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Abstract— Many well-known and frequently employed
Bayesian clean speech estimators have been derived under the
assumption that the true power spectral densities (PSDs) of
speech and noise are exactly known. In practice, however, only
PSD estimates are available. Simply neglecting PSD estimation
errors and handling the estimates as true values leads to speech
estimation errors causing musical noise and undesired suppres-
sion of speech. In this paper, the uncertainty of the available
speech PSD estimates is addressed. The main contributions are:
(1) we summarize and examine ways to model and incorporate
the uncertainty of PSD estimates for a more robust speech
enhancement performance. (2) a novel nonlinear clean speech
estimator is derived that takes into account prior knowledge
about the absolute value of typical speech PSDs. (3) we show
that the derived statistical framework provides uncertainty-aware
counterparts to a number of well-known conventional clean
speech estimators such as the Wiener filter and Ephraim and
Malah’s amplitude estimators. (4) we show how modern PSD
estimators can be incorporated into the theoretical framework
and propose to employ frequency dependent priors. Finally, the
effects and benefits of considering the uncertainty of speech PSD
estimates are analyzed, discussed, and evaluated via instrumental
measures and a listening experiment.

Index Terms—Speech enhancement, noise reduction, power
spectral density, uncertainty

I. INTRODUCTION

The enhancement of speech that has been corrupted by noise
is a challenging and important field of research as it is an in-
dispensable step to make communication devices like hearing
aids or mobile phones work reliably also in adverse acoustic
scenarios, i.e. on a busy street or in a crowded restaurant. Over
the last decades, numerous speech enhancement approaches
have been proposed. Here we concentrate on single-channel
speech enhancement, which can be used in isolation if only a
single microphone is available, but also as a post processing
step after a multi-microphone preprocessing stage to further
improve its performance. Among the most commonly used
single-channel approaches are arguably Bayesian clean speech
estimators working in the short-time discrete Fourier transform
(STFT) domain. Besides the classical approaches, over the last
years there has been an ever increasing interest in utilizing
machine learning techniques like deep learning for speech
enhancement, e.g. [1]. Nevertheless, Bayesian estimators re-
main relevant, as, for instance, they are fairly general and
as opposed to deep neural networks do not rely on lengthy
training [2]. It is further possible to combine Bayesian clean
speech estimators with machine learning techniques, joining
forces for an improved speech enhancement performance as
shown in [3], [4]. Finding novel Bayesian estimators, which is
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what we do in this paper, hence also benefits state-of-the-art
machine-learning based approaches.

Well known examples of Bayesian estimators are the Wiener
filter and Ephraim and Malah’s short-time spectral amplitude
estimator (STSA) [5]. For the derivation of such estimators,
the PSDs are typically assumed to be deterministic and known.
In practice, however, the true PSDs are not known and only
estimates are available, which for instance are obtained from
the noisy signal via maximum likelihood (ML) estimation, the
decision-directed approach [5], or temporal cepstrum smooth-
ing (TCS) [6]. Multiple approaches to increase the accuracy
of speech PSD estimators have been proposed, for instance
the iterative bias compensation mechanism [7] that aims at
improving the performance of the decision-directed approach.
But even in the noise free case the true speech PSDs can
in principle not be determined as speech is a highly non-
stationary and thus non-ergodic process [8]. The uncertainty
in the speech PSDs has for instance been considered in [9]
for the derivation of an improved speech PSD estimator based
on a generalized autoregressive conditional heteroscedasticity
(GARCH) model. In the GARCH model the true speech
PSD itself is not handled as a deterministic parameter but
modeled as an unobservable random variable. The resulting
PSD estimator can be used as an alternative to, e.g., the
well-known decision-directed approach [5]. In clean speech
estimators, however, PSD estimates are commonly interpreted
as true deterministic values, by which the uncertainty of the
PSD estimates is completely neglected. PSD estimation errors
thus directly propagate through to the final speech estimate,
leading to distortions and/or a suboptimal noise reduction.

In this paper, which extends our conference paper [10],
this problem is addressed and a new minimum mean square
error (MMSE) optimal clean speech estimator is derived that
explicitly takes into account the uncertainty of the available
speech PSD estimates for an increased robustness. For con-
ciseness and simplicity the uncertainty of the noise PSD is
not addressed at this point. Nevertheless, many of the concepts
presented here are also applicable to the noise PSD. Similar to
[9], we explicitly assume that only an estimate of the speech
PSD is given, while the true speech PSD is modeled as an
unobservable random variable. Following this rationale, the
speech prior becomes a scale mixture model [11], with the
scale being the speech PSD. The challenge then lies in finding
a suitable model of how the true PSD is distributed given
its estimate. Well-known estimators, like the super-Gaussian
estimator [12] and the estimator in [13] that is based on
a multidimensional normal inverse Gaussian (MNIG) speech
prior, arise as special cases. While the models used to obtain
[12], [13] are chosen merely for their mathematical tractability,
in this paper we use an interesting, recently proposed model
[14] that follows from a strict Bayesian derivation. In [14], not
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only the true speech PSD but also its estimate are modeled
as a random variable. The advantage of the formulation in
[14] is twofold: First, for ML estimates of the speech PSD, a
theoretically motivated relation between the true PSD and its
estimate can be found. This relation also holds for smoothed
ML estimates of the speech PSD, i.e. obtained via a temporal
moving average on the spectrum [14]. While a simple moving
average leads to undesired smearing of the speech PSD [5],
more elaborate approaches like TCS [6], [15] have been
shown to effectively reduce musical noise without smearing
the speech, which improves the overall speech enhancement
performance. Therefore, here we apply TCS [6], [15] and
show how TCS can be integrated into the statistical model of
[14]. Secondly, the model in [14] also provides a convenient
and theoretically rigorous way to incorporate prior information
about the true clean speech PSD, which for instance can be
obtained off-line from a representative clean speech database.

