max
(
round

(
k
κ0

)
− 1, 0

)
. For notational

convenience, we introduce the spectral amplitude Ak
h, phase

φk
h, and index κk

h of the harmonic component that is closest
to band k.

With the simplification in (15), the complex coefficients in
bands that are dominated by the same harmonic are directly
related by means of the frequency response of the spec-
tral analysis window Q. Starting from bands k′ = round (κh)
that directly contain a harmonic component, we can infer the
speech component in all other bands associated to the same
harmonic via

Y2 (k) = Y2 (k
′)

Qk−κk
h

Qk′−κk
h

. (16)

With (16) we have a simple and computationally inexpensive
way of describing and computing a harmonic model directly in
the STFT domain.

In the context of noise reduction, the harmonic signal is typi-
cally obtained from a noise corrupted microphone signal. Since
for a clean harmonic signal the energy is concentrated around
the harmonic frequencies, we assume that in the presence of
acoustic noise V1 the local signal-to-noise ratio (SNR) is the
largest in bins k′. Between the spectral harmonics, k �= k′, the
local SNR is typically much lower. Accordingly, with (16),
we can estimate the speech component in low SNR regions
between the harmonics based on the higher SNR bins that
directly contain harmonics. Therefore, we first estimate the
speech component in bands k′ with the help of a Wiener filter
with a lower bound Gmin,

G̃k′ = max

(
Gmin,

σ2
S (k

′)
σ2
S (k

′) + σ2
V1

(k′)

)
, (17)

giving

Y2 (k
′) = G̃k′ Y1 (k

′)

= S (k′) +
(
G̃k′ − 1

)
S (k′) + G̃k′V1 (k

′)︸ ︷︷ ︸
V2(k′)

. (18)
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Fig. 2. Illustration of the harmonic model based speech reconstruction. In
bands k′ (red) the clean speech is estimated using (18). Starting from this esti-
mate, the speech in surrounding bands (blue) is obtained via (16), indicated by
the blue arrowheads.

To protect harmonic components at low SNRs, which would be
suppressed by the Wiener filter, we set Gmin > 0, limiting its
maximal attenuation. Applying a lower limit to bands k′ of the
harmonic model (18) utilizes the additional information about
the fundamental frequency f0, in the sense that it determines
and protects bands which are more likely to contain relevant
speech energy. The harmonic model Y2 in all other bands k �=
k′ is inferred from the estimate in bands k′ (18) using (16). This
concept is illustrated in Fig. 2. Since a harmonic model per def-
inition has only little energy between the harmonics, Y2 shows
a substantial reduction of acoustic noise between the harmon-
ics as compared to the noisy observation Y1. An example of a
harmonic model based signal representation Y2 is presented in
Fig. 5 in Sec. V.

IV. COMPUTING THE NOISE COVARIANCE MATRIX ΦV

For the computation of the final estimator Ŝ via (11), an
estimate of the noise covariance matrix ΦV is needed. In this
section, we first detail the estimation of the error variance of the
harmonic model σ2

V2
, before discussing the cross-covariances

between V1 and V2 and constructing the final covariance
matrix ΦV .

A. Harmonic Model Error Variance σ2
V2

In practice, the harmonic model based representation of the
clean speech for a known fundamental frequency is degraded
by two conceptually different sources of error. On the one
hand, the rather simple harmonic model is not capable of per-
fectly describing every voiced speech sound S, such as sounds
with mixed excitation, like ‘v’ in ‘victory’ or ‘th’ in ‘the’.
On the other hand, acoustic noise V1 in bands k′ impedes the
estimation of speech parameters.

To take into account the former, we define the modeling error
variance σ2

M as the error variance when Y2 is estimated on clean
voiced speech. To estimate σ2

M , we first estimate the normalized
modeling error variance

σ2
M (k) =

σ2
M (k)

σ2
S (k)

≈
∑

�∈L
|S (k, �)− Y2 (k, �) |2∑

�∈L
|S (k, �) |2 (19)

Fig. 3. Normalized modeling error variance σ2
M over frequency, i.e. the error

variance when the harmonic model is obtained from 500 clean speech TIMIT
sentences normalized by the speech variance in each frequency band.

off-line by applying (16) to clean voiced speech taken from 500
gender balanced sentences of the TIMIT [24] training set. Here,
L denotes the set of all voiced speech segments. At runtime, we
estimate the actual model error variance via

σ2
M (k, �) = σ2

M (k)σ2
S (k, �) , (20)

effectively taking into account the current speech variance σ2
S.

