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On MMSE-Based Estimation of Amplitude and
Complex Speech Spectral Coefficients Under
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Martin Krawczyk-Becker, Student Member, IEEE, and Timo Gerkmann, Senior Member, IEEE

Abstract—Among the most commonly used single-channel ap-
proaches for the enhancement of noise corrupted speech are
Bayesian estimators of clean speech coefficients in the short-time
Fourier transform domain. However, the vast majority of these
approaches effectively only modifies the spectral amplitude and
does not consider any information about the clean speech spec-
tral phase. More recently, clean speech estimators that can utilize
prior phase information have been proposed and shown to lead
to improvements over the traditional, phase-blind approaches. In
this work, we revisit phase-aware estimators of clean speech am-
plitudes and complex coefficients. To complete the existing set of
estimators, we first derive a novel amplitude estimator given un-
certain prior phase information. Second, we derive a closed-form
solution for complex coefficients when the prior phase informa-
tion is completely uncertain or not available. We put the novel
estimators into the context of existing estimators and discuss their
advantages and disadvantages.

Index Terms—Noise reduction, signal reconstruction, speech
enhancement.

I. INTRODUCTION

IN many everyday situations, we are confronted with acoustic
noise. Severe acoustic noise not only complicates human-to-

human communication, but also poses a problem to many tech-
nical devices, such as mobile phones or hearing aids. For such
devices to enable successful communications even in challeng-
ing acoustic scenarios, algorithms for the reduction of acoustic
noise are a key component. Here we consider single-channel
speech enhancement approaches, which can either be applied
directly to a noisy microphone signal or to the output of a
spatial multi-microphone pre-processing stage. We further con-
centrate on Bayesian estimators of the clean speech, which esti-
mate the clean speech based on statistical assumptions about the
speech and the noise components. The majority of these algo-
rithms is formulated in the short time discrete Fourier transform
(STFT) domain due to its low computational complexity and in-
tuitive interpretation. In this work, we differentiate between two
classes of estimators: estimators of the complex-valued clean
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speech spectral coefficients S and estimators of the real-valued
clean speech spectral amplitude A = |S|. For example, if the
speech and the noise are independently circular-complex Gaus-
sian distributed, the Wiener filter is the optimal estimator of
S in the minimum mean squared error (MMSE) sense, while
the short-time spectral amplitude estimator (STSA) [1] is the
MMSE optimal estimator of A. Under the Gaussian assump-
tion, it has further been shown that the clean speech spectral
phase is uniformly distributed and that the noisy phase is the
optimal Bayesian estimator [1]. Consequently, both approaches
only modify the spectral amplitude, while the noisy phase is
left unchanged. Over time, several more advanced estimators
have been derived, which optimize for compressed amplitudes,
e.g., [2], [3], incorporate heavy-tailed speech priors, e.g., [4]–
[6], or both, [7], [8]. Optimizing for compressed amplitudes has
been reported to be perceptually beneficial, e.g., [2], and can
be considered as a simple model of the compressive behavior
of the human auditory system. While in [2] and [8] the loga-
rithm is used as the compressive function, in [3] and [7] a more
general β-order compression has been proposed. Heavy-tailed,
i.e., super-Gaussian, speech priors have been proposed, e.g., in
[4]–[8], as they are reported to fit the histogram of clean speech
better than a Gaussian prior [4], [5].

Recent years have seen a rising interest in the role of the spec-
tral phase for speech enhancement. For instance, in [9], the gen-
eral importance of the spectral phase for speech enhancement is
highlighted by means of numerous instrumental and subjective
experiments. It has furthermore been shown that considering the
spectral phase in spectral subtraction can substantially reduce
musical noise [10] and has the potential to improve automatic
speech recognition performance [11] compared to conventional
spectral subtraction. Also in the modulation frequency domain,
separately processing the real and imaginary parts of the spec-
tral coefficients instead of only their amplitudes, which effec-
tively also modifies the spectral phase, leads to improvements in
instrumental measures as well as subjective quality over magni-
tude only enhancement [12]. Additionally, different approaches
for the estimation of the clean speech spectral phase have been
proposed, e.g., [13]–[15]. While in [13] the iterative estimation
of the spectral phase from the clean speech spectral magnitude
is investigated, in [14], [15] methods that estimate the clean
spectral phase from the noisy observation based on a harmonic
signal model are proposed. Once an estimate of the clean speech
spectral phase is available, there are different ways to utilize the
additional information for an improved speech enhancement.
A straight forward way is to simply exchange the noisy phase
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TABLE I
CUP AND AUP TOGETHER WITH THEIR SPECIAL CASES, I.E., NEGLECTING THE

PRIOR PHASE INFORMATION (κ = 0) AND ASSUMING THAT THE INITIAL PHASE

ESTIMATE YIELDS EXACTLY THE TRUE CLEAN PHASE (κ → ∞)

estimator of complex coefficients estimator of amplitudes

phase-blind κ = 0 BECOCO (21) MOSIE (13)
uncertain phase 0 < κ < ∞ CUP (15) AUP (10)
certain phase κ = ∞ CDP (16) ADP (12)

The estimators that are derived in this paper are highlighted in bold print.

with the estimated clean speech phase and reconstruct the time
domain signal, e.g., [14], [15]. In a natural next step, we can
combine the phase estimate with a spectral amplitude that we
estimate with one of the approaches mentioned above. However,
if an estimate of the clean speech spectral phase is available, the
traditional phase-blind approaches, like the STSA [1], are not
MMSE optimal anymore [16]. In [16], a phase-aware estimator
of the clean speech spectral amplitude has been derived that is
optimal in the MMSE sense if the true clean speech phase is
given. In practice, however, typically only an estimate of the
clean speech phase is available, e.g., obtained via the model-
based approaches in [14], [15] or iteratively as proposed in [17].
In [18], the uncertainty in such a phase estimate is incorporated
into an estimator of the (C)omplex spectral speech coefficients
given (U)ncertain (P)hase information (CUP) by means of a
prior distribution for the true clean speech phase. This estima-
tor has been shown to improve the speech quality as well as
the speech intelligibility as predicted by instrumental measures
with respect to traditional phase-blind approaches. In [19], CUP
has further been extended by using different, non-Gaussian dis-
tributions for the noise. For a more extensive overview of the
history and recent advances in phase-aware speech processing,
the interested reader is referred to [20] and [21].

