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An Analysis of Adaptive Recursive Smoothing
with Applications to Noise PSD Estimation
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Abstract—First-order recursive smoothing filters using a fixed
smoothing constant are in general unbiased estimators of the mean
of a random process. Due to their efficiency in terms of mem-
ory consumption and computational complexity, they are of high
practical relevance and are also often used to track the first-order
moment of nonstationary random processes. However, in single-
channel speech-enhancement applications, e.g., for the estimation
of the noise power spectral density, an adaptively changing smooth-
ing factor is often employed. Here, the adaptivity is used to avoid
speech leakage by raising the smoothing factor when speech is
likely to be present. In this paper, we investigate the properties of
adaptive first-order recursive smoothing factors applied to noise
power spectral density estimators. We show that in contrast to a
smoothing with fixed smoothing factors, adaptive smoothing is in
general biased. We propose different methods to quantify and to
compensate for the bias. We demonstrate that the proposed correc-
tion methods reduce the estimation error and increases the percep-
tual evaluation of speech quality scores in a speech enhancement
framework.

Index Terms—Adaptive estimation, error correction, IIR filters,
smoothing methods, speech enhancement.

I. INTRODUCTION

S PEECH enhancement algorithms are often used in com-
munication devices, such as mobile telephones and hearing

aids, to reduce the detrimental effects of noise on the perceived
speech quality and speech intelligibility. In this paper, we con-
sider the case that only a single microphone is available to
capture the signal. For this scenario, a common practice is to
suppress specific frequency bands when they are dominated by
the background noise, e.g., by using the Wiener filter. In gen-
eral, the attenuation of the frequency bands is determined by the
background noise power spectral density (PSD) and the speech
PSD. Several algorithms have been proposed to estimate these
PSDs from a noisy mixture, e.g., [1]–[4], [5, Section 14] and
[6]. The PSDs can be interpreted as the mean of the speech
and the noise periodograms, respectively. Because of the low
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Fig. 1. Block diagram of a first-order recursive filter structure.

computational complexity and the low memory demand, first-
order recursive smoothing is a commonly applied technique to
estimate these means. This first-order recursive smoothing is
equivalent to a moving average where an exponentially decay-
ing smoothing window is employed. Here, a stronger weight is
put on the more recent samples allowing these filters to track
changes of the mean value over time.

In [7], it has been shown that the noise PSD estimators pre-
sented in [5, Section 14.1.3] and [6] are implicitly or explicitly
based on a first-order recursive structure as shown in Fig. 1.
However, in many applications, such as [5], [6], an adaptive
smoothing factor α(x�, x�−1) is employed as

x� = [1− α(x�, x�−1)]x� + α(x�, x�−1)x�−1 , (1)

where α(x�, x�−1) is a function of both x� and x�−1 . The quan-
tity x� is the observation of the random process describing
the periodogram of the input signal at time � while x� de-
notes the estimated mean, i.e., the estimated noise PSD. Sim-
ilar to nonadaptive first-order smoothing, the smoothing fac-
tor 0 ≤ α(x�, x�−1) ≤ 1 controls the tracking speed and the
variance of the estimate. The noise PSD estimators in [5,
Section 14.1.3] and [6] employ adaptive smoothing factors
to avoid speech leakage. The algorithm described in [5, Sec-
tion 14.1.3] switches between two fixed smoothing constants
where a larger one is used if the energy of the noisy periodogram
is higher than the background noise PSD, i.e., for large a pos-
teriori signal-to-noise-ratios (SNRs). In [6], the value of the
adaptive smoothing factor is implicitly adapted using the speech
presence probability (SPP) and also grows with an increasing
a posteriori SNR. In contrast to the noise PSD estimator in [5,
Section 14.1.3], this results in a soft transition.

A disadvantage of the application of adaptive smoothing is
that the estimate of the mean is in general biased as we have
previously shown in [7]. In this paper at hand, we analyze this
bias and derive an algorithm to compensate for it. The proposed
algorithm adds only a low amount of computational complexity
to the existing noise PSD estimators as only a computation of
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a term similar to the Wiener filter and a multiplication with the
result is required. We extend the work in [7] and give further
insights on the behavior of adaptive smoothing functions. In
contrast to [7], we explicitly consider the case of speech pres-
ence for the correction which allows to prevent overestimations
in high SNR regions. Further, we present a novel method based
on the transition density f(x� |x�−1) between two successive
smoothed filter outputs which allows to determine the bias
evoked by adaptive smoothing with a higher precision com-
pared to the method used in [7]. Experiments are conducted on
real world signals showing that the reduction of the bias leads
to a reduced log-error distortion [8] and increases the qual-
ity in terms of perceptual evaluation of speech quality (PESQ)
scores [9]. Additional experiments are conducted where the in-
fluence of signal correlations on the bias is explicitly considered.
Throughout the evaluation, we use the noise PSD estimators [5],
[6] as examples taken from single-channel noise PSD estima-
tion. In [10], a different way of correcting the bias has been
proposed which is not considered here.

This paper is organized as follows: first, we introduce basic
properties of adaptive smoothing in Section II. These are used
to derive a fixed correction factor to compensate for the bias
caused by adaptive smoothing. In Section III and Section IV
two different methods are proposed to estimate the fixed cor-
rection factor. After that, we apply the bias compensation meth-
ods to speech enhancement frameworks. For this, we describe
the signal model and explain the relationship between compo-
nents of the model and the quantities of adaptive smoothing in
Section V. In the same section, we also introduce the noise PSD
estimators given in [5, Section 14.1.3] and [6] in the context
of adaptive smoothing. For the application of noise PSD es-
timation, we extend the correction method to account for the
additional energy of the speech signal in Section VI. The eval-
uation of the proposed methods follows in Section VII while
Section VIII concludes this paper.

II. BASIC PROPERTIES AND BIAS COMPENSATION

In this section, we present basic properties of adaptive first-
order recursive smoothing: first, adaptive smoothing as defined
in (1) does not alter the properties of the input signal x� in terms
of stationarity and ergodicity. Second, the adaptive smoothing
functions are scale-invariant if α(x�, x�−1) depends only on the
ratio x�/x�−1 . Scale-invariance describes the property that if the
input x� is scaled by a factor r > 0, the resulting output x� is
scaled by the same factor r. These two properties allow the bias
to be simply compensated by a multiplicative factor.