Already in [14], the model of the distribution of the true
speech PSD given only its estimate has been used to derive a
clean speech estimator. We show that the proposed estimator
and the one in [14] are two different solutions to the same
problem, i.e. both start from the exact same problem formula-
tion. The crucial difference lies in a critical assumption made
in [14]. There, it is assumed that when the ML estimate of the
speech PSD is given, the noisy observation does not provide
additional information with respect to the true PSD. In this
paper, we argue that this assumption is not true in general
and show how this assumption can be avoided. Interestingly,
we show that avoiding this assumption yields the fundamental
difference that the resulting speech estimator is a nonlinear
function of the noisy input – thus yielding a potentially more
powerful estimator and building the bridge between uncertain
speech PSDs and super-Gaussian estimators like in [12] as
well as MNIG approaches [13].

After briefly introducing the notation and conventional
Bayesian clean speech estimation without considering PSD
uncertainty in Section II, a nonlinear estimator under speech
PSD uncertainty is derived and compared to a linear alternative
in Section III. In Section IV, a statistically rigorous model
of the PSD uncertainty is presented, refined, and analyzed,
before specific uncertainty-aware counterparts to well known
clean speech estimators are provided in Section V. Finally,
two uncertainty-aware estimators are analyzed in terms of their
input-output characteristics (IOCs) in Section VI and evaluated
with instrumental measures and a pairwise preference test in
Section VII.

II. CONVENTIONAL MMSE CLEAN SPEECH ESTIMATION

In the STFT domain, we denote the complex-valued spectral
coefficients of the noisy signal at segment ` and frequency bin
k as

Yk,` = Sk,` + Vk,`, (1)

with mutually independent spectral coefficients of speech
Sk,` and additive noise Vk,`. Since all processing steps are
performed separately for each time-frequency point (`, k),
the indices are dropped for notational convenience. Both, S
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Table I: Nomenclature for estimating clean speech coefficients S and functions
f(S) thereof via (3).

and V are modeled as zero-mean complex-valued random
variables. The respective true PSDs are denoted by σ2

S , σ2
V ,

and σ2
Y = σ2

S + σ2
V . To distinguish estimates from their

true counterparts the hat symbol is introduced, e.g. σ̂2
S is an

estimate of σ2
S .

Conventional MMSE optimal estimators of the clean speech
coefficients S — or functions f(S) thereof — are conditioned
not only on the noisy observation Y , but also on the PSDs of
noise and speech

f̂(S) = E
(
f(S)|Y, σ2

S , σ
2
V

)
=

∫
S

f(S)p
(
S|Y, σ2

S , σ
2
V

)
dS, (2)

with the speech posterior p
(
S|Y, σ2

S , σ
2
V

)
. Common and well

established choices of the function f(S) are the complex
coefficient S itself as for the Wiener filter or the spectral
amplitude |S| as for Ephraim and Malah’s STSA [5]. Since σ2

V

is treated as a known deterministic parameter, in the remainder
of this paper the dependency on σ2

V is not stated explicitly,
e.g. we write p

(
S|Y, σ2

S , σ
2
V

)
= p

(
S|Y, σ2

S

)
for notational

convenience. As a result, every probability density function
in the sequel is implicitly conditioned on the noise PSD σ2

V .

III. CLEAN SPEECH ESTIMATION UNDER SPEECH PSD
UNCERTAINTY

In (2), the true PSDs of speech and noise are modeled as
being perfectly known. If only an estimate σ̂2

S of the true
speech PSD σ2

S is available, analogously to (2), the MMSE
optimal clean speech estimator is given by

f̂(S) = E
(
f(S)|Y, σ̂2

S

)
=

∫
S

f(S)p
(
S|Y, σ̂2

S

)
dS. (3)

Starting from (3), we first introduce the existing clean
speech estimator [14]. We show that the approach in [14]
relies on a rather restrictive simplification that constrains
the estimator to a linear function of the noisy input Y . In
the second part, we show that without this simplification a
fundamentally different estimator is derived that, similar to
super-Gaussian estimators like [12], is nonlinear in Y . Please
note that the formulation in [14] is less general than the one
in this paper as it only provides an estimator of the complex
coefficients f(S) = S. For clarity, some quantities that are
frequently encountered in the derivations are summarized in
Table I.
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A. Existing linear estimator [14]

To obtain the MMSE estimator in [14], we first apply Bayes’
rule to the speech posterior in (3) in a fashion that gives

p
(
S|Y, σ̂2

S

)
=

∞∫
0

p
(
S, Y, σ̂2

S , σ
2
S

)
dσ2

S

p
(
Y, σ̂2

S

)
=

∞∫
0

p
(
S|Y, σ̂2

S , σ
2
S

)
p
(
σ2
S |Y, σ̂2

S

)
dσ2

S

≈
∞∫
0

p
(
S|Y, σ2

S

)
p
(
σ2
S |σ̂2

S

)
dσ2

S , (4)

where in the numerator of the first line the joint distribution
p
(
S, Y, σ̂2

S

)
is expressed in terms of the marginal probability

of p
(
S, Y, σ̂2

S , σ
2
S

)
. For the posterior p

(
S|Y, σ̂2

S , σ
2
S

)
, one can

safely assume that once the true speech PSD σ2
S and Y are

given, the estimate σ̂2
S does not provide any additional informa-

tion. The second simplification, i.e. p
(
σ2
S |Y, σ̂2

S

)
≈ p
(
σ2
S |σ̂2

S

)
is more restrictive. The argument in [14] is that the estimate
σ̂2
S is obtained from the noisy signal Y and contains all

information about the true PSD σ2
S inherent in Y .