In this paper, we revisit phase-aware estimators of clean
speech amplitudes and complex coefficients. To complete the
existing set of estimators, we first derive the novel estimator of
the speech (A)mplitudes given (U)ncertain (P)hase information
(AUP). Secondly, we derive a closed-form solution for complex
coefficients when the initial phase is completely uncertain or
not available, resulting in the novel phase-(B)lind (E)stimator
of (CO)mplex (CO)efficients (BECOCO). We then put the novel
estimators into the context of existing approaches, summarized
in Table I, where we highlight the entries that have been blank
before and have been filled as a contribution of this paper, i.e.,
AUP and BECOCO. We discuss their advantages and disad-
vantages based on a theoretical analysis and investigate how
the quality of the initial phase information affects the final en-
hancement results. The presented analysis allows for a detailed
assessment and comparison of the different phase-aware estima-
tors and their sensitivity to errors in the initial phase estimate.
Finally, the estimators are evaluated on noise corrupted speech.

In Section II, we introduce the basic concept of phase-aware
clean speech estimation that is common to all estimators con-
sidered in this work. While in Section III we derive the novel
phase-aware amplitude estimator AUP and discuss its special

cases, in Section IV we revisit the complex estimator CUP,
leading to the derivation of BECOCO. The estimators are then
analyzed and compared in Section V. An instrumental evalua-
tion on noise corrupted speech with respect to speech quality and
intelligibility is presented and discussed in Section VI, before
concluding the paper in Section VII.

II. PRINCIPLES OF PHASE-AWARE CLEAN SPEECH ESTIMATION

In the STFT domain we denote the noise corrupted observa-
tion in each time-frequency point (�, k) as

Yk,� = Sk,� + Vk,� , (1)

with mutually independent clean speech Sk,� and additive noise
Vk,� . In the remainder of this paper we neglect the segment
index � and frequency index k for notational convenience. We
can express the complex-valued coefficients in terms of their
amplitudes and phases, i.e., Y = RejΦY

, S = AejΦS

, and V =
DejΦV

.
We further assume that some initial estimate ˜ΦS of the clean

speech phase ΦS is available, which could for example be ob-
tained with the phase reconstruction approach proposed in [14].
To incorporate this prior information into an estimator of the
clean speech coefficients S – or functions f(S) thereof – we
search for the expected value E(·) given the noisy observation

and the initial phase estimate ˜φS :

̂f(S) = E
(

f(S) | y, ˜φS
)

=
∫ ∞

0

∫ 2π

0
f(S)

× p
A,ΦS |r,φY , ˜φS

(

a, φS | r, φY , ˜φS
)

dφS da, (2)

where we use the hat-symbol to distinguish estimated quantities
from their true counterparts, e.g., ̂X is an estimate of X . Fur-
thermore, lower-case letters denote realizations of the random
variables in capital letters, e.g., a is a realization of A. This style
of notation is used throughout this paper, but the subscripts of the
probability density functions (PDFs) will be dropped for brevity,

e.g., pA (a) = p(a). Note that the posterior p(a, φS | r, φY , ˜φS )
is implicitly also conditioned on σ2

S and σ2
V , which we do not

state explicitly to achieve a compact notation. The resulting esti-
mator is optimal in the sense that it minimizes the mean squared
error (MSE) [22]

E
(

|̂f(S) − f(S)|2 | y, ˜φS
)

. (3)

With Bayes’ rule and assuming the speech prior p(S) to be
circular-symmetric in the complex plane, we can reformulate the
posterior and the estimator (2) becomes (see [18] for details):

̂f(S) = E
(

f(S) | y, ˜φS
)

=

∫ ∞
0

∫ 2π

0 f(S)p
(

y|a, φS
)

p(a)p
(

φS |˜φS
)

dφS da

∫ ∞
0

∫ 2π

0 p (y|a, φS ) p(a)p
(

φS |˜φS
)

dφS da
.

(4)

This formula yields the basis for all phase-aware estimators that
we consider in this work.
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To derive a specific clean speech estimator, we have to solve
(4). For this, we first have to make some assumptions about
the distributions of the speech and the noise. Note that here
we use the same signal models as in [18]: the speech spec-
tral coefficients S are assumed to follow a circular-symmetric
heavy-tailed super-Gaussian distribution with variance σ2

S . We
therefore model the prior of the corresponding speech ampli-
tudes A with a χ-distribution, i.e.,

pA (a) =
2

Γ (μ)

(

μ

σ2
S

)μ

a2μ−1 exp
(

− μ

σ2
S

a2
)

. (5)

While μ = 1 corresponds to a Gaussian distribution of the com-
plex speech coefficients, to model more heavy-tailed speech pri-
ors we set 0 < μ < 1. Such heavy-tailed distributions have been
shown to better fit the histograms of clean speech [4] and also
to lead to better results in phase-blind clean speech estimators,
e.g., [5]. Note that (5) corresponds to the generalized gamma
distribution as used e.g., in [5] with γ[5] = 2 and ν[5] = μ. We
further assume that the noise V is zero-mean circular symmetric
complex Gaussian distributed with variance σ2

V , which, in polar
coordinates, results in the likelihood

p
(

r, φY | a, φS
)

=
r

πσ2
V

exp

(

−|r ejφY − a ejφS |2
σ2

V

)

(6)

=
r

πσ2
V

exp

(

2ra cos
(

φS−φY
)

− r2 − a2

σ2
V

)

.

(7)

The only part of (4) that is still missing is p(φS |˜φS ), which is the
PDF of the true clean speech phase ΦS given the initial phase

estimate ˜φS . As proposed in [18], we model p(φS |˜φS ) using a

von Mises distribution with mean direction ˜φS ,

p
(

φS |˜φS
)

= exp
(

κ cos
(

φS − ˜φS
))

/ (2πI0 (κ)) , (8)

where κ is the concentration parameter and In (·) is the modified
Bessel function of the first kind and n-th order. For an increasing
concentration parameter κ, the circular variance of (8) decreases,

while the mean direction ˜φS corresponds to the mode of the
circularly symmetric von Mises distribution (8). The von Mises
distribution hence allows us to effectively model the certainty of

the available initial phase estimate ˜φS by adequately choosing κ.