A. Stationarity and Ergodicity

The propositions 6.6 and 6.31 in [11] state that a process
defined by

y� = φ(x�, x�−1 , . . . ) (2)

is stationary and ergodic, if the process given by x�, x�−1 , . . .
is stationary and ergodic. Here, φ(·) is a function of the current
and the past elements of the random process, e.g., the adap-
tive first-order smoothing as in (1). The propositions, however,

implicitly assume that the output process y� exists meaning that
the process y� does not diverge. As the adaptive smoothing fac-
tors α(x�, x�−1) are limited to values between zero and one, the
filter function in (1) is stable in the sense that a bounded input
results in a bounded output. Thus, considering a finite stationary
and ergodic input x� , it follows that also the filter output x� is
ergodic and stationary.

B. Scale-Invariance

The process of adaptive recursive smoothing (1) is scale-
invariant if the adaptive smoothing function depends only on
the ratio x�/x�−1 . In particular, if the input x� is scaled by
a factor r, the output x� is scaled by the same factor r. This
property is of particular relevance for the noise PSD estimators
considered in Section V as their respective adaptive smoothing
function depends only on the ratio x�/x�−1 .

The statement can be proven using the method of induction.
For linear first-order recursive smoothing filters, it is often as-
sumed that the system is initially at rest, i.e., x� = 0 for � < 0.
As all of the considered adaptive smoothing functions depend on
the ratio x�/x�−1 , this assumption is not applicable because of
the division by zero. Thus, we assume that the first filter output
x0 is equal to the first filter input x0 . From the assumption that
x0 = x0 it follows that a scaling of x� by r leads to rx0 = rx0 .
Hence, it can be shown for the following samples of (1) that[

1− α

(
rx�

rx�−1

)]
rx� + α

(
rx�

rx�−1

)
rx�−1 (3)

= r

([
1− α

(
x�

x�−1

)]
x� + α

(
x�

x�−1

)
x�−1

)
(4)

= rx�. (5)

This shows that the adaptive smoothing procedure is scale-
invariant if the smoothing function depends only on the ratio
x�/x�−1 .

C. Bias Compensation

In this part, we describe how the bias caused by adaptive
smoothing can be compensated. For the derivation, we assume
that the filter input x� can be described by a stationary and
ergodic random process. Note that the presence of a speech
signal in a speech enhancement context will explicitly be taken
into account in Section VI. With the stationarity, the ergodicity,
and the scale invariance described in the Sections II-A and II-B,
the bias can be corrected by multiplying the filter output x� by
a fixed correction factor c as

x̌� = cx�. (6)

Here, x̌� denotes the corrected filter output. For obtaining an
unbiased estimate E{x̌�} = E{x�}, the factor has to be set to

c = E{x�}/E{x�}, (7)

where E{·} denotes the statistical expectation operator. As this
factor does not depend on the scaling of x� or x� , it is sufficient
to determine this quantity for a given mean of the input signal,
e.g., E{x�} = 1. With the assumption of stationarity, the fixed
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factor c does also not depend on time. Consequently, c can
be determined before any processing takes place. The factor c
can be considered the bias between filter input and output after
convergence. Despite the assumption of stationarity, we show
that the bias reflected by c is also applicable to nonstationary
signals in the evaluation, i.e., Section VII. Methods that can be
employed to determine the fixed correction factor c are presented
in Section III and Section IV.

III. ITERATIVE BIAS COMPENSATION

In this section, we revise the method for determining the
fixed correction factor c that we proposed in [7]. If the adaptive
smoothing function depends only on the unsmoothed input x�

but not on the smoothed output x�−1 , the bias caused by adap-
tive smoothing can be determined by analytically deriving the
expected value of x� . Based on the solution obtained for the an-
alytically solvable case, an iterative method has been presented
in [7] that can be used to approximately determine the bias
for the more complicated case where the adaptive smoothing
function also depends on the estimated mean x�−1 . The method
estimates the fixed correction factor c quite accurately as shown
in our evaluations.

First, we consider adaptive smoothing factors α(x�, x�−1)
that are independent of the previous filter output x�−1 . With this
assumption, (1) simplifies to

x� = [1− α(x�)] x� + α(x�)x�−1 . (8)

For the derivations, we assume that all x� are identically dis-
tributed and uncorrelated. Further, using the stationarity prop-
erty described in Section II-A, we can assume that a stationary
input x� results in a stationary output x� . From this, it fol-
lows that E{xn} = E{xm} where n �= m are two different
time instances. With the first assumption, the expected value
E{x�x�−1} can be written as E{x�}E{x�−1}. Consequently,
applying E{·} to (8) and rearranging the terms, results in [7]

E{x�} =
E{x�} − E{x�α(x�)}

1− E{α(x�)} . (9)

The obtained expression depends only on the adaptive function
α(x�) and the probability density function (PDF) of x� .

In the remainder, we consider the case where α(x�, x�−1) de-
pends also on the recursively estimated mean x�−1 . This case
is more challenging because the quantity x�−1 influences the
behavior of the adaptive smoothing factor which, in turn, influ-
ences the estimation of x� . This type of adaptation is, however,
the most relevant for noise PSD estimators, e.g., for the ap-
proaches [5], [6] considered in Section V.

Deriving E{x�} while taking into account the dependence
on x�−1 is difficult because x�−1 appears in a generally non-
linear function α(x�, x�−1) and is a random variable itself as it
emerges from the combination of all past x� . Consequently, x�−1
is also correlated with the previous estimates x�−2 , x�−3 , · · · .
Hence, the problem was simplified in [7] by replacing x�−1 in
the adaptive function by a fixed value ρ. With that, the bias can

Algorithm 1: Iterative estimation of the fixed correction
factor c for adaptive functions depending on x�−1 proposed
in Section III. Here, we refer to the solutions for the specific
noise PSD estimators [5], [6] where appropriate.

1: i← 0, ρ0 ← 1, μ← 1.
2: while convergence criterion for ρi is not met do
3: Obtain ρi+1 using (10). The solutions for the

adaptive functions in [5], [6] are given in (31) and
(32) of Appendix A if x� is exponentially distributed.

4: i← i + 1
5: end while
6: Compute compensation factor: c = μ/ρi .

be determined iteratively based on the result given in (9) as

ρi =
E{x�} − E{x�α(x�, ρi−1)}

1− E{α(x�, ρi−1)} . (10)

Here, ρi is the estimate of E{x�} obtained for the ith iteration
step whereas the initial condition is denoted by ρ0 . This ap-
proach is motivated by the recursive update of x� in (1), which
is performed sample by sample. In each step of (10), however,
all samples over an infinite time period are considered. To deter-
mine the final estimate of E{x�}, the iteration is continued until
it converges. With the converged ρi , the estimated correction
factor can be determined as c = E{x�}/ρi . For the adaptive
smoothing factors used in [5], [6], we will show that the pa-
rameter ρ0 does not influence the convergence of the iterative
approach. This procedure is summarized in Algorithm 1.