The normalized modeling error variance σ2
M is depicted over

frequency in Fig. 3. We use a segment length of 32 ms, a
segment shift of 16 ms, and a square-root Hann window for
analysis and synthesis to compute the STFT. The same STFT
setup is employed throughout this work. The fundamental fre-
quency is estimated from the clean speech signal. For this, any
state-of-the-art fundamental frequency estimator can be used.
Throughout this work, we employ PEFAC [23] to estimate the
fundamental frequency f0 and to classify speech segments as
voiced or unvoiced. At low frequencies, where typically most
of the energy of voiced sounds is concentrated, the harmonic
model yields the most accurate estimates. Towards higher
frequencies, σ2

M increases, reflecting the increasing inaccura-
cies of the harmonic model, including fundamental frequency
estimation errors which accumulate towards higher harmonics.

Besides the modeling error, the estimate Y2 is also deteri-
orated by the acoustic noise V1 in bands k′. In these bands a
limited Wiener filter is applied to the noisy microphone signal
Y1 (k

′) to obtain Y2 (k
′) (18). The error variance of Y2 (k

′) is
thus given by the error variance of the Wiener filter σ2

W (k′) (5),
i.e. σ2

V2
(k′) = σ2

W (k′), where we neglect the influence of the
lower limit Gmin for simplicity. Since we do not use (16), unlike
in the remaining bands, the modeling error variance σ2

M (k′) is
zero. In STFT bands between spectral harmonics, i.e. k �= k′,
the estimate in the closest harmonic band Y2 (k

′) is then scaled
with the frequency response of the analysis window according
to (16). Hence, also the error variance is scaled, and we finally
obtain

σ2
V2

(k) =
1

BV

⎧⎨⎩ σ2
W (k) , for k = k′

σ2
V2

(k′)
|Q

k−κk
h
|2

|Q
k′−κk

h
|2 + σ2

M (k) , for k �= k′,

(21)

where between harmonics the modeling error variance σ2
M and

the scaled error variance on the harmonics add up. For typical
analysis windows the scaling reduces σ2

V2
between harmonics

compared to the variance on harmonics, reflecting an increased
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Fig. 4. An example of the ratio of analysis window transfer functions
|Qk−κk

h
|2/|Qk′−κk

h
|2 used in (21) to estimate σ2

V2
for a fundamental

frequency of 500 Hz.

certainty about the harmonic model based estimate. As an

example, the ratio
|Q

k−κk
h
|2

|Q
k′−κk

h
|2 for a square-root Hann window of

32 ms and a harmonic signal with a fundamental frequency of
500 Hz at a sampling rate of 8 kHz is presented in Fig. 4. On the
other hand, σ2

M introduces some residual uncertainty in Y2 to
account for model inaccuracies. In (21), BV denotes the binary
decision if the current signal segment � contains voiced speech
(BV(�) = 1) or not (BV(�) = 0), estimated using PEFAC [23].
As the capability of the harmonic model to describe speech
sounds that are not voiced is limited, the harmonic signal rep-
resentation Y2 is less accurate and may show strong errors in
such segments. This increased error is taken into account in
(21) by the multiplication with 1

BV
, yielding an error variance

of σ2
V2

= ∞ in frames that do not contain any voiced speech.