The simplified speech posterior (4) is plugged into (3) with
f(S) = S to obtain the clean speech estimator in [14]:

Ŝ[14] =

∞∫
0

∫
S

Sp
(
S|Y, σ2

S

)
dS p

(
σ2
S |σ̂2

S

)
dσ2

S . (5)

Note that the inner integral constitutes a conventional MMSE
estimator given the true PSDs of speech and noise (2). When
the noise prior and the speech prior given their true PSDs
are Gaussian distributed, which is assumed in [14] as well
as in this paper, this estimator is the conventional Wiener
filter ŜW = σ2

S /
(
σ2
S + σ2

V

)
Y . Accordingly, the clean speech

estimator under PSD uncertainty (5) can be rewritten as [14]

Ŝ[14] = Y

∞∫
0

σ2
S

σ2
S + σ2

V

p
(
σ2
S |σ̂2

S

)
dσ2

S = Y G[14], (6)

where the spectral gain G[14] under PSD uncertainty is a
weighted mixture of Wiener filter gains. The Wiener filter
itself is linear in Y , hence its spectral gain is independent
of the noisy input Y . Due to the second simplification,
i.e. p

(
σ2
S |Y, σ̂2

S

)
≈ p

(
σ2
S |σ̂2

S

)
, also the weights in (6) are

independent of Y . Consequently, also the resulting gain under
PSD uncertainty G[14] is independent of Y and hence the
estimator Ŝ[14] is linear in Y . However, linear estimators are
often outperformed by nonlinear ones, a prominent example
being the Wiener filter versus the nonlinear super-Gaussian
estimator in [12]. Next, we show that when the simplification
of [14] is avoided, even under the same statistical assumptions
for speech and noise, the estimator under PSD uncertainty
becomes a nonlinear function of the noisy input.

B. Proposed nonlinear estimator

For the derivation of the proposed nonlinear estimator under
PSD uncertainty, we again start by reformulating the speech
posterior in (3) via Bayes’ rule, but in a different manner than
in [14]:

p
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)
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∞∫
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dσ2

S∫
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∞∫
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p
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2
S

)
dσ2

S dS

=

∞∫
0

p
(
Y |S, σ2
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2
S

)
p
(
S|σ2

S , σ̂
2
S

)
p
(
σ2
S |σ̂2

S

)
dσ2

S∫
S

p
(
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S , σ̂
2
S

) ∞∫
0

p
(
S|σ2

S , σ̂
2
S

)
p
(
σ2
S |σ̂2

S

)
dσ2

S dS

≈
p(Y |S)

∞∫
0

p
(
S|σ2

S

)
p
(
σ2
S |σ̂2

S

)
dσ2

S∫
S

p(Y |S)
∞∫
0

p(S|σ2
S ) p

(
σ2
S |σ̂2

S

)
dσ2

S dS

, (7)

where in the first line the denominator is expressed as the
marginal distribution of p

(
Y, S, σ̂2

S , σ
2
S

)
such that the exact

same formulations and assumptions can be applied to the
denominator as to the numerator. Note that the linear estimator
in (6) and the proposed nonlinear estimator both rely on the un-
certainty model p

(
σ2
S |σ̂2

S

)
. However, in contrast to the linear

estimator, where the simplification p
(
σ2
S |Y, σ̂2

S

)
≈ p

(
σ2
S |σ̂2

S

)
has to be made, here the uncertainty model results from
the Bayesian reformulation of the speech posterior in (7).
For mutually independent speech and noise, the likelihood
p
(
Y |S, σ2

S , σ̂
2
S

)
≈ p(Y |S) is assumed to be the probability

density function of the noise V shifted by S and thus neither
depends on the true nor the estimated speech PSD. For
Gaussian distributed noise we have, e.g. [5]:

p(Y |S) =
1

πσ2
V

exp

(
−|Y − S|

2

σ2
V

)
, (8)

which is the same model used in conventional speech esti-
mators that do not incorporate PSD uncertainty. We further
assume that once the true speech PSD σ2

S is given, its estimate
σ̂2
S does not provide any additional information regarding S,

leading to p
(
S|σ2

S , σ̂
2
S

)
≈ p
(
S|σ2

S

)
. Since it is conditioned on

the true speech PSD, which is not available in practice, we
denote p

(
S|σ2

S

)
as the oracle speech prior. The speech prior

conditioned on the available speech PSD estimate is given by
the integral over σ2

S in (7):

p
(
S|σ̂2

S

)
=

∞∫
0

p
(
S|σ2

S

)
p
(
σ2
S |σ̂2

S

)
dσ2

S . (9)

This kind of model, where the scale parameter σ2
S of the

distribution of the desired quantity S is modeled as a random
variable, is known as a scale mixture model. Equation (9)
can be seen as an averaging of the oracle prior p

(
S|σ2

S

)
over

all possible values of the true σ2
S with a weighting based

on the uncertainty model p
(
σ2
S |σ̂2

S

)
. Scale mixture models

are commonly used in financial/economic prediction [16], but
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Figure 1. Speech prior p
(
S|σ̂2

S

)
for σ̂2

S = 1 and different speech PSD

uncertainty models p
(
σ2
S |σ̂2

S

)
: (1) delta pulse at σ̂2

S leading to a Gaussian
prior; (2) exponential distribution leading to a Laplace prior; (3) inverse
Gaussian distribution with α[13] = 0.9 and δ[13] = 0.9 leading to a normal
inverse Gaussian prior [13]. For simplicity, here we consider only real-valued
speech coefficients S.

have also been used for speech PSD estimation [9] and speech
enhancement [13].