IV. ESTIMATING THE BIAS USING TRANSITION DENSITIES

In this section, we propose a novel method for determining
the fixed correction factor c. For this, we use the transition
density f(x� |x�−1) which can be considered a description that
explains how the smoothing factor α(x�, x�−1) influences the
filter output x� and vice versa.

If the input samples x� are assumed to be independent and
identically distributed, i.e., stationary and ergodic, the random
process of the filter output can be described by the transition den-
sity f(x� |x�−1). The conditional density f(x� |x�−1) is a func-
tion that depends on the smoothing function α(x�, x�−1) and
the distribution of the input variable x� as we will show later in
this section. It can be considered the link that describes how the
previous filter output x�−1 affects the behavior of the smoothing
function, α(x�, x�−1), and vice versa. In other words, the in-
teraction between x�−1 and α(x�, x�−1) is included in the PDF
f(x� |x�−1). We use this conditional PDF to optimize the param-
eters θ of a known model PDF f̃(x� |θ) such that it matches the
PDF of the filter output samples, i.e., f(x�), as close as possible.
To determine the parameters θ, we exploit the stationarity from
which it follows that f(x�) = f(x�−1) = · · · . According to
that, there is a PDF such that marginalizing f(x� |x�−1)f(x�−1)
over x�−1 results in the same PDF for x�−1 as for x� , i.e.,
f(x�−1) = f(x�). Therefore, we propose to optimize the pa-
rameters θ of a model PDF f̃(x� |θ) such that the PDF g̃(x� |θ)
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obtained by the marginalization

g̃(x� |θ) =
∫ ∞

−∞
f(x� |x�−1)f̃(x�−1 |θ)dx�−1 (11)

resembles the originally used model f̃(x� |θ) as closely as pos-
sible. The similarity between g̃(x� |θ) and f̃(x� |θ) is quantified
by the Bhattacharyya distance [12]

B
(
f̃ , g̃

)
= − ln

[
γ

(
f̃ , g̃

)]
. (12)

Here, γ(·) is the Bhattacharyya coefficient which is given by

γ
(
f̃ , g̃

)
=

∫ ∞

−∞

√
f̃(x|θ)g̃(x|θ)dx (13)

for continuous PDFs [13]. The Bhattacharyya coefficient takes
values between zero and one where a result of one means that
both PDFs are identical. Consequently, the optimal parame-
ters θ̂ are defined as those that minimize the Bhattacharyya
distance as

θ̂ = arg min
θ

B
(
f̃ , g̃

)
. (14)

As the analytic solution for the integrals in (11) and (13) are un-
known, we solve these expressions using numerical integration
methods. This also motivates the usage of the Bhattacharyya dis-
tance which is numerically easier to handle than other distance
measures, e.g., the Kullback-Leibler divergence [14]. After the
optimization, the optimal parameters θ̂ are used to determine
the expected value E{x�}. For this, we assume that m(θ) is a
function that returns the mean of the model distribution f̃(x� |θ)
for the parameters θ. With that, the fixed correction factor is de-
termined as c = E{x�}/m(θ̂). This procedure can be described
as self-similarity maximization with respect to the transition
density f(x� |x�−1).

The transition density function f(x� |x�−1) can be derived
given a model for the PDF of the input f(x�) and (1). As
x�−1 is the given variable in the conditional PDF, x�−1 can be
thought of as a fixed quantity and (1) can be treated as a func-
tion x� = h(x�) of the random variable x� . Then, for a piece-
wise monotonic function h(·), the conditional density function
f(x� |x�−1) can be determined using a change of variables as
described in [16, Chapter 5]. The solution is given by

f(x� |x�−1) =
M∑

m=1

fx�
(h−1

m (x�))
|h′(h−1

m (x�))| (15)

where h−1
m (·) denotes the inverse of the mth monotonic segment

of the function h(·) while M denotes the number of monotonic
segments of the considered function. Furthermore, h′(·) is the
first derivative of the function h(·). In contrast to the iterative
method in Section III, the conditional PDF f(x� |x�−1) is easily
derived for any PDF of the input signal x� as it is only required
to exchange fx�

(·) in (15). The whole process of determining
the correction factor c is summarized in Algorithm 2.

Algorithm 2: Estimation of the fixed correction factor c by
maximizing the self-similarity with respect to the transition
density f(x� |x�−1) as proposed in Section IV. Here, we
refer to the solutions of the specific noise PSD estimators
[5], [6] where appropriate.

1: Choose a PDF f(x�) that describes the filter input, e.g.,
(17).

2: Determine f(x� |x�−1) using (15).
For the adaptive functions in [5], [6], the analytical
solutions for h−1(·) and h′(·) are given in Appendix B.

3: Select a model PDF f̃(x� |θ), e.g, (26).
4: Minimize (14) to obtain θ̂, e.g., using [15].
5: Compute the correction factor: c = E{x�}/m(θ̂).

V. NOISE PSD ESTIMATORS IN THE CONTEXT OF

ADAPTIVE SMOOTHING

In this section, we consider the noise PSD estimators [5], [6]
in the context of adaptive smoothing. For this, we introduce the
employed signal model in a speech enhancement context and
illustrate the relationship between the model components and
the quantities of adaptive smoothing in (1). After that, a brief
overview over the considered noise PSD estimators is given.

A. Signal Model

The considered smoothing functions are employed in noise
PSD estimators that operate in the short-time Fourier transform
(STFT) domain. For determining the STFT, the time-discrete
input signal is split into overlapping frames and each frame is
transformed using the discrete Fourier transform after applying
a spectral analysis window. A common window function is, for
example, the square-root Hann window. Further, we assume
that in the STFT domain the noisy observation is given by a
linear superposition of a speech signal and a noise signal

X[k, �] = S[k, �] + D[k, �]. (16)

The spectrum of the noisy input signal at frame � is denoted
by X[k, �] while S[k, �] and D[k, �] represent the speech
and noise spectral coefficients, respectively. Additionally, the
frequency index is given by k. For better readability, we omit
the frequency index k if the dependence on this quantity is
not required. We follow the common assumption that the
periodogram of the noisy input |X[�]|2 follows an exponential
distribution which is given by

f(|X[�]|2) =

{
(1/μ) exp

(−|X[�]|2/μ
)
, if |X[�]|2 ≥ 0,

0, otherwise,
(17)

where μ = E{|X[�]|2}. This model strictly holds if the speech
coefficients S[�] and the noise coefficients D[�] follow circular
complex Gaussian distributions. Here, the variance of the
speech coefficients S[�] and the noise coefficients D[�] is
denoted by σ2

s [�] and σ2
d [�], respectively. The considered noise

PSD estimators [5], [6] are based on an adaptive recursive
smoothing of the noisy periodogram such that the input to
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Fig. 2. Adaptive smoothing functions αThr(x� , x�−1 ), [5, Section 14.1.3]
and αSPP(x� , x�−1 ), [6] as functions of the a posteriori SNR x�/x�−1 =
|X [�]|2 /σ̂2

d [� − 1].

the recursive smoother x� in Fig. 1 is given by |X[�]|2 while
the output x� resembles an estimate of the noise PSD σ̂2

d [�].