Illustrative examples of p(φS |˜φS ) for ˜φS = 0 and three different
values for the concentration parameter κ are presented in Fig. 1.

For large values of κ, p(φS |˜φS ) is strongly concentrated around
˜φS . Accordingly, the true clean speech phase φS is likely to be

reasonably close to the initial phase estimate ˜φS . In other words,
˜φS represents a reliable initial estimate of the true clean speech

phase φS . For small values of κ on the other hand, p(φS |˜φS )
approaches a uniform distribution, i.e., the initial phase estimate
˜φS yields only little information about the true clean speech
phase.

Now that we have models for all distributions in (4), we
can derive estimators of the clean speech complex coefficients

Fig. 1. Von Mises distribution for a mean direction of ˜φS = 0 and three
different values for the concentration parameter κ.

and of the clean speech amplitudes by choosing f(S) accord-
ingly. In the following sections, we derive novel estimators, but
also revisit existing estimators to allow for a comprehensive
comparison and discussion in a wider context. To highlight the
estimators contributed in this paper, we put the resulting novel
estimators into a box.

III. PHASE-AWARE AMPLITUDE ESTIMATION

The phase-aware estimator CUP, proposed in [18] and re-
visited in Section IV, estimates the compressed clean speech
complex coefficients. However, for phase-blind approaches, es-
timators of the clean speech amplitude have been reported to
yield less speech distortions than estimators of the complex co-
efficients, e.g., [1]. To investigate if this is also the case for
phase-aware estimators, we now derive the novel estimator of
the speech amplitude given uncertain phase information AUP.

A. Amplitude Estimation Given Uncertain Phase
Information (AUP)

For the derivation of the novel estimator AUP, we define

f(S) = |S|β = Aβ (9)

in (4), i.e., AUP estimates the compressed speech amplitudes.
The parameter β introduces some flexibility with respect to the
cost function (3). For example, setting 0 < β < 1 results in a
compression of spectral amplitudes, which has been reported
to yield perceptually beneficial results in phase-blind amplitude
estimation [3], [7].

To find AUP, we insert (5), (7), and (9) into (4) and then solve
the integral over the speech amplitude using [23, (3.462.1)],
leading to

̂Aβ =
(√

1
2

ξ
μ+ξ σ2

V

)β
Γ(2μ+β )

Γ(2μ)

×

∫ 2π

0 eν 2 /4D(−2μ−β )(ν)p
(

φS |˜φS
)

dφS

∫ 2π

0 eν 2 /4D(−2μ)(ν)p
(

φS |˜φS
)

dφS
,

(10)
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with the a priori signal-to-noise ratio (SNR) ξ = σ 2
S

σ 2
V

, the

parabolic cylinder function D·(·) [23, (9.241.2)], and the
argument

ν = − r

σV

√

2
ξ

μ + ξ
cos(φS − φY )

︸ ︷︷ ︸

Δφ

. (11)

Here, Δφ denotes the difference between the observed phase
φY and the true clean speech phase φS . Finally, we can plug
the von Mises phase prior (8) into (10) to obtain AUP. Un-
fortunately, there is no known closed-form solution to the

phase integral for a von Mises phase prior p(φS |˜φS ). However,
since the integral over the phase is limited to −π and π, it can
be solved numerically with high precision [18]. A look-up table
can be computed off-line, reducing the computational complex-
ity during runtime to a simple table look up. For a specific
value of κ, here we use a three-dimensional table with a res-
olution of 1 dB for ξ and γ, and π/100 for (˜φS − φY ). For
the synthesis of the enhanced time domain signal, the estimated
compressed amplitude (10) is first expanded via ( ̂Aβ )1/β . The
amplitude is then combined with the noisy phase, giving
the final clean speech estimate ̂SAUP = ̂A exp(jΦY ). Note that
the amplitude estimator AUP thus only enhances the spectral
amplitude and does not modify the noisy phase. One motiva-
tion for proposing AUP, i.e., for using the spectral phase only
for amplitude estimation but not for phase improvement, is that
artifacts known from phase modifications, see e.g., [13], [14],
are impossible.

As will be presented in Section IV-A, the difference between
the novel AUP and the complex estimator CUP [18], lies in
the definition of f(S) in (4). While for AUP only amplitudes
are optimized for (9), in CUP both amplitudes and phases are
included in the estimation as we will see in (14). Besides this
difference, all statistical assumptions about the distributions in
(4) are the same. In this sense, AUP represents the amplitude
counterpart to CUP.

We now have a closer look at two special cases of AUP,
namely κ → ∞ and κ = 0 in (8). While for κ → ∞ the uncer-

tainty in the initial phase ˜φS is neglected, setting κ = 0 effec-
tively leads to a phase-blind estimator. We show that both cases
resemble known estimators of the clean speech amplitude, for
which closed-form solutions exist.

B. Perfectly Known Speech Phase (κ → ∞)

For a concentration parameter κ → ∞, the von Mises dis-

tribution (8) approaches a delta function, p(φS |˜φS ) → δ(φS −
˜φS ), which is only non-zero for φS = ˜φS . In this case, the initial

phase estimate ˜φS is implicitly assumed to be deterministic and
identical to the true clean speech phase. Inserting (8) into (10) for
κ → ∞, we can utilize the sifting property of the delta function
to solve the integral over φS , yielding the speech (A)mplitude
estimator given (D)eterministic (P)hase information (ADP) pro-

posed in [16]

̂Aβ
D = E

(

Aβ | y, φS
)

=

(
√

1
2

ξ

μ + ξ
σ2

V

)β

× Γ (2μ + β)
Γ (2μ)

D(−2μ−β )(ν)
D(−2μ)(ν)

, (12)

which does not incorporate any uncertainty in the prior phase

information. In practice, however, the initial phase ˜φS yields
only an estimate of the clean speech phase. By choosing κ → ∞,
the uncertainty of this estimate is neglected, potentially leading
to suboptimal enhancement results for an unreliable initial phase
˜φS . As AUP is defined as an estimator of spectral amplitudes
only, for signal reconstruction we again use the noisy phase. In
(12), we introduce the index d to denote estimators that assume
that the clean speech phase is perfectly known and deterministic,
i.e., κ → ∞.