IV. MODELS OF SPEECH PSD UNCERTAINTY p
(
σ2
S |σ̂2

S

)
The key to accurately incorporating the uncertainty of the

speech PSD estimates is finding an adequate model of the
speech PSD uncertainty p

(
σ2
S |σ̂2

S

)
, which directly influences

the form of the speech prior p
(
S|σ̂2

S

)
in (9). Specific examples

are illustrated in Figure 1, where the resulting speech priors
p
(
S|σ̂2

S

)
are presented for σ̂2

S = 1. If the PSD estimates

are assumed to be perfect, p
(
σ2
S |σ̂2

S

)
is set to a Dirac

impulse δ
(
σ2
S − σ̂2

S

)
. The speech prior (9) then becomes

p
(
S|σ̂2

S

)
= p

(
S|σ2

S = σ̂2
S

)
, i.e. it follows the same model

as the oracle speech prior, a Gaussian distribution in our case,
but using the estimated PSD. In Figure 1, we consider two
more choices of p

(
σ2
S |σ̂2

S

)
that both lead to speech priors

that have already been used for speech enhancement in the
literature. First, an exponential distribution for p

(
σ2
S |σ̂2

S

)
,

which yields a Laplace speech prior p
(
S|σ̂2

S

)
[17]. Second, an

inverse Gaussian distribution, which leads to a normal inverse
Gaussian speech prior [16]. While the Laplace distribution has
been used in [12], the normal inverse Gaussian distribution has
been employed in [13] to derive clean speech estimators. These
two models of the PSD uncertainty p

(
σ2
S |σ̂2

S

)
provide math-

ematically tractable super-Gaussian speech priors p
(
S|σ̂2

S

)
,

which is argued to fit clean speech histograms better than a
simple Gaussian distribution [12]. However, they are merely
pragmatic choices and not necessarily represent theoretically
justified models of the uncertainty of speech PSD estimates.
For instance, given a reasonably accurate PSD estimate, there
is little reason to believe that the true σ2

S follows an inverse
Gaussian distribution.

A statistically rigorous model has recently been proposed in
[14] and adopted here, which is solely based on assumptions
about the employed speech PSD estimator as well as potential

prior information about the true speech PSD. Similar to the
examples in Figure 1, also this uncertainty model results in a
super-Gaussian speech prior. But in contrast to the examples
above, the exact shape of the speech prior may be different
in each time frequency point based on the respective PSD
estimate and the prior information about σ2

S . We first outline
the speech PSD uncertainty model proposed in [14] and then
modify it for an improved speech enhancement performance.

A. A statistical model of the PSD uncertainty p
(
σ2
S |σ̂2

S

)
To find a statistically rigorous model of the PSD uncertainty

p
(
σ2
S |σ̂2

S

)
in (9), we reformulate p

(
σ2
S |σ̂2

S

)
using Bayes’ rule

as in [14]

p
(
σ2
S |σ̂2

S

)
=
p
(
σ̂2
S |σ2

S

)
p
(
σ2
S

)
p
(
σ̂2
S

) ∝ p
(
σ̂2
S |σ2

S

)
p
(
σ2
S

)
. (10)

In (10), we dropped the denominator since it cancels out when
inserting p

(
σ2
S |σ̂2

S

)
into (7) for the computation of the speech

posterior. Thanks to the reformulation in (10), p
(
σ2
S |σ̂2

S

)
is

now split into two parts: the hyperprior p
(
σ̂2
S |σ2

S

)
which

depends on the specific speech PSD estimator that is employed
to obtain σ̂2

S and the hyperhyperprior (HHP) p
(
σ2
S

)
, which

allows to insert prior information about the true speech PSD.
Please note that with the formulation in (10), both, the true and
the estimated speech PSD are modeled as random variables.

B. Modeling the hyperprior p
(
σ̂2
S |σ2

S

)
Similar to [14], we use a χ2 distribution to model the

hyperprior p
(
σ̂2
S |σ2

S

)
. We assume that the noisy observation

Y given its PSD σ2
Y = σ2

S + σ2
V is zero-mean Gaussian

distributed. Accordingly, |Y |2 is exponentially distributed. An
instantaneous ML estimate of the speech PSD is obtained via
σ̂2
S = max

(
|Y |2 − σ2

V , 0
)

[5]. With known σ2
V and neglecting

the maximum operator, this ML estimate follows the same ex-
ponential distribution as |Y |2, only shifted by σ2

V . Considering
the exponential distribution a special case of a χ2 distribution
with shape parameter Q = 1, we get [14]:

p
(
σ̂2
S |σ2

S

)
=

(σ̂2
S + σ2

V )Q−1QQ

Γ(Q)

exp

(
−Q σ̂2

S +σ2
V

σ2
S +σ2

V

)
(σ2

S + σ2
V )Q

. (11)

Due to their strong temporal and spectral fluctuations,
instantaneous PSD estimates are known to produce strong ar-
tifacts perceived as musical noise when directly used for clean
speech estimation, e.g. [18]. A remedy to this problem is to
smooth the instantaneous estimates. Smoothed χ2 distributed
random variables can be well modeled by a χ2 distribution
with an increased shape parameter Q [19], [20].

Intuitively, the reliability of a PSD estimate depends on
the signal to noise ratio (SNR) and the amount of smoothing
that is applied. This characteristic is covered by p

(
σ̂2
S |σ2

S

)
(11): the lower the noise PSD σ2

V and the higher Q, i.e. the
more smoothing is applied, the more concentrated p

(
σ̂2
S |σ2

S

)
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is around the true PSD σ2
S . Please note that in practice the

amount of smoothing that can be applied is limited by the
non-stationarity of speech. At low SNR σ2

S � σ2
V speech PSD

estimation is more challenging and inevitably less reliable.
Accordingly, p

(
σ̂2
S |σ2

S

)
becomes broader, accounting for the

increased uncertainty in the PSD estimate.

In [14], the instantaneous PSD estimates are smoothed over
time by means of a moving average in each frequency channel,
which increases the shape parameter Q to the number of
segments used for the moving average. This has been shown
to be the ML estimate given a sequence of observations under
the simplification that neighboring time frequency points are
independent and identically distributed [5]. However, already
Ephraim and Malah [5] found that the simple moving average
filter, while effectively reducing undesired outliers for suffi-
ciently long filters, also smears sudden PSD changes, e.g. at
speech onsets and offsets. This is why a temporal moving
average estimate of the speech PSD is rarely used in speech
enhancement. To alleviate the smearing of speech, Ephraim
and Malah proposed to use the decision-directed approach
instead [5]. While the decision-directed approach effectively
reduces musical noise and reduces the smearing of speech
onsets, due to its nonlinearity it is not clear how the uncertainty
of the resulting estimate, i.e., p

(
σ̂2
S |σ2

S

)
can be modeled in a

meaningful way. Thus, it is not well suited to be used in this
setup.