B. Two Different Smoothing Factors Based on Thresholding

In [5, Section 14.1.3], a simple approach for estimating the
background noise PSD from a noisy periodogram has been pro-
posed. Based on a threshold value, one out of two fixed smooth-
ing constants is selected. A larger smoothing constant is used
if the input periodogram is larger than the noise PSD which
has been estimated for the previous frame. For the other case, a
smaller smoothing constant is used. In other words, the tracking
speed is reduced if the a posteriori SNR |X[�]|2/σ̂2

d [�− 1] is
larger than one. The goal is to reduce the speech leakage if the
speech signal is likely to be present. The adaptive smoothing
function is given by

αThr(x�, x�−1) =

{
α↑, if x�/x�−1 > 1
α↓, otherwise.

(18)

Both, α↑ and α↓ are fixed smoothing constants chosen between
zero and one where α↑ is chosen larger than α↓.

Under the assumption that x� is exponentially distributed,
the analytic solution to (10) is given in Appendix A. For the
self-similarity optimization described in Section IV, analytic
solutions to the inverse function h−1(·) and the derivative h′(·)
are given in Appendix B. A sketch of αThr(x�, x�−1) is given
in Fig. 2 for the parameter values α↑ = 0.9995 and α↓ = 0.9
proposed in [5].

C. Speech Presence Probability Based Noise PSD Estimation

The noise PSD estimator described in [6] employs an estimate
of the SPP to avoid speech leakage. Even though the noise PSD
estimator has not been explicitly derived as an adaptive smooth-
ing factor, we show here that the algorithm can be rewritten as
such a function. We distinguish between the speech presence
hypothesis H1 , i.e., X[�] = S[�] + D[�] and the speech absence
hypothesis H0 , i.e., X[�] = D[�]. With Bayes’ theorem and us-
ing the assumption that the complex Fourier coefficients follow
a circular complex Gaussian distribution, the SPP can be derived

as (e.g. [6])

P (H1 |X[�]) =
(

1 + (1 + ξ) exp
(
− |X[�]|2

σ̂2
d [�− 1]

ξ

1 + ξ

))−1

.

(19)
This result is obtained under the assumption that the prior prob-
abilities P (H1) and P (H0) are the same. Here, ξ is the SNR
expected for time-frequency points where speech is present.
In [6], it is regarded as a fixed constant and is not adaptively
changed over time. As proposed in [17], the value is optimized
such that the Bayesian risk, i.e., the misclassification between
speech absence and presence, is minimized. The SPP is used to
estimate the noise periodogram as

|D̂[�]|2 = {1− P (H1 |X[�])}|X[�]|2 + P (H1 |X[�])σ̂2
d [�].

(20)
The background noise PSD is estimated by smoothing the noise
periodogram over time using a first-order recursive filter as

σ̂2
d [�] = (1− β)|D̂[�]|2 + βσ̂2

d [�− 1]. (21)

Here, 0 ≤ β ≤ 1 denotes a fixed smoothing constant. The
noise PSD is tracked over time by repeating the computations
in (19), (20), and (21) for each frame.

By combining (19), (20) and (21), the SPP based noise PSD
estimator can be described as an adaptive smoothing function
as

αSPP(x�, x�−1) = β +
1− β

1 + (1 + ξ)e−x� ξ/ [x�−1 (1+ξ)] . (22)

The behavior of the adaptive smoothing function is similar to
the one proposed by [5, Section 14.1.3] in that the function
approaches one for large a posteriori SNRs and is close to the
fixed smoothing constant β if the a posteriori SNR is close to
zero.

Also here, analytic solutions are given in Appendix A
and Appendix B for the iterative estimation method and
the self-similarity optimization, respectively. The func-
tion αSPP(x�, x�−1) is sketched in Fig. 2 where the parame-
ter values β = 0.8 and ξ = 15 dB proposed in [6] have been
employed.

VI. BIAS COMPENSATION FOR NOISE PSD ESTIMATION

In Section II-C, a bias compensation method has been pre-
sented that can be employed to compensate for the bias caused
by adaptive smoothing. However, the composition of the input
signal x� , i.e., whether it contains speech, noise or both, is not
taken into consideration. Hence, regarding the application of
noise PSD estimation, this correction may overcompensate for
the bias in speech presence. To prevent such overcompensations,
a time-varying correction factor is derived in this section.

For noise PSD estimation, the input signal comprises two
components, namely speech and noise. If speech is present and
assumed to be uncorrelated to the noise component, the expected
value E{x�} is equal to the sum of the speech PSD σ2

s [�] and
the noise PSD σ2

d [�]. If adaptive smoothing is employed on such
a noisy signal, with (7) the mean of the filter output converges
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towards

E{x�} =
E{x�}

c
=

σ2
s [�] + σ2

d [�]
c

. (23)

Applying the fixed factor c removes the bias of the filter output

Algorithm 3: Proposed algorithm for bias compensation.
1: c is obtained using Algorithm 1 or Algorithm 2.
2: Initialize algorithm: x0 ← x0 .
3: Compensate bias: x̌0 ← G[�]x0 .
4: for all remaining observations x� do
5: Perform smoothing:

x� = [1− α(x�, x�−1)]x� + α(x�, x�−1)x�−1 .
6: Compensate bias: x̌� = G[�]x� .
7: end for

mean E{x�} from the input mean E{x�}. As a consequence, the
output converges towards the noisy PSD, i.e., σ2

s [�] + σ2
d [�], but

not towards the noise PSD. The rate of convergence depends
on the additional inertia imposed by the adaptive smoothing
factor α(x�, x�−1) which is increased in speech presence by
the considered noise PSD estimators [5], [6]. Still, applying
c directly may potentially overestimate the noise PSD σ̂2

d [�]
which, as a consequence, may result in speech distortions in
the speech enhancement context. To take the speech energy into
account, we propose to modify the correction such that the filter
output is corrected towards the noise PSD σ2

d [�]. For this, a time-
varying correction term G[�] is introduced which is set such that
G[�]E{x�} = σ2

d [�] holds. With (23), G[�] can be derived as
follows:

G[�]E{x�} = G[�]
σ2

s [�] + σ2
d [�]

c

!= σ2
d [�] (24)

which can be rearranged to

G[�] = c
σ2

d [�]
σ2

s [�] + σ2
d [�]

. (25)

The time-varying term G[�] can be split into the fixed correction
factor c and a Wiener-like term σ2

d [�]/(σ2
s [�] + σ2

d [�]). Conse-
quently, the fixed correction factor c is reduced such that over-
estimations in speech presence are avoided. In Section VII, we
discuss how the speech and the noise PSD in (25) can be esti-
mated in practical applications.