B. Cross-Covariance of V1 and V2 and building ΦV

Now that we have estimates of σ2
V2

and the acoustic noise
variance σ2

V1
, e.g. obtained via [20], only the cross-covariance

E
(
V1V2

H
)

is needed to complete the noise covariance matrix
ΦV . In harmonic frequency bands k′, the harmonic model Y2

is obtained by applying a limited Wiener filter to Y1 (18).
Following the formulation of V2 in (18), the cross-covariance
in bands k′ is E

(
V1 (k

′)V2
H (k′)

)
= G̃k′σ2

V1
(k′). To sim-

plify the estimation of the cross-covariance between the har-
monics, k �= k′, we make the common assumption that the
acoustic noise V1 is uncorrelated over frequency bands, i.e.
E(V1 (k + i)V1 (k)) = 0 for i �= 0. Due to the way the har-
monic model is obtained (16), between the harmonics V2 (k)
depends only on the noisy observation Y1 (k

′) at the respective
closest harmonic band k′. Accordingly, the cross-covariance
between harmonics is zero,

E(V1(k)V2(k))=E

(
V1 (k) G̃k′

Qk−κk
h

Qk′−κk
h

V1 (k
′)

)
=0, ∀k �=k′,

(22)

where we combined (18) and (16) to reformulate V2 and
then used the independence of speech and acoustic noise,
E
(
SV1

H
)
= 0. With these considerations made, we can finally

formulate the noise covariance matrix as

ΦV (k) =

(
σ2
V1

(k) G̃kσ
2
V1

(k) δk−k′

G̃kσ
2
V1

(k) δk−k′ σ2
V2

(k)

)
, (23)

where δk−k′ is the Kronecker-delta, which is zero for k �= k′

and one only for k = k′. With the noise covariance matrix
and the corresponding harmonic model at hand, we can now
compute the proposed estimator (11) to take into account
the spectral structure of voiced speech in an MMSE optimal
framework.

V. ANALYSIS

In this section, we analyze the proposed clean speech esti-
mator in more detail. In a first step we consider only frequency
bands between harmonic components before extending the dis-
cussion to harmonic bands k′. We then provide a representative
example highlighting the potential of the proposed estima-
tion scheme. Finally, the extension to multiple microphones is
examined.

A. Between Harmonics

Under the assumption that the acoustic noise V1 is uncor-
related over frequency bands, between spectral harmonics, the
two noise components V1 and V2 are mutually uncorrelated and
ΦV is a diagonal matrix (23). For this specific case, the MWF
formulation in (11) can be simplified, giving more insight into
the way the final estimate Ŝ is computed. It further results in a
practical and robust implementation, also for correlated noises.
The inverse covariance matrix Φ−1

V is computed by inverting
the noise variances on the main diagonal and with a = [1 1]

T

the MVDR filter weight reduces to

HMVDR =

[
σ2
V2

σ2
V1

+ σ2
V2

,
σ2
V1

σ2
V1

+ σ2
V2

]H
. (24)

Accordingly, the MVDR output can be written as

ŜMVDR=HH
MVDRY =

σ2
V2

σ2
V1

+σ2
V2

Y1+

(
1− σ2

V2

σ2
V1

+ σ2
V2

)
Y2,

(25)

i.e. a weighted combination of the noisy microphone signal

Y1 and the harmonic model Y2. The mixing factor
σ2
V2

σ2
V1

+σ2
V2

approaches one if the variance of the acoustic noise σ2
V1

is much
lower than the error variance of the harmonic model σ2

V2
, while

it approaches zero for σ2
V2

� σ2
V1

. Considering the variances
as measures of uncertainty, the MVDR weighting thus favors
the more reliable of the two observations for the computation
of ŜMVDR (25) in each time-frequency point.

After the MVDR processing, the post-filter HWF (12) is
applied to the output ŜMVDR, with the noise variance (13)

Σ =
(
aHΦ−1

V a
)−1

=
σ2
V1

σ2
V2

σ2
V1

+ σ2
V2

, (26)

to obtain the final estimate via the MWF (11). For a closer
look at the MWF for mutually independent complex Gaussian
speech and noises, we formulate the posterior of the clean
speech spectral coefficients analytically:
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Fig. 5. Spectrograms of a clean speech sentence, the noisy observation degraded by babble noise at 5 dB SNR, the harmonic model based representation Y2, the
Wiener filter estimate ̂SW , the mixing factor Gmix, and the proposed estimate ̂S. The proposed estimator protects weak harmonic components in voiced speech
(e.g. dashed block at 0.6 seconds) while falling back to the Wiener filter in unvoiced sounds (e.g. solid block at 0.25 seconds), where Gmix → 1.

p
(
S|Y ,ΦV , σ

2
S

)
=

N
(

σ2
V2

σ2
V2

+ σ2
W

ŜW +

(
1− σ2

V2

σ2
V2

+ σ2
W

)
Y2,

σ2
Wσ2

V2

σ2
W + σ2

V2

)
.