Proposed improved estimation of the speech PSD: Fortu-
nately, there is a sophisticated state-of-the-art alternative to
the decision-directed approach based on temporal cepstrum
smoothing (TCS) [6], [15], for which a meaningful model
of the uncertainty can be obtained. We generally prefer TCS
over the decision-directed approach, as it has been shown
to produce less musical noise while providing a more nat-
ural sounding background noise [6]. In contrast to temporal
smoothing in the spectral domain as in [14], TCS recursively
smoothes the instantaneous PSD estimates over time in the
cepstral domain. In the cepstrum, there are only few coef-
ficients that contain speech related information, namely the
lowest coefficients that represent the speech envelope and a
single peak that corresponds to the fundamental period of
voiced speech. To avoid distortions like the temporal smearing
of speech onsets observed for the temporal moving average
on the spectrum, the speech related cepstral coefficients are
only slightly smoothed, while the remaining non-speech re-
lated coefficients are strongly smoothed. With this selective
smoothing, undesired outliers in the final PSD estimate are
strongly reduced while avoiding a smearing of the speech. It
has been shown experimentally in [15] that the PSD estimates
after TCS are well modeled by a χ2 distribution. Furthermore,
a direct relationship between the amount of smoothing in the
cepstral domain and the resulting shape parameter Q of the
PSD estimate in the spectral domain has been established.
Details on how Q is calculated can be found in [15, Sec.
IV], where µ̃[15] corresponds to Q after TCS.

σ2
S,dB [dB]

-100 -80 -60 -40 -20 0 20 40
0

.01

.02

.03 Normalized Hist.
Fitted Gaussian

Figure 2. Histogram of |S|2 in dB over an hour of TIMIT utterances for
the frequency band at 1 kHz together with a ML fitted Gaussian distribution
(mean µσ2S

≈ −24 dB, standard deviation φσ2S
≈ 12.5 dB).

C. Modeling the hyperhyperprior p
(
σ2
S

)
As proposed in [14], the second part of (10), i.e. the HHP

p
(
σ2
S

)
, allows to bring in prior information about the true

PSDs of the desired speech sound. If no information about
the true speech PSD is available, p

(
σ2
S

)
could for instance be

set to a uniform distribution, the boundaries set in accordance
with the limitations of the recording setup. A promising way
to include prior information in p

(
σ2
S

)
has been proposed in

[14]. Due to its non-stationarity, even for clean speech the true
σ2
S is not available. However, the periodogram is available as

an unbiased, yet variant, estimator of σ2
S . Thus, a long-term

histogram of |S|2 is used to model the HHP. For this, a subset
of the TIMIT training set is used that has been excluded from
the evaluation in Section VII. This is depicted in Figure 2,
where the histogram of 10 log10

(
|S|2

)
for 1 hour of gender

balanced utterances from the TIMIT training set is shown. We
excluded speech absence regions by considering only time-
frequency points for which |S|2 is at most 60 dB below the
maximum |S|2 of the respective utterance. As in [14], a Gaus-
sian distribution with sample mean µσ2S and standard deviation
φσ2S is fitted to the histogram. This Gaussian distribution is then
taken as a model of the distribution of σ2

S,dB = 10 log10

(
σ2
S

)
.

A Gaussian distribution of the logarithmic σ2
S,dB corresponds

to a log-normal distribution in the linear domain, which yields
the proposed model of p

(
σ2
S

)
, [14]

p
(
σ2
S

)
=

10

ln(10)σ2
S

1√
2πφσ2S

exp

−
(
σ2
S,dB − µσ2S

)2
2φ2

σ2S

 (12)

for σ2
S ≥ 0 and p

(
σ2
S

)
= 0 otherwise. In this context, the

standard deviation φσ2S is considered a measure of uncertainty
in the expected value µσ2S : the larger φσ2S , the more likely it is
that the unknown true PSD σ2

S,dB differs substantially from its
available expected value µσ2S .

Proposed frequency dependent HHP: In [14], the same µσ2S
and φσ2S have been used in every frequency band. However, the
long term envelope of speech is not flat and thus a frequency
independent p

(
σ2
S

)
will only fit the observed histograms in

some frequency bands, while it might substantially deviate in
others. Therefore, here we set µσ2S and φσ2S in (12) frequency
dependently to achieve a better fit of p

(
σ2
S

)
in each frequency

band. For this, we compute the histograms from which we
obtain µσ2S and φσ2S separately for each STFT band. The
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Figure 3. Mean µσ2S
and standard deviation φσ2S

of σ2
S,dB over frequency.

frequency dependent µσ2S and φσ2S are depicted in Figure 3.
As already stated in [14], the form of the histogram and

thus p
(
σ2
S

)
depends on the speech material and also on the

employed STFT setup.

D. Interplay between hyperprior and HHP

With the models of the hyperprior p
(
σ̂2
S |σ2

S

)
and the HHP

p
(
σ2
S

)
at hand, the PSD uncertainty model p

(
σ2
S |σ̂2

S

)
can be

obtained via (10). Two examples are plotted over the true
speech PSD σ2

S in Figure 4. In both cases we have a PSD
estimate of σ̂2

S,dB = 0 dB, i.e. σ̂2
S = 1, while the expected

value of the true PSD σ2
S,dB is µσ2S = 10 dB. Furthermore,

φσ2S is set to 9 dB and Q is set to 10. The two plots differ

only in the estimated SNR σ̂2
S /σ

2
V . At the left of Figure 4,

the estimated SNR is 5 dB, while at the right of Figure 4
the SNR is -5 dB. As stated in Section IV-B, the higher the
estimated SNR, the more reliable the estimate σ̂2

S is, which
is also reflected in the strong concentration of the hyperprior
p
(
σ̂2
S |σ2