The proposed bias correction is summarized in Algorithm 3
where x̌� denotes the corrected filter output. The additional
computational complexity of the proposed correction is given
by the computation of the complete correction term G[�] and
its application. As discussed in Section II-C, it is possible to
determine the factor c before the processing starts. Thus, the
additional computational cost for the bias correction can be
considered low.

VII. EVALUATION

In the first part of this section, we verify that the fixed correc-
tion factor c estimated with the methods described in Section III
and Section IV matches the true underlying bias. For this, we
use Monte-Carlo simulations where the input signal consists of

Fig. 3. Bias correction factor ci = E{x�}/ρi computed for each iteration
step in Algorithm 1 given the adaptive functions used in [5], [6] and the
true bias correction term cMC obtained from Monte-Carlo simulations with
106 realizations.

artificially generated uncorrelated noise samples that follow an
exponential distribution. These experiments also give insights
into how large the bias in the considered noise PSD estimators is.
Further, we also include an analysis on how signal correlations
affect the bias.

In the second part of this section, the behavior of adaptive
smoothing is analyzed in a speech enhancement context using
real world signals. We show that correcting the bias leads to an
improved estimation of the noise PSD in terms of the log-error
distortion measure [8] and also in an improved or similar speech
quality as predicted by PESQ [9].

Within our evaluation, the noise PSD estimators given in (18)
and (22) are used. In the evaluation, we mainly focus on the
default parameters which were proposed in the literature [5],
[6]. In accordance with [5, Section 14.1.3], α↑ and α↓ are set to
0.9995 and 0.9, respectively in (18). In accordance with [6], for
the SPP based noise estimator, ξ is set to 15 dB while a value of
0.8 is used for the fixed smoothing constant β in (21).

A. Verification of the Estimation Methods

Here, we analyze how well the proposed methods proposed
in Section III and Section IV determine the bias. To obtain
the ground-truth, we use Monte-Carlo simulations. For this,
106 random numbers x� are generated that are independently
sampled and follow an exponential distribution (17) with fixed
parameter μ = E{x�}. The generated random numbers are em-
ployed as the input signal of the respective adaptive smoothing
filters. As the evaluated algorithms preserve the ergodicity and
stationarity of the filter input, the expected value E{x�} can be
estimated by computing the temporal average of the filter out-
put. With this, a Monte-Carlo estimate of the fixed correction
factor c = E{x�}/E{x�} is obtained.

First, the iterative procedure described in Section III is
covered. Fig. 3 shows the estimated fixed correction factor
ci = E{x�}/ρi , i.e., the outcome for each iteration step of
Algorithm 1. The initial ρ0 is set to three different values to
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TABLE I
CORRECTION FACTOR c = E{x�}/E{x�} FOR THE ADAPTIVE SMOOTHING

FUNCTIONS IN (18) AND (22) WITHOUT REPLACEMENT OF x�−1

Smoothing factor Monte-Carlo Section III/Algorithm 1 Section IV/Algorithm 2

αThr, (18), [5] 10.18 dB 10.14 dB 10.18 dB
αSPP, (22), [6] 1.17 dB 0.90 dB 1.10 dB

show that the iteration converges to the same value. Addition-
ally, the true correction factor obtained from Monte-Carlo simu-
lations is included. The results show that the iteration converges
for all considered smoothing functions after 10 to 15 steps and
that the value obtained after convergence is independent of the
initial condition ρ0 . For the parameters of the adaptive smooth-
ing functions given in [5], [6], the iteratively determined bias
corresponds well with the Monte-Carlo simulations. For the
smoothing αThr(x�, x�−1) proposed in [5, Section 14.1.3], the
iteratively determined fixed correction factor c is nearly identi-
cal to the ground truth obtained from Monte-Carlo simulations
while for the SPP based smoothing, i.e., αSPP(x�, x�−1), the bias
is underestimated by 0.27 dB (see Table I). This deviation from
the correct result is because x�−1 is replaced by a fixed constant
ρ, and is not considered as a random variable.

The second method proposed for estimating the bias is de-
scribed in Section IV. Here, a model PDF f̃(x� |θ) is required
for the optimization. It is known that after recursive smoothing,
an exponentially distributed random process approximately fol-
lows a χ2 distribution with an increased shape parameter [18],
[19]. The shape of the resulting PDF can also be approximated
by a generalized Gamma distribution or a log-normal distribu-
tion. In our experiments, we obtained the best results using the
log-normal distribution which is consequently employed in the
evaluations. The PDF is given by

f(x) =
1

x
√

2πσ2
log

exp

(
− (log(x)− μlog)2

2σ2
log

)
. (26)

It assumes that the PDF that results after taking the logarithm
of the random variable x is a normal distribution. Consequently,
μlog and σ2

log denote the mean and the variance of the normal
distribution in the logarithmic domain, respectively. The mean
of this distribution can be computed using its parameters as

m(μlog, σ
2
log) = exp

(
μlog +

σ2
log

2

)
. (27)

For the minimization of the cost function given in (14), we use
the downhill simplex method proposed by [15].

Fig. 4 shows the PDF of the model f̃(x� |θ̂) with optimized
parameters θ̂, which are determined using the method described
in Section IV, and the PDF g̃(x� |θ̂) which is the PDF that results
after computing (11) with the optimized parameters θ̂. Finally,
the plots also include an estimate of the true PDF of the filter
output that has been estimated from Monte-Carlo simulations.
Though slight deviations between the true PDF and the opti-
mized log-normal distribution can be observed, the optimized

Fig. 4. Shape of the fitted model distribution f̃ (x� |θ̂), the marginalized distri-
bution g̃(x� |θ̂) obtained by using the optimized model in (11), and the true PDF
of the filter output obtained from Monte-Carlo simulations with 106 samples
for the smoothing factors used in [5], [6].

model PDF f̃(x� |θ̂) approximates the distribution of the filter
output reasonably well. Furthermore, Fig. 4 shows that the op-
timized model distribution f̃(x� |θ̂) and the marginalized PDF
g̃(x� |θ̂) are nearly identical from which we follow that our ap-
proach to finding the bias in Section IV is reasonable.