C. Phase-Blind (κ = 0)

For κ = 0, the von Mises distribution (8) reduces to a uni-
form distribution, which is p(φS |˜φS ) = 1

2π between −π and π

and zero elsewhere. Accordingly, the initial phase ˜ΦS does not
provide any useful information and the estimator (4) becomes
phase-blind. Solving (4) for f(S) = |S|β = Aβ , we obtain the
parametric amplitude estimator in [7]

̂Aβ
B = E

(

Aβ | y
)

(13)

as a special case of AUP for total uncertainty in the a priori
phase estimate. Here, the index B is used to denote phase-blind
estimators. In accordance to [24], we denote the phase-blind am-
plitude estimator (13) as MOSIE, i.e., (M)MSE estimation with
(O)ptimizable (S)peech model and (I)nhomogeneous (E)rror
criterion.

IV. PHASE-AWARE ESTIMATION OF COMPLEX COEFFICIENTS

AND RELATIONS TO PHASE-AWARE AMPLITUDE ESTIMATION

In this section, we revisit the phase-aware estimator of com-
plex speech coefficients CUP [18], highlighting differences and
similarities to the novel estimator AUP. After introducing the
general formulation, similar to AUP, the special cases of κ → ∞
and κ = 0 are presented and discussed. For the latter, we derive
a novel phase-blind estimator of the compressed speech coeffi-
cients, which may be considered the complex counterpart to the
phase-blind amplitude estimator (13).

A. Complex Estimation Given Uncertain Phase
Information (CUP)

In [18] the phase-aware estimator CUP is derived by solving
(4) for

f(S) = S(β ) = Aβ ejΦS

, (14)

i.e., CUP estimates the compressed complex-valued speech co-
efficients, rather than the compressed speech amplitudes as done
for AUP (see (9)).
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Again, equations (5), (7), and (14) are inserted into (4) and
the integral over the speech amplitude is solved using [23,
(3.462.1)], giving [18]

̂S(β ) =

(
√

1
2

ξ

μ + ξ
σ2

V

)β

Γ (2μ + β)
Γ (2μ)

×

∫ 2π

0 ejφS
eν 2 /4D(−2μ−β )(ν)p

(

φS |˜φS
)

dφS

∫ 2π

0 eν 2 /4D(−2μ)(ν)p
(

φS |˜φS
)

dφS
, (15)

which is notationally very similar to AUP (10), differing only in
the exponential term ejφS

in the numerator of (15). Note that in

general we expect that ̂Aβ �= |̂S(β ) |, i.e., that the amplitude of
the CUP estimate differs from the amplitude estimate obtained
via AUP. As for AUP, also for CUP, no closed-form solution has
been found for a von Mises phase prior [18]. Thus (10) is solved
numerically and tabulated to allow for real-time processing. The

final estimate is obtained via ̂SCUP = |̂S(β ) |1/β ̂S (β )

| ̂S (β ) |
. Note that

in general, the phase of ̂SCUP is not the initial phase estimate
˜φS .

B. Perfectly Known Speech Phase (κ → ∞)

Analogous to the amplitude estimator ADP in (12), the com-
plex estimator CUP for κ → ∞ reduces to

̂S
(β )
D = E

(

Aβ ejΦS | y, φS
)

= E
(

Aβ | y, φS
)

ejΦS

= ̂Aβ
D ejΦS

,

(16)
which we denote as the estimator of (C)omplex spectral speech
coefficients given (D)eterministic (P)hase information (CDP).
Interestingly, comparing (12) and (16), for the case of full cer-
tainty in the initial phase, the estimator of the clean amplitude
AUP yields exactly the amplitude of the complex estimator
CUP, i.e., |̂SD | = ̂AD . This is a major difference to traditional
phase-blind approaches, where, for example, the amplitude of
the Wiener filter is not the amplitude obtained with the STSA
[1], even though both the Wiener filter and the STSA are based
on the same complex Gaussian models for the speech and noise
spectral coefficients. While CUP estimates the complex coef-
ficients of clean speech, AUP only estimates the amplitudes.
Thus, when the phase is perfectly known, i.e., κ → ∞, the CUP
spectral phase estimate corresponds to the clean speech phase
(see (16)), while in AUP still the noisy phase is used for recon-
struction.

C. Phase-Blind (κ = 0)

For the estimation of compressed complex coefficients, to
the best of our knowledge, no phase-blind estimator of f(S) =
S(β ) for non-Gaussian speech priors has been proposed in the
literature. To find a closed form solution for this novel estimator,
we insert (5), (7), and the uniform phase prior (κ = 0) into (4),
yielding

̂S
(β )
B =

∫ ∞
0 a2μ−1+β e−C a2 ∫ 2π

0 ejφS
e

2 r a

σ 2
V

cos(φS −φY )
dφS da

∫ ∞
0 a2μ−1e−C a2

∫ 2π

0 e
2 r a

σ 2
V

cos(φS −φY )
dφS da

,

(17)

with C = μσ 2
V +σ 2

S

σ 2
S σ 2

V
. For solving the integral over φS in the nu-

merator, we substitute φS by φ = φS − φY , which leads to

ejφY

∫ 2π−φY

−φY

(cos (φ) + j sin (φ)) exp
(

2ra

σ2
V

cos (φ)
)

dφ.

(18)
Since sin(φ) is 2π-periodic and odd while the exponential is
2π-periodic and even on the same interval, the integral over the
imaginary part is zero. The integral over the real part — as well
as the integral in the denominator – can be solved using

In (p) =
1
2π

∫ 2π

0
cos (nz) exp (p cos (z)) dz. (19)

Accordingly, (17) becomes

̂S
(β )
B =

∫ ∞
0 a2μ−1+β exp

(

−μσ 2
V +σ 2

S

σ 2
S σ 2

V
a2

)

I1

(

2ra
σ 2

V

)

da

∫ ∞
0 a2μ−1 exp

(

−μσ 2
V +σ 2

S

σ 2
S σ 2

V
a2

)

I0

(

2ra
σ 2

V

)

da
ejφY

.