S

)
around σ̂2

S = 1. Accordingly, the PSD uncertainty

model p
(
σ2
S |σ̂2

S

)
follows the hyperprior rather closely, while

the less reliable prior information in the HHP p
(
σ2
S

)
only has

a minor influence. For low estimated SNRs, the speech PSD
estimate is less reliable and the influence of the HHP p

(
σ2
S

)
on the uncertainty model p

(
σ2
S |σ̂2

S

)
is dominant, as illustrated

in the right plot of Figure 4. Hence, the uncertainty model
p
(
σ2
S |σ̂2

S

)
provides a sensible compromise between the PSD

estimate and the prior information about the true σ2
S , putting

more emphasize on whatever is deemed more reliable.
Summarizing this section, the employed model of the PSD

uncertainty p
(
σ2
S |σ̂2

S

)
(10) lets us conveniently incorporate,

both, prior information about the true speech PSD via the
HHP p

(
σ2
S

)
(12) and the uncertainty of the employed speech

PSD estimator via the hyperprior p
(
σ̂2
S |σ2

S

)
(11). We further

proposed a new way to incorporate the uncertainty of a state-
of-the art speech PSD estimator based on TCS into this
framework and made the HHP p

(
σ2
S

)
frequency dependent.

V. UNCERTAINTY-AWARE COUNTERPARTS TO
WELL-KNOWN CONVENTIONAL ESTIMATORS

Inserting (12) and (11) into (10), we now have a model
of the speech PSD uncertainty p

(
σ2
S |σ̂2

S

)
. With this model

σ2
S
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S
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p(σ2
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S )

Figure 4. PSD uncertainty model p
(
σ2
S |σ̂2

S

)
together with hyperprior

p
(
σ̂2
S |σ2

S

)
and HHP p

(
σ2
S

)
for σ̂2

S,dB = 0 dB, Q = 10, µσ2S
= 10 dB, and

φσ2S
= 9 dB. Left: estimated SNR σ̂2

S /σ
2
V of 5 dB. Right: estimated SNR

σ̂2
S /σ

2
V of −5 dB. The stronger the noise, the less reliable the PSD estimate

σ̂2
S is and the influence of the HHP p

(
σ2
S

)
on p

(
σ2
S |σ̂2

S

)
increases.

at hand, a clean speech estimator can be obtained using the
speech posterior (7) in (3). The estimator can be realized,
e.g., by solving the integrals in (3) and (7) numerically.
Alternatively, we can insert (7) in (3) and change the order
of the integrals:

f̂(S) =

∞∫
0

∫
S

f(S)p
(
Y |S, σ2

V

)
p
(
S|σ2

S

)
dS p

(
σ2
S |σ̂2

S

)
dσ2

S

∞∫
0

∫
S

p(Y |S, σ2
V ) p(S|σ2

S ) dS p
(
σ2
S |σ̂2

S

)
dσ2

S

,

(13)

where the inner integrals over S in the numerator and the
denominator only depend on the true PSD σ2

S . These integrals
have been solved analytically for various f(S) and p

(
S|σ2

S

)
as part of the derivation of some well established conventional
estimators. For f(S) = S, (13) leads to

Ŝ =

∞∫
0

σ2
S

(σ2
S +σ2

V)
2 eν p

(
σ2
S |σ̂2

S

)
dσ2

S

∞∫
0

1
σ2
S +σ2

V
eν p

(
σ2
S |σ̂2

S

)
dσ2

S

Y, (14)

which is the counterpart to the Wiener filter under speech PSD
uncertainty. Here we introduce ν =

σ2
S

σ2
S +σ2

V

|Y |2
σ2
V

for a concise
notation. For f(S) = |S|, the counterpart to the STSA [5]
under speech PSD uncertainty is obtained

|̂S| =
√
π

2

∞∫
0

1
σ2
S +σ2

V

√
ν
γ Φ

(
3
2 , 1; ν

)
p
(
σ2
S |σ̂2

S

)
dσ2

S

∞∫
0

1
σ2
S +σ2

V
eν p

(
σ2
S |σ̂2

S

)
dσ2

S

|Y |, (15)

with the a posteriori SNR γ = |Y |2
σ2
V

and the confluent
hypergeometric function Φ (·, ·; ·). For f(S) = log(|S|) we get
the counterpart to the log-spectral amplitude estimator (LSA)
[21] under speech PSD uncertainty:

|̂S| =

∞∫
0

σ2
S

(σ2
S +σ2

V)
2 eν+

1
2 expint(ν) p

(
σ2
S |σ̂2

S

)
dσ2

S

∞∫
0

1
σ2
S +σ2

V
eν p

(
σ2
S |σ̂2

S

)
dσ2

S

|Y |, (16)

where expint(ν) denotes the exponential integral function.
With (14), (15), and (16) only the outer integral over σ2

S needs
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Algorithm 1 Proposed speech enhancement under speech PSD
uncertainty
Input: noisy speech Y , HHP parameters µσ2S , φσ2S
Output: clean speech estimate Ŝ

1: for each segment and each frequency band do
2: estimate the noise PSD σ2

V , e.g. via [22]
3: estimate the speech PSD σ̂2

S , e.g. via TCS [6], [15]
4: compute the form parameter Q, e.g. for TCS via [15]
5: compute Ŝ via (14), (15), or (16) using (10) – (12)
6: end for

to be solved numerically. Without analytical solutions to the
integrals, the complexity is significantly higher than that of the
conventional counterparts. To reduce the complexity at the cost
of an increased memory consumption, the relation between
Y and Ŝ can also be tabulated. In contrast to conventional
estimators, which typically only require a two-dimensional
look-up table, here the table has 5 dimensions, i.e. Y , σ̂2

S ,
σ2
V , Q, and the frequency dependent parameters of the HHP
µσ2S , φσ2S . To conclude this section, the different steps that
are necessary to obtain the final clean speech estimate Ŝ
are compactly summarized by a few lines of pseudo-code in
Algorithm 1.