In Table I, the Monte-Carlo ground-truth of the correction
factor c is given along with the estimates of the iterative method
of Section III and the self-similarity optimization of Section IV.
It can be seen that the self-similarity optimization of Section IV
outperforms the iterative method of Section III. Using the self-
similarity optimization, for the smoothing with αThr(x�, x�−1)
the ground-truth is matched, for the SPP-based smoothing the
difference to the ground-truth is only 0.07 dB.

Also note that the bias reported obtained for the SPP based
estimation method is only 1.17 dB and, thus, rather small. In
contrast, the method in [5, Section 14.1.3] yields a bias of
10.2 dB which is rather large. The reason for this appears
to be the choice of the parameter α↑. As it is very close to
one, the adaptive smoothing is forced to considerably smaller
values resulting in the observed bias. Further, this result only
covers the case where only noise is present. In the presence
of speech, the underestimation is less severe as shown in
Section VII-B.

From further experiments we conclude that our proposed
Algorithms 1 and 2 work also well for other choices of the
parameters α↑, α↓, β, and ξ. Considering αThr(x�, x�−1) and
both algorithms, the deviation of the estimated bias from the
true bias is smaller than 1 dB for a wide range of combina-
tions of α↑ and α↓. Determining the bias for αSPP(x�, x�−1) is,
however, more challenging. Still, a low deviation of 1 dB from
the true mean is obtained for the parameter ranges 0.4 ≤ β ≤
0.9 and 7.5 dB ≤ ξ ≤ 20 dB for Algorithm 1 and Algorithm 2.
In general, the estimation method proposed in Algorithm 2 has
the potential to estimate the bias with very high accuracy as no
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Fig. 5. Correction factor c determined using Monte-Carlo simulations on
white noise for different overlaps Ω in the STFT domain with respect to the
adaptive smoothing functions used in [5], [6]. Additionally shown: the correction
factors reported in Table I.

approximations were used in the derivations. For the practical
application, however, an appropriate model PDF f̃(x� |θ) has
to be employed and the numerical optimization may converge
to local optima leading to unsatisfactory results. In contrast to
that, the estimation method in Algorithm 1 is more robust but
results only in approximate estimates of the bias due to the used
approximations used in the derivation.

Finally, we analyze how the fixed correction factor c is in-
fluenced if the samples of the input signal x� are correlated
over time, e.g., due to the overlap in the STFT framework. For
this, Monte-Carlo simulations are employed again. Also here,
E{x�} can be estimated using temporal averaging, as no fur-
ther restrictions have to be imposed on the random process
except for ergodicity which is also fulfilled for correlated input
samples. Under the assumption that the sampling rate is 16 kHz,
we generate a white Gaussian noise signal with a length of 360 s
in the time-domain. After that, we transform the signal to the
STFT domain where a Hann-window is employed. The frame
and window lengths are set to 32 ms. These STFT parameters
are chosen because they allow the results to be easily related to
typical single-channel speech enhancement frameworks, e.g.,
[1], [3], [6]. For this experimental design, the results are also
valid if shorter or longer window lengths are used or a different
underlying sampling rate is assumed.

To obtain Fourier coefficients with different degrees of corre-
lation, we vary the overlap Ω of the STFT analysis frames, where
Ω = (frame length− frame shift)/frame length. The adaptive
smoothing functions are applied to the magnitude squared co-
efficients in each frequency band which can be assumed to
follow an exponential distribution (17). Finally, the mean over
all time-frequency points is computed, where the 0 Hz bin and
the Nyquist bin are omitted because the assumption that the co-
efficients follow an exponential distribution is not fulfilled here.
Additionally, we leave out the first 500 frames to account for
the adaptation of the adaptive smoothing filters. In Fig. 5, we
show the fixed correction factor c as a function of the overlap
Ω. In general, it is observed that the bias becomes smaller with

increasing overlap — and, thus, also with an increasing amount
of correlation. For αThr(x�, x�−1), the bias is reduced by 0.06 dB
in absolute value if the overlap is increased from 0% to 87.5%.
Correspondingly, the correlation has a negligible influence on
the absolute bias of 10.2 dB. For the SPP based smoothing
αSPP(x�, x�−1), the bias is reduced by 0.29 dB for the same
increase of correlation. As the absolute bias for αSPP(x�, x�−1)
is with 1.2 dB much smaller than the bias of αThr(x�, x�−1),
this difference indicates that the influence of the correlation is
much stronger here. Thus, the higher overlap leads to a notable
reduction of the absolute bias. However, for the typical choice
of 50% overlap, the bias hardly changes. As a consequence, the
proposed correction methods are directly applicable in practice.

B. Applications to Speech-Enhancement

In this section, we consider the practical implications of the
bias caused by adaptive smoothing for noise PSD estimation in a
speech enhancement framework. We show that the logarithmic
estimation error [8] between the true and the resulting noise PSD
is reduced if the bias is corrected. Additionally, we use PESQ
scores [9] to give an instrumental prediction of the change in
signal quality. Even though PESQ has been developed for the
evaluation of speech coding algorithms, it has been shown that
it also correlates with the quality of enhanced speech [20]. We
show that the log-error distortion and also PESQ scores can be
improved for the noise PSD estimators proposed in [5], [6]. For
the log-error distortion, we additionally consider a special case
where noise only signals are used as input.

For the evaluation, we employ a variety of synthetic and natu-
ral noise types. Among these noise types are a pink and a babble
noise taken from the Noisex-92 database [21]. Additionally, a
traffic noise is employed which comprises an acoustic scene
with passing cars. For the experiments that include speech, we
use 1120 sentences from the TIMIT corpus [22]. The sentences
are corrupted at SNRs ranging from −10 dB to 30 dB in 5 dB
steps. Each sentence is embedded in a different segment of the
respective background noise. All signals have a sampling rate
of 16 kHz.

The speech enhancement framework, in which the consid-
ered noise PSD estimators [5], [6] are embedded, operates in
the STFT domain. For this, a frame length of 32 ms with 50%
overlap is used. This parameter combination is often used for
speech enhancement, e.g., [1], [3], [6], as speech signals are as-
sumed to be stationary only for a short time period similar to the
chosen frame length [23, Section 5.10]. Further, a square-root
Hann window is employed for spectral analysis. For estimat-
ing the a priori SNR, the decision-directed approach with a
smoothing factor of 0.98 is used [1]. The clean speech signal is
estimated using the Wiener filter where a lower limit of−12 dB
is enforced. For resynthesizing the signal, again, a square-root
Hann window is employed.