(27)

An outline of how (27) can be obtained is presented in the
appendix. The posterior is again Gaussian and its mean, the
MMSE optimal clean speech estimate Ŝ given both, the noisy
observation Y1 and the harmonic model Y2, is a weighted mix-
ture of Y2 and the single-channel Wiener filter estimate ŜW

obtained from Y1 (4). Accordingly, we can rewrite the MWF
(11) for a = [1 1]

T as

Ŝ = E
(
S|Y ,ΦV , σ

2
S

)
= Gmix ŜW + (1−Gmix) Y2, (28)

with mixing factor

Gmix =
σ2
V2

σ2
V2

+ σ2
W

. (29)

Let us now have a closer look at the mixing factor Gmix. To ease
the discussion, we assume that the acoustic noise is spectrally
white in the vicinity of the dominant harmonic, i.e. σ2

V1
(k′) =

σ2
V1

(k). At high SNRs, i.e. σ2
S � σ2

V1
, we can approximate the

error variances as σ2
W ≈ σ2

V1
and σ2

V2
≈ σ2

Mσ2
S. The mixing

factor thus becomes Gmix ≈ σ2
Mσ2

S

σ2
Mσ2

S+σ2
V1

≈ 1 and the normal-

ized modeling error variance σ2
M influences how fast Gmix

approaches 1. Accordingly, the proposed estimator falls back
to the single-channel estimate ŜW in high SNRs. Only towards
lower SNRs, the harmonic model Y2 has a significant influence
on the final estimate Ŝ.

The main advantage between harmonic components of Ŝ
(28) over the Wiener filter alone becomes apparent when we
consider the presence of highly non-stationary noise. In prac-
tice, σ2

S and σ2
V1

are not known and need to be estimated.

Common noise variance estimators assume that the noise is
less stationary than the speech component. Thus, fast changes
in the noise variance σ2

V1
, like babble-bursts, are not tracked

correctly. This results in an underestimation of σ2
V1

, which in
turn leads to an overestimation of σ2

S. Conventional statisti-
cal estimators hence erroneously apply too little attenuation to
the specific region and noise leaks into the speech estimate.
This is where the harmonic signal representation Y2 comes into
play and serves as additional information that allows us to dis-
tinguish noise outliers from voiced speech, even if the noise
variance is not adequately estimated: for a harmonic speech
sound, the true σ2

S is expected to reduce between the harmon-
ics relative to the harmonic bands k′. If the estimated speech
variance deviates from this signal model, e.g. due to a noise
burst between the harmonics, for medium to low SNRs, the
error variance of the harmonic model will be smaller than that
of the Wiener filter, σ2

V2
< σ2

W , due to the scaling in (21). This
reduces Gmix (29) and puts more weight on the harmonic model
Y2, which does not suffer from the observed noise burst. With
the help of the harmonic model, we now have more knowl-
edge about the underlying signal, which allows us to achieve
a higher noise reduction between the harmonics while main-
taining the speech component on the harmonics. In this sense,
the proposed estimator shows some similarities to the phase-
aware estimators in [25], [26]. There, the attenuation applied to
the noisy observation Y1 is controlled by the deviation of the
observed spectral phase from an estimated clean speech phase.
A harmonic model based phase estimate can for instance be
obtained by taking the phase of Y2 or the estimator in [22]. In
contrast to [25], [26], however, here we do not only take the
phase, but also the amplitude of the harmonic model Y2 into
account.