(20)
Substituting x = a2 (leading to da = dx

2a ) and using [23,
(6.643.2),(9.220.2)] we get

̂S
(β )
B =

Γ
(

μ + β+1
2

)

Γ (μ)

M
(

μ + β+1
2 ; 2; γ ξ

μ+ξ

)

M
(

μ; 1; γ ξ
μ+ξ

)

×
(

σ2
V

)
β −1

2

(

ξ
μ+ξ

)
β + 1

2
Y,

(21)

with the confluent hypergeometric function M(·; ·; ·) and the a

posteriori SNR γ = |Y |2
σ 2

V
.

Again, we obtain the final estimator of the complex clean
speech spectral coefficients by reversing the compression, i.e.,
̂SB = |̂S(β )

B |1/β exp(j ∠̂S
(β )
B ) = |̂S(β )

B |1/β exp(jΦY ). Note
that in general, as opposed to κ → ∞, in the phase-blind
case we have |̂SB | �= ̂AB . We refer to this estimator as
the phase-(B)lind (E)stimator of (CO)mplex (CO)efficients
(BECOCO).

Besides being the special case of CUP for κ = 0, the estimator
(21) can also be interpreted as the complex-valued counterpart to
the phase-blind amplitude estimator MOSIE (13). It is further an
extension to the super-Gaussian estimator of S in [6, eq.(17)], in
the sense that it also incorporates a parameterized error function
(3) in addition to the flexible prior for the speech amplitudes (5).

In Table I we provide an overview of the complex estimator
CUP and the amplitude estimator AUP. Entries that have been
blank before and have been filled as a contribution of this paper
are highlighted, i.e., AUP (10) and the phase-blind estimator of
the complex speech coefficients BECOCO (21).

V. ANALYSIS

A. Phase-Blind (κ = 0)

We first have a closer look at the novel phase-blind estimator
BECOCO (21) that arises as a special case of CUP (15) for κ =
0. In Fig. 2 we present its input-output characteristic (IOC) [25]
for two choices of μ and β together with those of its amplitude
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Fig. 2. Input-output characteristic of the phase-blind estimators for ξ = 0.2.
For μ = β = 1, (21) reduces to the Wiener filter, while (13) reduces to the
STSA. We further present the curves for μ = β = 0.5, where more suppression
is applied at low normalized inputs and less suppression at large normalized
inputs as compared to their Gaussian counterparts.

counterpart MOSIE (13). The IOC of an estimator presents the
amplitude of the clean speech estimate that is obtained for the
respective noisy input on the abscissa. To make the analysis
independent of an absolute scaling, the input and the output are
both normalized by σV .

It has been shown in [7] that the phase-blind ampli-
tude estimator (13) reduces to the STSA [1] when using a
Gaussian speech prior (μ = 1) and optimizing for uncompressed
amplitudes (β = 1). The novel complex estimator BECOCO
(21) in turn reduces, when inserting μ = β = 1 into (21) and
using M(α;α; z) = ez , to the Wiener filter, which is indeed
the MMSE-optimal phase-blind estimator of S for a Gaussian
speech prior. We also present the curves for μ = β = 0.5, which
has been reported in [7] to provide good perceptual results.
Compared to their Gaussian counterparts, both estimators apply
more suppression to low normalized inputs and less suppres-
sion to large normalized inputs. While low inputs r/σV are
more likely in noise dominated time-frequency regions, large
inputs are more likely if speech is present. Still, large inputs
can also be caused by noise outliers. The reduced attenuation
of such large inputs by MOSIE and BECOCO for μ = β = 0.5
thus results in a better protection of the speech component at
the price of an increased risk of musical noise. It is well known
[1] that in the Gaussian and uncompressed case the complex
estimator (Wiener) is more aggressive than the corresponding
amplitude estimator (STSA). Based on the IOCs it can more
generally be stated that the complex estimator BECOCO (21) is
more aggressive than the amplitude estimator MOSIE (13), for
all valid combinations of μ and β.

For specific values of μ and β, the amplitude estimator
MOSIE (13) is known to resemble many other well-known
solutions. See [24] for a detailed list. Accordingly, the com-
plex estimator (21) now also yields complex counterparts to
all these amplitude estimators, including the log-spectral am-
plitude estimator [2] for μ = 1 and β → 0 [3]. This highlights
the generality of CUP and AUP, which do not only allow for
phase-aware speech enhancement, but also yield very general
phase-blind estimators for κ = 0.

Fig. 3. IOCs and phases of AUP and CUP for μ = β = 1, ξ = 1, a phase

difference of Δ˜φ = 0.45π , i.e., ˜φS = 0.45π and φY = 0, and various con-
centration parameters κ.

B. Phase-Aware (κ ≥ 0)

We now consider the general and more interesting case of κ ≥
0, i.e., we have some certainty in the prior phase information
and CUP and AUP are both truly phase-aware.

In Fig. 3 we investigate how the behavior of the estimators
change for an increasing certainty κ. The initial phase is set

to ˜φS = 0.45π and the observed noisy phase to φY = 0. We
present both, the IOCs and the phase of the corresponding esti-
mate. As argued in Section V-A, for κ = 0 the IOCs of CUP and
AUP significantly differ (Fig. 2). For the other extreme, κ → ∞,
we know from comparing (16) and (12) that the amplitude-IOCs
are the same, but also that CUP provides the initial phase esti-

mate ˜φS while AUP combines its amplitude estimate with the
noisy phase, independent of the value of κ. Accordingly, the
differences between CUP and AUP are dominated by the differ-
ent amplitude estimates for small κ and by the phase estimates
for large κ. For intermediate κ, the two estimators yield both,
different amplitude estimates and different phase estimates.

For low inputs r/σV , which are more likely in noise dom-
inated time-frequency points, the observed phase φY is likely
to be heavily corrupted. Larger normalized inputs, or a posteri-
ori SNRs γ = r2/σ2

V , are more likely to stem from speech and
hence φY is likely to be relatively close to the clean speech
phase. Thus, the influence of the prior phase information re-
duces towards larger a posteriori SNRs γ (except for κ → ∞)
and CUP and AUP approach their phase-blind counterparts. The
main improvement over phase-blind approaches hence comes
at lower a posteriori SNRs, where the initial phase estimate is



KRAWCZYK-BECKER AND GERKMANN: MMSE-BASED ESTIMATION OF AMPLITUDE AND COMPLEX SPEECH SPECTRAL COEFFICIENTS 2257

Fig. 4. IOCs and phases of AUP and CUP for μ = β = 1, ξ = 1, κ = 4, and
three different phase differences. For all curves, the noisy phase is φY = 0.

more reliable than the noisy phase. The same also holds for the
phase estimated by CUP, which approaches the (increasingly
less noisy) observed phase with increasing a posteriori SNRs
for κ < ∞. For undisturbed clean speech, both, CUP and AUP,
accordingly yield the observed clean speech phase.