The time-varying correction term G[�] has to be determined
at the beginning of a new frame �. At this point, there is no
updated estimate of the speech PSD σ̂2

s [�] and the noise PSD
σ̂2

d [�] available. Thus, to determine the time-varying correction
term G[�], we employ the estimated noise PSD from the previous
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frame σ̂2
d [�− 1] while the speech PSD is estimated using the

decision-directed approach [1]. Also for the decision-directed
approach, the estimated noise PSD of the current frame σ̂2

d [�]
is replaced by the estimate of the previous one σ̂2

d [�− 1]. We
consider only the correction parameters obtained by Algorithm 2
as both methods yield similar values for c such that for the
considered practical application very similar outcomes would
be obtained. We use the values for c obtained using Algorithm 2
as it performs slightly better than Algorithm 1. Finally, to avoid
stagnations of the noise PSD estimation which may be caused
by the time-varying correction factor G[�], we apply a lower
limit to G[�] which is set to −20 dB.

Similar to [6], we use a separated version of the log-error dis-
tortion which is computed for each speech signal. The measure
is split into an overestimation error and an underestimation error
such that the equation

LogErr = LogErr↑ + LogErr↓ (28)

is fulfilled. Here, LogErr↑ and LogErr↓ denote the contributions
of the overestimation and underestimation to the total log-error
distortion, respectively. These quantities are given by

LogErr↑ =
10
KL

L−1∑
�=0

K−1∑
k=0

max
(

0, log10
σ̂2

d [k, �]
σ2

d [k, �]

)
, (29)

LogErr↓ =
−10
KL

L−1∑
�=0

K−1∑
k=0

min
(

0, log10
σ̂2

d [k, �]
σ2

d [k, �]

)
. (30)

In this equation, K denotes the number of Fourier coefficients
which is equal to 512 in this evaluation due to the sampling fre-
quency of the signals and the chosen analysis window length.
Further, L is the number of frames. Only frames after a five
seconds initialization period, which only includes noise, are
considered in the evaluation. Thus, � = 0 can be considered the
first frame after the initialization phase and L the number of
remaining frames after the initialization. During this the ini-
tialization phase, the noise PSD estimators can adapt to the
background noise. The goal is to exclude initialization artifacts
from the evaluation which may result in an erroneous estimate
of the performance. Even though in real applications, such an
initialization period is not available, this poses only a minor
problem as the algorithms recover from an erroneous initializa-
tions after a short processing time, e.g., during speech pauses. As
the correction factors were determined based on the assumption
that the periodogram is exponentially distributed, we exclude
the coefficient at 0 Hz and the Nyquist frequency also here.
The measure is computed for each speech signal separately and
averaged over all speech signals afterwards. For the noise only
case, the log-error distortion is computed using a long excerpt
of about four minutes from the respective noise signal.

The reference noise PSD σ2
d [k, �] in the log-error distortion

is a statistical quantity whose value has to be obtained from the
noise signal. For the stationary pink noise, the reference noise
PSD is estimated by averaging the periodogram over all frames.
This procedure, however, leads to an unsatisfactory result for
the nonstationary noise signals as the temporal changes are
not captured. Here, a slightly smoothed version of the noise

Fig. 6. Log-error distortion of the adaptive smoothing function
αThr(x� , x�−1 ) described in (18), [5, Section 14.1.3] with and without the
proposed correction method for speech in noise at different SNRs. The lower
part (gray) of the bars represents the overestimation LogErr↑, whereas the upper
part (black / white) is the underestimation LogErr↓.

Fig. 7. Same as Fig. 6 for the adaptive smoothing function αSPP(x� , x�−1 )
described in (22), [6].

periodogram is used as reference noise PSD σ2
d [k, �]. On the

one hand, the smoothing is applied to reduce the variance in
comparison to the direct usage of the noise periodogram. On
the other hand, the amount of smoothing is kept at a low level
to track changes in the background noise. For this, we employ
first-order recursive smoothing with a fixed smoothing constant
α = 0.73. This choice corresponds to an equivalent moving
average smoothing with an rectangular window of 50 ms which
yielded a satisfying compromise.

The results for the two noise PSD estimators are shown
in Figs. 6 and 7, respectively. Here, an SNR of -Inf de-
notes the noise only case. For the adaptive smoothing func-
tion αThr(x�, x�−1) proposed in [5, Section 14.1.3], the results
in Fig. 6 show that the uncorrected version of the noise PSD
estimator tends to underestimate the background noise PSD in
low SNR regions while it overestimates the noise PSD for high
SNRs. The observed overestimation at high SNRs is caused by
the fact that this estimator always allows to track the input pe-
riodogram albeit slowly even if the a posteriori SNR is high.
Thus, the speech leakage, which is reflected in the overestima-
tion, increases with increasing SNR. The underestimation at low
SNRs is mainly caused by the adaptive smoothing. If the pro-
posed correction is applied, the noise PSD log-error distortion
can be considerably reduced for all considered SNRs and noise
types. As the fixed correction factor c required for this noise
PSD estimator is rather large, the total estimation error is often
dominated by the overestimation if the correction is applied.
The total log-error distortion, however, is in general smaller.



406 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 2, FEBRUARY 2017

Fig. 8. PESQ improvement scores for a simple speech enhancement
framework where the adaptive smoothing functions αThr(x� , x�−1 ) and
αSPP(x� , x�−1 ) are used as noise PSD estimators with and without the cor-
rection proposed in Algorithm 3. The fixed correction factor c was estimated
using Algorithm 2.

Especially, if either noise or speech is dominant, i.e., for low
SNRs and high SNRs, lower estimation errors are obtained.

Similar tendencies are also observed for the SPP based noise
estimator αSPP(x�, x�−1) as shown in Fig. 7. For both cases,
i.e., with and without correction, the overestimation increases
also for this noise PSD estimator with increasing SNR. For an
SNR range around 0 dB and 10 dB, the proposed correction in-
creases the log-error distortion slightly. For high SNRs and low
SNRs, however, a slight reduction of the log-error distortion is
observed. In general, the benefits of the correction are expected
to be smaller as the bias of this algorithm is rather low as shown
in Table I.