It is worth noting that the uncertainty of the MWF (27), i.e.
its estimation error variance, is always lower than or equal to
that of the harmonic model and the single-channel Wiener filter
alone, e.g.
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σ2
Wσ2

V2

σ2
W + σ2

V2

≤ σ2
W , (30)

where equality is asymptotically reached for σ2
W � σ2

V2
. The

same relation analogously holds for σ2
V2

. Furthermore, as
σ2
W ≤ σ2

V1
(5), the uncertainty of the MWF is also lower than

or equal to that of the MVDR (26).
The weighted mixture (28) has also been derived in [14] with

the motivation to optimally combine a single-channel Wiener
filter estimate with a model based estimate. The current work
extends and generalizes our approach in [14] by formulating
the estimator in terms of the well established MWF. Besides
gaining a deeper understanding about the underlying prob-
lem, formulating the estimator in this multichannel framework
allows us to easily consider also correlated noises, different
spectral post-filters, and more than two observations.

B. On Harmonics

In frequency bands k′ that contain spectral harmonics, V1 and
V2 are not uncorrelated, i.e. ΦV (k′) is not diagonal (23), and,
strictly speaking, the simplification of the MWF presented in
(28) is not applicable. Thus, the possibly dense matrix ΦV (k′)
can be directly applied in (10). However, the resulting estima-
tor looses some of its capability to preserve weak harmonic
components as the single-channel post-filter HWF in (10) coun-
teracts the protective lower limit on harmonic bands (17). To
increase the preservation of weak harmonics, we propose to
neglect the cross-covariance in bins k′ in (23). If we do so,
equation (28) is applied in bands k′ with σ2

V2
(k′) = σ2

W (k′),
which leads to Gmix = 0.5. The final estimate Ŝ on the har-
monics is hence given as the arithmetic mean of ŜW and Y2. In
this way, the beneficial effect of the minimum gain Gmin in (17)
on the harmonics is maintained in the final estimator, resulting
in an improved protection of weak harmonic components. In
Sec. VI, we show that this modification actually improves the
speech enhancement results. We denote the modified estimator
as the Fundamental Frequency Informed WIener filter (FFIWI).
An outline of FFIWI is presented by means of the pseudo-code
in Algorithm 1.

C. A Representative Example

To illustrate the advantage of the proposed estimator over
the conventional Wiener filter and the harmonic model alone,
we present the enhancement results for a speech excerpt that
is degraded by babble noise at 5 dB SNR in Fig. 5. The
purely harmonic signal Y2 protects the harmonic structure of
voiced speech sounds while achieving a strong noise sup-
pression between the harmonic components. It however also
enforces a harmonic structure onto unvoiced sounds, e.g. the
high frequency sound at 0.2-0.3 sec, which leads to annoying
speech distortions. The conventional Wiener filter on the other
hand, does not introduce such artifacts in unvoiced sounds,
but also achieves less noise reduction between the harmonics
while at the same time suppressing weak harmonic compo-
nents. The proposed estimator now combines these two signals

Algorithm 1. Step-by-step outline of the proposed FFIWI

for ∀� do
Estimate the fundamental frequency f0 and voicing
decision BV e.g. using [23]
for ∀k do

Estimate the acoustic noise variance σ2
V1

[20]
Estimate the speech variance σ2

S [1]
If k = k′ then

Compute the harmonic signal Y2 via (18)
else

Compute the harmonic signal Y2 via (16)
end if
Estimate the error variance σ2

V2
(21)

Obtain the final estimate Ŝ using (28), (29)
end for

end for

according to (28), achieving a protection of low-SNR harmonic
components of voiced speech, e.g. at 0.6 sec, and an increased
noise reduction while avoiding artifacts in unvoiced speech. In
this way, the proposed approach combines the strengths of the
individual signals ŜW and Y2 for an improved clean speech
estimate.

How ŜW and Y2 are actually combined becomes apparent
from the mixing factor Gmix. In unvoiced sounds, for which
the harmonic model is not well suited, Gmix increases and the
Wiener filter dominates the final estimate. In voiced speech
Gmix is lower, giving more weight to the harmonic model. Due
to the modeling error variance σ2

M , we further observe a general
increase of Gmix towards higher frequencies. This reduces the
influence of the harmonic model in higher frequencies, effec-
tively accounting for its increasing inaccuracies e.g. caused by
small fundamental frequency estimation errors that accumulate
over harmonics. If segments without any harmonic structure are
detected by PEFAC [23], we have BV = 0 in (21), leading to
σ2
V2

= ∞. Accordingly, the proposed estimator falls back to
the conventional single-channel Wiener filter (Gmix = 1). The
observations made for this example are also reflected in instru-
mental measures that we evaluate for multiple speakers and
various noise conditions in the next section.