VI. INPUT-OUTPUT CHARACTERISTIC

In this section, we compare the proposed nonlinear estimator
to the alternative linear approach [14] in terms of their input-
output characteristic (IOCs) [23], which are presented in
Figure 5, and show how the prior information encoded in
p
(
σ2
S

)
can benefit the clean speech estimation. The IOC of an

estimator presents the amplitude of the clean speech estimate
Ŝ as a function of the respective noisy input amplitude |Y |.
The lower the curve, the more suppression is applied by the
respective estimator. To make the analysis less dependent on an
absolute scaling, the input and the output are both normalized
by σV. The noise PSD is σ2

V = 1, the speech PSD estimate
is σ̂2

S = 1, and Q = 10 in (11). The difference between the
three plots in Figure 5 lies only in the choice of p

(
σ2
S

)
, i.e. the

available prior knowledge about the true speech PSD σ2
S . For

all three plots, the true speech PSD σ2
S is assumed to follow

a log-normal distribution (12) with a standard deviation of
φσ2S = 3 dB. Only its mean µσ2S differs from plot to plot, i.e

how much the PSD estimate σ̂2
S deviates from the expected

value of the true PSD.
In Figure 5, the IOCs of the proposed approach are pre-

sented together with the linear estimator proposed in [14]. As a
reference we present the IOC of the conventional Wiener filter,
denoted by ”Wiener”, which relies only on the PSD estimate
σ̂2
S and completely neglects the prior information about the

true PSD σ2
S . To allow for a sensible comparison, we set

f(S) = S in (3) for our approach, such that all algorithms
are MMSE estimators of S. Hence, the proposed estimator is
implemented according to (14). Preliminary analyses showed
that the general effects of incorporating PSD uncertainty that
we present for the complex estimator similarly apply to the
amplitude and log-amplitude estimators in (15) and (16).

At the top of Figure 5, we have σ̂2
S,dB = µσ2S , i.e. in the

dB-domain the PSD estimate is exactly the expected value
of the true PSD. Since the prior information and the PSD
estimate coincide, the influence on the IOCs is small and [14]
closely follows the conventional Wiener filter. We can also see
that the Wiener filter and [14] are linear estimators, while the
proposed approach is nonlinear and applies less suppression
to large inputs. Note that this is a typical behavior also known
for estimators based on super-Gaussian speech priors. This
nonlinear IOC is known to better protect speech at the cost of a
slightly increased tendency to produce musical noise compared
to their Gaussian counterparts. In the middle, the PSD estimate
is 10 dB lower than µσ2S , meaning that the true speech PSD

is likely to be higher than the estimate σ̂2
S . Thus, it is more

likely that the input contains relevant speech energy and it
would be beneficial to apply less suppression. This is taken
into account by the uncertainty-aware approaches, which apply
less suppression than the conventional Wiener filter ”Wiener”
that solely relies on the PSD estimate. Both estimators trade-
off the PSD estimate and the prior information about p

(
σ2
S

)
according to the statistical models they are based on as detailed
in Section IV-D.

Finally, at the bottom of Figure 5, µσ2S is 10 dB lower than
the actual estimate. Analogously to the previous discussion,
the uncertainty aware estimators now apply more attenuation,
since it is less likely that relevant speech energy is present in
the input Y than suggested by the estimate σ̂2

S .

VII. EVALUATION

The algorithms are evaluated on 128 sentences taken from
the test set of the TIMIT [24] database, degraded by pink
noise, white noise modulated with a frequency of 0.5 Hz,
traffic noise, factory noise, and babble noise at various SNRs,
of which the last two noise types are taken from [25]. This
totals 3200 files that are used for the evaluation. The STFT is
computed with a segment length of 32 ms, an overlap of 50 %,
and a square-root Hann window for analysis and synthesis.
The maximum attenuation in each time-frequency point is set
to -15 dB to avoid undesired artifacts and speech distortions.
We evaluate noise reduction (NR) and segmental speech SNR
(SSNR) [26] to separately assess the amount of noise reduction
and speech distortions that are introduced, which indicate
how aggressive a clean speech estimator is. Finally, we also
present wideband Perceptual Evaluation of Speech Quality
(WB-PESQ) [27] scores, which have been shown to correlate
with the overall quality of spectrally enhanced speech [28].
For an improved visualization we do not present absolute
WB-PESQ values, but the improvement over the unprocessed
noisy signal. The linear estimator under PSD uncertainty in (6)
[14] and the proposed nonlinear estimator for f(S) = S (14)
are compared to the conventional Wiener filter. We choose
f(S) = S to allow for a fair comparison of the three
approaches, which then are all estimators of the complex
coefficients S.

To allow for a more general investigation of the effects of
incorporating PSD estimation uncertainty, the algorithms are
evaluated for two different speech PSD estimators of different
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|Ŝ
|/
σ V

0 1 2 3 4 5
0

1

2

3

4

µσ2S
= σ̂2

S,dB

µσ2S
= σ̂2

S,dB + 10dB

µσ2S
= σ̂2

S,dB − 10 dB

Figure 5. Input-output characteristics for σ2
V = 1, σ̂2

S = 1, Q = 10. The
three plots vary only in the prior information about the true PSD, i.e. p(σ2

S )

(12). The mean of the true σ2
S,dB is µσ2S

= σ̂2
S,dB (top), µσ2S

= σ̂2
S,dB+10 dB

(middle), and µσ2S
= σ̂2

S,dB − 10 dB (bottom), while its standard deviation
is always φσ2S

= 3 dB.

quality. First, the strongly fluctuating instantaneous PSD esti-
mates are simply averaged over neighboring segments directly
in the spectral domain. Secondly, we apply elaborate TCS
[6], [15], which is known to provide estimates that allow for
high quality speech estimation. Finally, the proposed estimator
under PSD uncertainty is compared to the conventional Wiener
filter by means of a pairwise preference listening test.