Fig. 8 shows the PESQ improvement scores which are ob-
tained if the considered adaptive smoothing functions are used
as noise PSD estimators in a simple enhancement scheme.
Again, the adaptive smoothing functions are employed with
and without correction to show the change in performance. For
αSPP(x�, x�−1), the corrected and the uncorrected version of
the noise PSD lead to nearly the exact same result. In general,
the measure indicates a slight reduction of the quality if the
proposed correction is applied. Considering the log-error dis-
tortions in Fig. 7, the result is not unexpected as the differences
between the corrected and uncorrected version are small. Con-
trarily, the PESQ scores can be considerably improved for the
smoothing function αThr(x�, x�−1), [5, Section 14.1.3]. After
applying the correction, the PESQ scores are increased by up
to 0.2 points where the largest gains are obtained for SNRs be-
tween 0 dB and 10 dB. The predicted quality of the corrected
version of αThr(x�, x�−1) is comparable to the SPP based noise
PSD estimator. These improvements can be attributed to the
reduction of the strong underestimation in low SNR regions
and the prevention of overestimation in speech presence. These
results are also confirmed in informal listening tests.

VIII. CONCLUSIONS

In this paper, we analyzed the bias of adaptive first-order re-
cursive smoothing filters which play a central role, e.g., in the
noise PSD estimators presented in [5], [6]. From our analysis,
it followed that due to the used adaptive smoothing, both algo-
rithms generally underestimate the noise PSD. We could show

that the bias is scale-invariant and that the bias from the in-
put signal mean E{x�} caused by adaptive smoothing can be
compensated using a single fixed correction factor c. For the
application of noise PSD estimation, we extended the correc-
tion method which resulted in a time-varying correction factor
to avoid overestimation by accounting for the speech energy.
This led to the proposed correction method shown in Algo-
rithm 3. The fixed correction factor c can be determined using
the proposed Algorithms 1 and 2. Algorithm 1 employs an it-
erative method which is based on the analytically solvable case
where the adaptive smoothing factor does not depend on the
previous filter output x�−1 . Algorithm 2 determines the fac-
tor c by maximizing the self-similarity of a model PDF with
respect to the transition density f(x� |x�−1). In the evaluation,
we could demonstrate that Algorithm 2 estimates the correction
factor c with a higher accuracy than the iterative method, i.e.,
Algorithm 1. If the estimation error of the adaptive smoothing
filter is sufficiently large, the proposed correction method yields
considerable improvements in terms of the log-error distortion
and PESQ.

APPENDIX A
ANALYTICAL RESULTS FOR THE ITERATIVE BIAS ESTIMATION

Here, we present the analytic expression of the expected value
in (9) that are obtained for the considered adaptive smoothing
functions in (18) and (22). Here, we employ the simplification
described in Section III again, i.e., x�−1 is replaced by the de-
terministic ρ. The following equations were derived under the
assumption that x� follows an exponential distribution (17).

For the noise PSD estimator proposed in [5, Section 14.1.3],
the expected value E{x�}, i.e., the solution to (9) given (18),
results in

E{x�} = μ
(α↓ − 1) exp (λ) + (α↑ − α↓)(1 + λ)

(α↓ − 1) exp (λ) + α↑ − α↓
, (31)

with λ = ρ/μ.
The expected value E{x�} for the expression in (22) can be

derived using the property of the geometric series [24, 1.112.1]
and the analytic continuation property of the hypergeometric
series [24, 9.130]. The result is

E{x�} = μ
1− 3F2 [1, ζ, ζ; ζ + 1, ζ + 1;−(1 + ξ)]

1− 2F1 [1, ζ; ζ + 1;−(1 + ξ)]
, (32)

where pFq is the generalized hypergeometric function with

ζ = λ
ξ + 1

ξ
. (33)

APPENDIX B
ANALYTIC SOLUTIONS FOR THE SELF-SIMILARITY

OPTIMIZATION

Here, we derive the analytic expressions of the inverse func-
tion h−1(·) and the derivative h′(·) for the considered adaptive
smoothing functions. Using these results, the conditional PDF
f(x� |x�−1) can be obtained with (15). For the derivations, we
assume that h(·) is given by the expression in (1).
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For the adaptive smoothing function αThr(x�, x�−1)
in (18), [5, Section 14.1.3], the existence of an inverse h−1(·)
depends on the relationship between the updated filter output
x� and the previous filter output x�−1 . Under the assumption
that x� ≥ 0, the adaptive smoothing given in (1) can be inverted
if α↓x�−1 ≤ x� ≤ x�−1 or if x� > x�−1 . For the first condition,
the inverse is given by

h−1
1 (x�) =

x� − α↓x�−1

1− α↓
(34)

and the denominator of (15) is given by

h′(h−1
1 (x�)) = 1− α↓. (35)

For the case that x� > x�−1 , the filter function in (1) can be
inverted as

h−1
2 (x�) =

x� − α↑x�−1

1− α↑
(36)

where the denominator of (15) is

h′(h−1
2 (x�)) = 1− α↑. (37)

For some values of x� none of the conditions applies so that
M = 0. For these x� , it follows that also f(x� |x�−1) = 0.

If αSPP(x�, x�−1) from (22), [6] is employed in (1), the filter
equation can be inverted if x�−1(1 + β(1 + ξ))/(2 + ξ) ≤ x� ≤
zx�−1 where also the assumption is made that x� > 0. In other
words, f(x� |x�−1) is zero if this condition is not fulfilled. The
quantity z is given by

z = z̃ + (1− z̃)
(

β +
1− β

1 + (1 + ξ)e−z̃ ξ/(1+ξ)

)
(38)

with

z̃ =
ξ + 1

ξ

[
1 + W0

(
e−1−ξ/(ξ+1)(ξ + 1)

)]
+ 1. (39)

Here, W0(·) denotes the main branch of the Lambert-W
function [25]. This function, together with its second real
branch W−1(·), constitutes the inverse of the expression f(x) =
x exp(x) [25]. One inverse function of the filter in (1) with re-
spect to the smoothing function in (22) is

h−1
1 (x�) = −x�−1

1 + ξ

ξ
W0(A) +

x� − βx�−1

1− β
(40)

where A is given by

A =
ξ(1− x�/x�−1)
(1− β)(1 + ξ)2 exp

(
ξ(x� − βx�−1)

x�−1(1− β)(1 + ξ)

)
. (41)

If the first condition holds and, additionally, x� fulfills x� >
x�−1 , a second inverse can be found. The result is

h−1
2 (x�) = −x�−1

1 + ξ

ξ
W−1(A) +

x� − βx�−1

1− β
. (42)

Note that the conditions for the two inverse functions are not
exclusive, i.e., there are values for x� where both conditions
are fulfilled. For these x� , the number of piecewise monotonic

segments M is two. Finally, the derivative is given by

h′(x) = (1− β)

[
ξB

(1 + (1 + ξ)B)2

(
1− x

x�−1

)

+
(

1− 1
1 + (1 + ξ)B

)]
, (43)

with

B = exp
(
− x

x�−1

ξ

1 + ξ

)
. (44)
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