D. Extension to Multiple Microphones

If more than one microphone, i.e. M − 1 microphones, with
M > 2, are available, FFIWI can also be computed by applying
the MWF-like formulation in (10). The harmonic model then
serves as the Mth observation YM = S + VM . Analogous to the
previous sections, we make the assumption that the error of the
harmonic model is uncorrelated to the errors in the microphone
signals. Under this assumption, the error variance matrix reads

ΦV =

⎛⎜⎜⎜⎝
0

ΦV

...
0

0 . . . 0 σ2
VM

⎞⎟⎟⎟⎠ , (31)
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where ΦV is the possibly dense M − 1×M − 1 covariance
matrix of all microphone signals. Due to the block-diagonal
structure of ΦV , its inverse Φ−1

V is also block diagonal and
is obtained by simply inverting ΦV and σ2

VM
. For this spe-

cific structure of Φ−1
V , the MVDR filtering in (10) can be split

up into two stages: first, the M − 1 microphone signals are

combined using an MVDR beamformer with Φ−1
V and the cor-

responding M − 1 element propagation vector. Then the output
signal of this stage is combined with the harmonic model in a
second MVDR, with a = [1 1]

T in (7). Consequently, the multi-
microphone FFIWI can be implemented as a single-microphone
FFIWI applied to the output of an MVDR filter on all micro-
phone signals. The advantage of this two step realization is
that we can decouple the multi-microphone processing from the
concept of FFIWI. For any microphone setup, we can seam-
lessly use any of-the-shelf algorithm for the estimation of ΦV

and the corresponding propagation vector, without the need of
adapting the existing FFIWI implementation.

VI. EVALUATION

The evaluation is performed on 128 gender balanced sen-
tences taken from the test set of the TIMIT database [24]
sampled at 8 kHz. The signals are degraded by various noise
types at SNRs ranging from −5 dB to 15 dB. We use segments
with a length of 32 ms, overlapping by 50%, and a square-root
Hann window for analysis and synthesis. The noise variance
is estimated using the speech presence probability based noise
variance estimator [20] while the speech variance is estimated
with the decision-directed approach [1] with a smoothing fac-
tor of 0.98. The fundamental frequency is blindly estimated
on the noisy observation using the noise robust fundamental
frequency estimator PEFAC [23]. In segments that, according
to PEFAC, do not contain voiced speech, we set BV = 0 and
the error variance of the harmonic model becomes σ2

V2
= ∞

(21). In these segments the proposed estimator hence reduces
to a single-channel Wiener filter, see e.g. (28) and (29). In
(17) we set Gmin = 0.5. Also, to increase the perceptual qual-
ity, we impose a lower limit of −20 dB relative to the noisy
observation on all estimators before synthesizing the time-
domain signals via overlap-add. We further only consider the
single-microphone case in the evaluation. The extension to
multiple microphones is discussed in Sec. V-D, showing that
the multi-microphone FFIWI can simply be interpreted as the
single-microphone FFIWI applied on the output of an MVDR
filter on the microphone signals.

As instrumental measures we employ Perceptual Evaluation
of Speech Quality (PESQ) [27], Short-Time Objective
Intelligibility Measure (STOI) [28], and the Log Spectral
Distance (LSD), e.g. [15, Chap. 3.7]. Even though PESQ has
originally been developed for the evaluation of coded speech, it
has been shown to correlate also with the quality of enhanced
speech [29]. The LSD yields the root-mean-square deviation of
a modified magnitude squared spectrum in dB from the one of
the clean speech, representing a measure of spectral similar-
ity. STOI on the other hand predicts the speech intelligibility
of a time-frequency weighted noisy speech utterance. In [28],

non-linear mapping functions of the raw STOI output values
(between zero and one) to actual intelligibility scores have been
presented for two databases. Since for the TIMIT database no
such mapping is available, here we apply the mapping that has
been proposed for the IEEE database used in [28] instead. The
absolute numbers hence have to be treated with caution, but
the general trends remain. Therefore, and to improve the visual
comparability of the results we present improvements relative
to the noisy input instead of absolute values. While for PESQ
and STOI large values are desirable, for LSD smaller values
reflect less deviations from the clean speech spectrogram.