In Fig. 4, we now present the IOCs and phases of CUP and

AUP for different phase differences Δ˜φ = ˜φS − φY and a fixed
certainty of κ = 4. It can be stated that the general behavior of
AUP and CUP in terms of their IOCs is similar: the more the
observed phase differs from the initial phase estimate, the more
suppression is applied. For large Δ˜φ, where the noisy phase
differs significantly from the reasonably certain initial phase es-

timate ˜φS , it is more likely that the respective time-frequency
point is dominated by the noise rather than speech and more
suppression is applied. Hence, the initial phase yields valuable
information to distinguish speech from noise, allowing for im-
provements in speech enhancement with respect to conventional
phase-blind approaches, see e.g., [18].

In general, the IOC of AUP is less aggressive than that of
CUP, independent of the phase difference Δ˜φ. For CUP how-
ever, the effect of using the estimated phase to synthesize the
final enhanced time domain signal is not covered by the IOC.
For overlapping signal segments, a modified spectral phase re-
sults in a different superposition of neighboring time-frequency
points. This can lead to both, a destructive superposition of
noise components as well as a constructive superposition of the
speech component, possibly achieving an increased noise re-
duction but also an improved speech preservation. See e.g., [14]
for a more detailed discussion. At the same time, modifications
of the spectral phase can be sensitive to errors, e.g., [13]. In

practice, strong errors in the initial phase, when accompanied
by an overestimated certainty κ, may also affect the final phase
estimate of CUP and potentially introduce undesired artifacts.
This is not the case for the amplitude estimator AUP, which uses
the noisy phase for signal synthesis, making it more robust to

estimation errors in κ and ˜φS .

VI. EVALUTION

For the evaluation and comparison of the estimators we use
128 gender-balanced sentences from the TIMIT database [26]
sampled at fs = 16 kHz and add different noise types at SNRs
ranging from −5 dB to 15 dB. We consider stationary pink
noise, pink noise modulated at a frequency of 0.5 Hz, factory
noise [27], and babble noise [27]. The results are averaged over
all four noise types to allow for a compact and general com-
parison. The noise variance σ2

V is estimated with the speech
presence probability based approach in [28], while the speech
variance σ2

S is obtained using the decision-directed approach
[2] with a smoothing factor of 0.96. In the original proposal
[2], a smoothing factor of 0.98 is recommended, but here we
lowered the smoothing factor to reduce speech distortions, es-
pecially at speech onsets, at the price of slightly more musical
noise. We set the form parameter in (5) to μ = 0.5, modeling
a heavy-tailed distribution of amplitudes, which corresponds to
a super-Gaussian distribution of S. In [7], this value has been
reported to yield a good trade-off in terms of outliers and clarity
of speech. To consider the compressive character of the human
auditory system in the estimators, we further set the compres-
sion parameter to β = 0.5 as proposed in [7]. For analysis and
synthesis, we use square-root Hann windows of 32 ms with an
overlap of 75 %, corresponding to a segment length of N = 512
samples and a segment shift of L = 128 samples. To increase the
perceptual quality of the enhanced signal, we further limit the
maximum attenuation in each time-frequency point to −15 dB.

To study the spectral phase and the spectral amplitude of
the different estimators in isolation, we employ three different
measures. First, we evaluate the accuracy of the phase of the
final clean speech estimate ∠̂Sk,� by means of the phase SNR
(PSNR) [15]

PSNR = 10 log10

⎧

⎨

⎩

∑

k,� A2
k,�

∑

k,� A2
k,�

(

1 − cos
(

φS
k,� − ∠̂Sk,�

))

⎫

⎬

⎭

.

(22)
The closer the estimated phase resembles the true clean speech
phase, the larger the phase SNR (PSNR). The amplitude weight-
ing puts emphasize on the phase of speech components with
relevant signal energy, where phase errors are arguably per-
ceptually most relevant. Secondly, we evaluate the segmental
noise reduction (NR) and the segmental speech SNR (SSNR)
[29], which give an idea of how much noise is suppressed and
how well the speech is preserved, respectively. All analyzed
estimators can be expressed by a gain that is multiplicatively
applied to the noisy input in each time-frequency point. NR is
obtained by applying the absolute value of this spectral gain to
the noise signal, whereas for SSNR it is applied to the clean
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speech signal. In the time-domain, the two signals are then
compared to the clean speech signal or the noise signal as de-
tailed in [29] to obtain the final SSNR and NR, respectively.
To enable a separate analysis of amplitude and phase effects,
for NR and SSNR we apply the absolute value of the gain
functions. NR and SSNR thus only depend on the amplitudes
of the speech estimates, while phase effects are evaluated using
PSNR. Lastly, we also employ two measures that are commonly
used in the context of speech enhancement, namely perceptual
evaluation of speech quality (PESQ) [30] and short-time objec-
tive intelligibility measure (STOI) [31]. These measures now
consider both, the enhancement of the spectral amplitude and
of the spectral phase. We map the raw STOI output values to
actual intelligibility scores by applying the mapping function
that has been proposed for the IEEE database used in [31].
To improve the visualization and ease the comparison between
the different algorithms, we do not plot the absolute values of
PESQ and STOI, but rather the improvement over the noisy
input.

A. Oracle ˜φS and κ

To facilitate the analysis and comparison of the different ap-
proaches on real speech data, here we artificially create initial

phase estimates ˜φS that follow a von Mises distribution (8)
with a given certainty κ, centered around the true clean speech
phase φS . For this, we first draw one realization for each time-
frequency point (k, �) from a von Mises distributed random
variable with a mean direction of 0 and the desired certainty κ.