A. Moving average speech PSD estimation

In this section, the speech PSD estimates are obtained via
a moving average of instantaneous PSD estimates directly
in the spectral domain over Q = 5 neighboring segments,
which corresponds to a time window of 96 ms. The results in
Figure 6, which have been averaged over all five noise types,
reveal that both, the linear and the proposed nonlinear speech
estimator under PSD uncertainty outperform the conventional
Wiener filter in terms of WB-PESQ. The benefits are most
pronounced at low SNRs, where an improvement of more than
0.2 MOS in WB-PESQ is achieved. Indeed, informal listening
reveals that for this simple PSD estimator, the Wiener filter
shows strong and annoying musical noise. This is substantially
reduced by considering the PSD uncertainty, which is also
reflected in the higher NR. The reason for this is that in
low SNR regions the speech PSD estimation is especially

challenging and the uncertainty-aware approaches therefore
rely more on the prior information in form of the HHP p(σ2

S )
rather than the fluctuating estimates, as shown in the left panel
of Figure 4.

The performance of the two uncertainty-aware approaches
is rather similar in terms of WB-PESQ for this simple
PSD estimator. However, judging from informal listening,
the proposed nonlinear estimator better preserves the speech
component while being somewhat more prone to producing
musical noise. This trade-off is characteristic for nonlinear,
e.g. super-Gaussian, estimators, see e.g. [29].

B. TCS-based speech PSD estimation

Here we employ the more elaborate TCS, which greatly
reduces random fluctuations in the PSD estimates while
avoiding undesired temporal smearing of speech. Accordingly,
the conventional Wiener filter performs consistently better in
terms of signal quality with substantially less musical noise
as compared to using the PSD estimates from the previous
section. This is also reflected in the higher WB-PESQ scores
and increased NR in Figure 7.

With the improved PSD estimates, the linear estimator [14]
does not improve over the Wiener filter anymore. Similar to
using the simple PSD estimator of the previous section, [14]
is more aggressive than the Wiener filter. However, now that
the Wiener filter itself produces far less musical noise, the
higher noise reduction does not outweigh the reduced SSNR
anymore. In contrast, the proposed nonlinear estimator still
yields improvements in the predicted speech quality over the
Wiener filter. It better protects speech components, indicated
by the higher SSNR at the cost of only a slight decrease
in noise reduction. The relative improvement in WB-PESQ
over the conventional Wiener filter is however smaller than
for the simple PSD estimator in Figure 6. Intuitively, the
more reliable the PSD estimation, the smaller the detrimental
effect of neglecting its uncertainty. Consequently, the potential
benefit of uncertainty-aware approaches is larger when only
poor PSD estimates are available.

Nevertheless, even for elaborate PSD estimators, the overall
performance can still be improved by more accurate prior
information in terms of the HHP p(σ2

S ). Currently, p(σ2
S ) is

trained offline and fixed, but it could potentially also be trained
separately for different phonemes instead. This would open up
new and interesting possibilities to combine the generality of
traditional Bayesian clean speech estimation with the power
of modern machine learning based approaches for phoneme
or speech recognition.

C. Listening Experiment

To verify the predictions made by the instrumental mea-
sures, we conducted a listening experiment. 13 self-reported
normal hearing listeners participated in a pairwise preference
test, where the proposed nonlinear estimator under PSD un-
certainty (14) was compared to its conventional counterpart,
the Wiener filter. Eight utterances from the evaluation set
of the previous section were presented to each listener via
headphones in a quite office room, 4 at an SNR of -5 dB and
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Figure 6. Average WB-PESQ improvement, noise reduction (NR), and segmental speech SNR (SSNR) together with the respective 95 % confidence intervals.
The speech PSD estimate has been obtained via a moving average smoothing in the spectral domain.
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Figure 7. As Figure 6, but with the speech PSD estimate obtained via temporal cepstrum smoothing (TCS).

4 at an SNR of 5 dB. The speech PSD was again estimated via
TCS. To isolate the effects of speech PSD modeling from those
of suboptimal noise PSD estimation, here we used stationary
pink noise with a known PSD. For each example, the listeners
were asked to judge which of the two presented signals A)
offers the higher speech quality, B) contains less noise, C)
offers the higher noise quality, and D) they overall prefer
(OP). Each category was rated separately, accumulating to 32
pairwise comparisons per listener. The results are presented in
Figure 8 in terms of the average preference for the proposed
estimator (14). The higher the value, the more often the
proposed estimator under PSD uncertainty was preferred over
the Wiener filter. The noise reduction and noise quality were
rated similarly, with a preference for the Wiener filter at -5
dB, which, however, is not statistically significant (p > 0.05)
according to a two-sided binomial test. At the same time, the
majority of listeners preferred the proposed estimator in terms
of speech quality and overall, with a statistically significant
preference for both at -5 dB SNR and for speech quality at 5
dB SNR. The results are in line with the instrumental measures
in Figure 7 and underline the potential of incorporating speech
PSD uncertainty into speech enhancement.

VIII. CONCLUSIONS

Speech PSD estimation is both an important and an error-
prone part of speech enhancement algorithms. In this paper,
we showed that incorporating the uncertainty of speech PSD
estimates may increase the robustness of clean speech estima-
tors. While for the estimator in [14] it has been assumed that
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Figure 8. Results of the listening experiment. Averaged preference for the
proposed nonlinear estimator under PSD uncertainty over the Wiener filter in
terms of speech quality (SQ), noise reduction (NR), noise quality (NQ), and
overall (OP) together with the 95 % confidence intervals. The asterisks mark
statistically significant preferences, with ∗∗ for p<.01 and ∗∗∗ for p<.001.

the noisy input Y does not yield additional information on σ2
S

when the ML estimate σ̂2
S is given, we showed that avoiding

this assumption yields a fundamentally different estimator
which is nonlinear with respect to the noisy input. Fur-
thermore, the new estimator provides counterparts to several
well-known clean speech estimators such as the Wiener filter
and Ephraim and Malah’s amplitude estimators under PSD
uncertainty. Finally, we showed how a modern PSD estimator
based on temporal cepstrum smoothing can be integrated into
the PSD uncertainty framework, which improved its overall
performance substantially.
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