A. Proposed Estimator vs. Wiener Filter and Harmonic Model

In Fig. 6, we compare two versions of the proposed estima-
tor Ŝ to the conventional Wiener filter ŜW and the harmonic
model based signal representation Y2 in terms of PESQ, LSD,
and STOI improvements over the noisy input signal Y1. The two
versions of the proposed estimator FFIWI only differ in the way
they process the noisy signal on the harmonics. While FFIWI-C
takes the cross-covariance between Y1 and Y2 in bands k′ into
account, FFIWI neglects it and applies (28) in all bands. As
discussed in Sec. V-B, neglecting the cross-covariance results
in an increased preservation of the speech in harmonic bands
k′. In our experiments, i.e. Fig. 6, this leads to improvements in
PESQ and STOI, as well as a reduction in LSD for FFIWI over
FFIWI-C. For the remaining discussions, we therefore focus on
FFIWI.

Both, the harmonic model and the proposed estimator,
achieve an improvement in STOI for low SNRs relative to
the Wiener filter, but also relative to the noisy input. For the
rather stationary noise inside of a driving car [30], the proposed
FFIWI outperforms the separate estimators in PESQ and STOI
in all conditions, with larger improvements for low SNRs. The
proposed combination benefits from the information inherent
in Y2 and leads to a consistent improvement over the conven-
tional Wiener filter alone, e.g. about 0.1 MOS in PESQ and
6% in STOI at 0 dB SNR. Similar results are achieved also in
non-stationary pink noise, which has been modulated with a
modulation frequency of 0.5 Hz.

The influence of the harmonic model Y2 on the proposed esti-
mator is even more prominent for the non-stationary acoustic
scenario of rain on a roof1. For this noise type, also isolated
raindrops are audible, which can be considered as impulsive
disturbances. As discussed in Sec. V-A, in practice, the con-
ventional Wiener filter is not capable of adequately suppressing
such impulsive sounds, since the sudden rise in the noise vari-
ance σ2

V is not tracked by the estimator [20]. This is different
from the modulated pink noise, for which the noise variance
can still be adequately tracked [20]. In low SNRs, the harmonic
model benefits from enforcing a perfectly harmonic structure
onto the noisy observation, which effectively suppresses the
rather broadband, impulsive raindrops. For increasing SNRs,
however, the accompanying speech distortions, especially in
unvoiced sounds, outweigh the noise reduction and lead to a
decreased speech quality, reflected in the steep drop in PESQ.

1http://www.freesound.org/people/mmorast/sounds/192149/
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Fig. 6. PESQ, STOI, and LSD improvements over the noisy microphone signal for the conventional Wiener filter, the harmonic model, and two versions of the
proposed estimator. ‘FFIWI-C’ considers the cross-covariance of Y1 and Y2 in harmonic bands k′, while ‘FFIWI’ applies (28) in all bands.

Fig. 7. PESQ, STOI, and LSD improvements over the noisy microphone signal for the LSA [31], Hendriks et al. [12], McCallum et al. [13], and the proposed
estimator FFIWI. As a reference, we also include the results for FFIWI using the fundamental frequency from the annotation in [33].

In the proposed estimator, this is encountered for by differenti-
ating between voiced and unvoiced speech and by the behavior
of the mixing factor Gmix (28), which favors the Wiener fil-
ter in high local SNRs. In this scenario, the proposed estimator
achieves an improvement of up to 0.2 MOS in PESQ and
20% in STOI over the conventional Wiener filter. The proposed
FFIWI also achieves a lower LSD, meaning that the estimated
spectrum is closer to the desired clean speech spectrum. This is
the case for all noise types and SNRs considered here, achieving

improvements of around 0.5 dB at lower SNRs with respect to
the Wiener filter.