To obtain the final initial phase estimate ˜φS
k,� , each realization

is then shifted by the respective clean speech phase φS
k,� to ob-

tain the desired mean direction ˜φS
k,� = φS

k,� . This gives us the
necessary flexibility for a thorough evaluation and allows us to
analyze the effects of incorporating phase information in detail,
circumventing the limitations of current phase estimators like

[14] or [15]. The exact knowledge of the distribution of ˜ΦS is the
only oracle information that is employed in these experiments.
All other parameters, like σ2

S and σ2
V , are still estimated from

the noisy microphone signal Y . A completely blind approach

is presented in the next section, where ˜φS is estimated from
the noisy observation Y and κ is adapted as a function of the
probability of a frame being voiced.

In Fig. 5, we present results for three different values of cer-
tainty κ, increasing from 0.1 to 2 to 100 from left to right.
As a well-known reference, we also present the results for the
Wiener filter. Regarding the phase-blind approaches, which are
independent of κ, we can see that the estimator of the spec-
tral amplitudes MOSIE (13) is less aggressive than the complex
estimator BECOCO (21) and the Wiener filter, as it achieves
a higher SSNR but also a lower NR. Furthermore, it can be
stated that BECOCO, while achieving a similar SSNR, achieves
slightly more noise reduction than the Wiener filter. Since all
phase-blind estimators, as well as the phase-aware amplitude
estimators AUP and ADP use the noisy phase for signal re-
construction, they all depict the same PSNR as the noisy input
signal, which linearly increases from about 8 dB to 22 dB for

increasing input SNRs. For κ = 0.1 at the left of Fig. 5, which

reflects a rather unreliable initial phase estimate, ˜φS yields only
very little information and the achievable benefit of phase-aware
speech enhancement is limited. Thanks to the incorporation of
this uncertainty of the initial phase in the estimators AUP and
CUP, both approach their phase-blind counterparts, effectively
neglecting the strongly corrupted initial phase information. The
phase-aware estimators ADP (12) and CDP (16) on the other
hand ignore the uncertainty and assume that the provided initial

phase ˜φS yields the exact clean speech phase. Consequently,
given an unreliable phase estimate, i.e., κ = 0.1, ADP and CDP
yield the worst results, with a very aggressive amplitude suppres-
sion. This over-attenuation causes clearly perceptible speech
distortions, which is also reflected in NR and SSNR. While
both estimators provide the exact same amplitude, the complex
estimator CDP (16) additionally uses the corrupted initial phase
for signal synthesis, leading to a very low PSNR and also the
lowest scores in PESQ and STOI. The results again highlight

the importance of considering the uncertainty in ˜φS .
With an increasingly certain initial phase, also the poten-

tial gain of phase-aware speech enhancement increases. For
κ = 2, PESQ and STOI predict improvements in quality of up
to 0.2 MOS and in intelligibility of 25 % over the phase-blind
estimators at −5 dB SNR. These improvements are most pro-
nounced for the complex estimators CUP (15) and CDP (16).
While in high SNRs CUP yields the highest speech quality

according to PESQ, neglecting the uncertainty of ˜φS in CDP,
despite introducing artifacts, seems to benefit speech intelligi-
bility in low SNRs according to STOI.

When a very reliable initial phase estimate is available, i.e.,
κ = 100 at the right of Fig. 5, the potential gain over phase-blind
approaches is the largest. In this case, CUP and AUP approach
CDP (16) and ADP (12), which assume κ → ∞. The amplitude
estimator AUP achieves an improvement of around 0.2 MOS
in PESQ and 20 % in STOI over the Wiener filter at −5 dB
SNR. Using the complex estimator CUP increases the gain over
the phase-blind approaches further, to 0.4 MOS in PESQ and
more than 35 % in STOI. These remarkable improvements again
stress the relevance of utilizing phase information for speech
enhancement. Based on informal listening, the benefit of the
phase-aware estimators lies in an increased noise reduction,
especially in non-stationary noises, while the speech component
is preserved.

As the amplitudes of AUP and CUP are virtually the same
for κ = 100, according to Fig. 3, the performance gain between
the two is only due to the modification of the spectral phase.
Interestingly, the phase of CUP is not only more accurate than
that of AUP and the phase-blind approaches, but even more
accurate than that of CDP (16), which uses the initial phase
estimate for signal reconstruction. Using the very reliable phase
estimate of CUP in the overlap-add synthesis stage leads to
a constructive superposition of the speech and a destructive
superposition of the residual noise of adjacent signal segments.
The complex estimator CUP thus achieves the largest noise
reduction. However, for very reliable initial phases, i.e., κ =
100, using the modified phase in time-frequency regions where
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Fig. 5. NR, SSNR, PSNR, as well as PESQ improvements and STOI improvements relative to the noisy input signal, averaged over four noise types (pink,
modulated pink, factory, babble). We set μ = β = 0.5. From left to right, the quality of the initial phase estimate φS increases, i.e., its concentration around the
true clean speech phase increases from κ = 0.1 to κ = 2 and κ = 100.

the noise is dominant but not sufficiently suppressed can lead
to artifacts in the enhanced signal. For more realistic situations
with lower κ, this is however less problematic, since the phase
of CUP is closer to the noisy phase. The phase-aware amplitude
estimators AUP and ADP always use the noisy phase for signal
synthesis and effectively avoid any phase-artifacts.

In practice, both the initial phase ˜φS and its certainty κ need
to be estimated in order to compute CUP and AUP. If κ is
overestimated, the estimators rely too much on the initial phase,
which may result in signal degradations as observed for ADP
(12) and CDP (16) on the left of Fig. 5. Underestimating κ on the
other hand diminishes the performance of CUP and AUP that

could be achieved with the available initial phase, eventually
reducing to that of the respective phase-blind estimator.

The general trends observed in Fig. 5 are representative for
each of the four evaluated noise types. The benefit of the phase-
aware estimators, however, is the largest for non-stationary
noises, especially in terms of PESQ, where the additional phase
information allows for a better suppression of noise outliers,
like babble bursts, as discussed in Section V-B.

We performed an analysis of variance (ANOVA) in conjunc-
tion with a post hoc Tukey’s range test to analyze the results
for statistical significant differences between the different al-
gorithms at the p < 0.05 level. For κ = 2 and κ = 100, the
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improvements for the best performing phase-aware algorithm
over all phase-blind approaches in PESQ are statistically signif-
icant for all SNRs and noise types. The same holds for the STOI
improvements at −5 dB and 0 dB input SNR.