B. Comparison to Other State-of-the-Art Algorithms

Now we compare the proposed FFIWI against the two statis-
tical estimators [12], [13], which also utilize a harmonic signal
model. To denote the reference algorithms, here we use the
names of the respective authors: McCallum et al. for [13] and
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Hendriks et al. for [12]. More specifically, Hendriks et al. cor-
responds to the algorithm SOFT-SD-U with a Gaussian speech
prior in [12]. As an example for a commonly used statistical
approach, we further include the log-spectral amplitude esti-
mator (LSA) [31] as a baseline. All estimators employ the
STFT setup as described above, except for [12], for which a
32 ms Hamming window for analysis and 50% zero padding is
used, which is very close to the original proposal and showed
to be beneficial for the general performance of this algorithm.
In Fig. 7, we present the results for car noise [30], factory noise
[32], and babble noise [32].

The proposed estimator outperforms all three reference algo-
rithms in PESQ for most scenarios and in STOI for all scenar-
ios. Only for high SNRs, Hendriks et al. may achieve slightly
larger PESQ scores and for car noise McCallum et al. produces
very similar PESQ results. At 0 dB SNR, improvements of
about 0.1 MOS in PESQ relative to the LSA are achieved for
all three noise types. Particularly for babble noise this improve-
ment is substantial, considering that the improvement of the
LSA over the noisy signal in this condition is only about 0.25
MOS. For babble noise, FFIWI also achieves the lowest LSD
for SNRs below 10 dB. The same trend can be observed for the
other two noise types as well, except for very low SNRs, where
McCallum et al. achieves the lowest LSD.

To evaluate the influence of fundamental frequency estima-
tion errors, we also present the results for the case that the
fundamental frequency is not blindly estimated, but taken from
the annotation provided in [33]. Given this oracle information,
the gain in PESQ and STOI increases, especially in low SNRs
and challenging noise scenarios. For babble noise, the improve-
ment with respect to the LSA increases to about 0.3 MOS in
PESQ and almost 30% in STOI at −5 dB SNR. Also Hendriks
et al. and McCallum et al. benefit from an oracle fundamental
frequency, but experiments showed that the increase in per-
formance is not as prominent as for the proposed approach.
Accordingly, with a better estimate of the fundamental fre-
quency, the benefit of the proposed estimator over Hendriks
et al. and McCallum et al. can be expected to increase even
further.

VII. CONCLUSION AND OUTLOOK

In this contribution, we presented a novel STFT domain clean
speech estimator that incorporates information about the struc-
ture of voiced speech by means of a harmonic model into an
MMSE optimal statistical estimator. To this end, we proposed
a way to estimate a harmonic signal representation directly
in the STFT domain and combined it with the noisy micro-
phone signal using a multichannel Wiener filter. The resulting
estimator yields an increased noise reduction between harmon-
ics while preserving weak harmonic components, leading to
improvements in speech quality and intelligibility as predicted
by PESQ and STOI over several reference algorithms. Thanks
to the formulation in terms of a general, well understood multi-
channel framework, the proposed estimator can seamlessly be
extended to use multiple microphones, alternative post-filtering
techniques, or different signal models, e.g. for transient sounds.

APPENDIX

To obtain the posterior of the MWF for mutually uncorrelated
Gaussian noise and a = [1 1]T (27), we apply Bayes rule, i.e.

p (S|Y1, Y2) =
p (Y1|S) p (Y2|S) p (S)

p (Y2|Y1) p (Y1)
, (32)

with

p (S) = N (
0, σ2

S

)
(33)

p (Y1) = N (
0, σ2

S + σ2
V1

)
(34)

p (Y2|S) = p (S + V2|S) = N (
S, σ2

V2

)
(35)

p (Y1|S) = p (S + V1|S) = N (
S, σ2

V1

)
(36)

p (Y2|Y1) = p (S + V2|Y1) = N
(
ŜW , σ2

W + σ2
V2

)
, (37)

where all probability density functions are given ΦV and
σ2
S, which we drop here for notational convenience. Since

S, V1, and V2 are assumed to be mutually uncorrelated and
Gaussian, we have p (V2|Y1) = p (V2) = N (

0, σ2
V2

)
and in the

last line the means and variances of V2 and S given Y1 add up.
Plugging all of the distributions into (32), after some algebraic
computations, we obtain the posterior (27).
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