B. Blind Estimation of ˜φS

In this section, we consider the more practical case that the
initial phase is estimated from the noisy microphone signal.

Specifically, the initial phase ˜φS is obtained using [14], which
is based on a harmonic signal model for the clean speech. In [14],
phase estimation along time, along frequency, and a combination
of both has been proposed. For the application at hand, it showed
that the estimation along frequency yields the most promising
results. The fundamental frequency, which is needed to compute
˜φS , is estimated with the noise-robust fundamental frequency
estimator PEFAC [32] on the noisy observation. The simple
harmonic model of [14] fits well for voiced sounds, where it
may yield reliable initial phase estimates. However, it is less
suited for other sounds like fricatives or even speech absence.
We hence set the certainty κ used to compute CUP and AUP in
each time-frequency point (k, �) according to [18]

κ(k, �) =

{

4PV (�), for kfs/N < 4 kHz

2PV (�), for kfs/N ≥ 4 kHz,
(23)

with the probability that the signal segment � contains voiced
speech PV (�), which is also estimated with PEFAC. The higher
the probability that the underlying speech sound is voiced, the
more we trust our initial phase estimate and increase κ. Further-
more, it is commonly assumed that the harmonic model – and
thus also the phase estimates obtained with it – is less accurate
for high frequencies than for low frequencies, partly due to fun-
damental frequency estimation errors that may accumulate over
frequency. To take this into account, we reduce κ above 4 kHz in
(23). The values 2 and 4 in (23) have been proposed in [18] and
where chosen via informal listening such that a good subjective
quality is achieved for CUP. To allow for a fair comparison, we
employ the two phase-aware estimators ADP (12) and CDP (16)
that neglect the uncertainty in the initial phase estimate only in
signal segments that contain voiced speech sounds, which are
detected using [32]. In the remaining segments, we use the
respective phase-blind counterpart MOSIE (13) or BECOCO
(21).

The results for the blind setup are presented in Fig. 6. On the
left, only voiced speech is evaluated, for which the employed
estimator of the initial phase [14] has originally been designed
for, while on the right the complete signals are taken into ac-
count. As the phase-blind estimators (Wiener, Mosie (13), and
BECOCO (21)) are independent of the initial phase estimate,
the results are the same as in the oracle experiment in Fig. 5. The
complex phase-aware estimator CUP is again more aggressive
than the phase-aware amplitude estimator AUP in terms of NR
and SSNR. The phase estimate of CUP further achieves a much
higher PSNR than the complex phase-aware estimator CDP (16)
that assumes κ → ∞, but it is still lower than for the noisy phase
used by the Wiener filter, MOSIE (13), BECOCO (21), ADP

Fig. 6. NR, SSNR, PSNR, as well as ΔPESQ and ΔSTOI, averaged over
four noise types (pink, modulated pink, factory, babble). On the left, only
voiced speech has been evaluated, for which the employed estimator of the
initial phase [14] has originally been designed for. On the right, the complete

signals have been evaluated. Again we set μ = β = 0.5. The initial phase ˜φS

is blindly estimated on the noisy observation and the concentration parameter
κ is obtained via (23).

(12), and AUP (10). Nevertheless, phase modifications in low
SNRs, which are hardly reflected in PSNR, still lead to some
additional noise reduction after overlap-add. The complex esti-
mator CUP consistently yields the highest PESQ scores, with an
improvement of more than 0.1 MOS in PESQ over the Wiener
filter for all SNRs in voiced speech. When evaluated over the
complete signals, the gain reduces to some degree, especially
towards higher input SNRs. In this setup, the amplitude esti-
mator AUP yields only little improvements in PESQ over the
phase-blind approaches.
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On the bottom left of Fig. 6, for voiced speech STOI pre-
dicts an intelligibility improvement for all four phase-aware
estimators over the conventional phase blind approaches at low
SNRs. When evaluating the complete signals (bottom right),
however, only the phase-aware amplitude estimators AUP and
ADP also improve STOI at negative SNRs, where speech in-
telligibility improvement is most relevant. A reason for this
is that at very low SNRs the accuracy of the blindly esti-
mated initial phase and also of the voicing probability PV (�)
decreases, corrupting the estimation of ˜φS and κ via (23).
For instance, strong interfering speakers in babble noise can
cause an overestimation of the voicing probability and thus
also of κ (23) during unvoiced speech or speech absence.
The drop in predicted intelligibility in negative SNRs for the
complex estimators suggests that modifying the spectral phase
of the enhanced signal is more sensitive to such erroneous
phase information than phase-aware amplitude enhancement
alone.

To investigate the statistical significance of these results, we
use the same method as for the oracle experiments in the previ-
ous section. We found that the improvements in PESQ for CUP
over the phase-blind approaches are statistically significant for
SNRs lower or equal to 10 dB for voiced speech and for SNRs
lower or equal to 5 dB for the complete signals, except for babble
noise at −5 dB. The STOI improvements at −5 dB and 0 dB of
the best performing phase-aware algorithm over all phase-blind
estimators are also significant, except for babble noise at −5 dB
for the complete signals.

Comparing the outcome of the blind experiments to the re-
sults of the oracle experiments in Fig. 5, we can state that the
complex phase-aware enhancement of CUP has a better perfor-
mance than AUP in the oracle case, but at the same time it is
also less robust to errors in practical scenarios. The performance
gap between the oracle experiments and the blind experiments
further highlights the relevance of an accurate estimation of the
initial phase and its uncertainty. Considering the renewed inter-
est in the role of the spectral phase and the recent advances in
phase estimation, e.g., [15], [20], [21], [33], [34], we believe that
significant improvements in the estimation of the clean speech
phase can be expected in the near future. AUP and CUP could
both utilize such more accurate prior information, allowing for
further improvements over the traditional speech enhancement
approaches.

VII. CONCLUSIONS

In this paper, we presented two novel clean speech estima-
tors that complete the existing set of phase-aware estimators: a
novel amplitude estimator given uncertain prior phase informa-
tion as well as a closed-form solution for complex coefficients
when the prior phase information is completely uncertain or not
available. We put the new estimators into the context of existing
estimators and analyze the advantages and disadvantages, in-
cluding their sensitivity to errors in the prior phase information,
providing new insights into the matter of phase-aware speech
enhancement.
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