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Abstract—For enhancing noisy signals, machine-learning based
single-channel speech enhancement schemes exploit prior knowl-
edge about typical speech spectral structures. To ensure a good
generalization and to meet requirements in terms of computa-
tional complexity and memory consumption, certain methods
restrict themselves to learning speech spectral envelopes. We
refer to these approaches as machine-learning spectral envelope
(MLSE)-based approaches.

In this paper we show by means of theoretical and experimen-
tal analyses that for MLSE-based approaches, super-Gaussian
priors allow for a reduction of noise between speech spectral
harmonics which is not achievable using Gaussian estimators
such as the Wiener filter. For the evaluation, we use a deep
neural network (DNN)-based phoneme classifier and a low-rank
nonnegative matrix factorization (NMF) framework as examples
of MLSE-based approaches. A listening experiment and instru-
mental measures confirm that while super-Gaussian priors yield
only moderate improvements for classic enhancement schemes,
for MLSE-based approaches super-Gaussian priors clearly make
an important difference and significantly outperform Gaussian
priors.

Index Terms—Super-Gaussian PDF, nonnegative matrix factor-
ization, neural networks, speech enhancement.

I. INTRODUCTION

N the presence of background noise, speech may be

corrupted such that the perceived quality and possibly
also the intelligibility are deteriorated. Similarly, also human-
machine interaction by means of automatic speech recognition
systems may suffer from additional background noises. Hence,
the enhancement of corrupted speech signals is an important
task for many applications, e.g., in telecommunications, for
speech recognition, and for hearing aids. In this paper, we
consider single-channel methods that either assume that the
noisy speech signal has been captured by a single microphone
or process the output of a beamformer.

Single-channel speech enhancement, has been a topic of
research for decades and has given rise to many different
approaches, e.g., [1]-[6]. Many approaches are formulated
in the short-time Fourier transform (STFT) domain where a
multiplicative gain function is applied to the complex spectra
to suppress the bands which mainly contain noise. A common
approach is to estimate the clean speech coefficients blindly
from the noisy observation. For this, many different approaches
have been proposed in the literature, e.g., [1], [3], [4], [7]-
[11]. These methods often require an estimate of the speech
power spectral density (PSD) and the noise PSD which are also
estimated blindly from the noisy observation, e.g., using [3],
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[5], [6], [12]. These methods generally track the speech and
noise PSDs over time, i.e., a time-varying estimate is returned.
Special attention has been turned to super-Gaussian clean
speech estimators [1], [2], [7]-[10] as studies indicate that
the complex Fourier coefficients are rather super-Gaussian than
Gaussian distributed [13], [14].

Another approach to estimate the clean speech PSD and
possibly also the noise PSD is to employ machine-learning
based methods, where the structure of speech and noise is
learned before the processing takes place. In this paper, a
specific type of machine-learning (ML)-based algorithm is
considered, where the learned speech models only represent
the spectral envelope, e.g., [15]-[21]. This means that har-
monic structures caused by the vibrating vocal cords are
not included. This increases the generalizability and also
reduces the computational complexity and the amount of data
required for training. This type of enhancement is referred to as
machine-learning spectral envelope (MLSE)-based in this paper.
Contrarily, to distinguish this type of enhancement schemes
from the classic estimation schemes considered above, we refer
to the latter as non-MLSE-based enhancement schemes. While
MLSE approaches exploit prior knowledge about typical speech
spectral structures, the envelope representation also limits the
quality of the enhanced signal. Due to the coarse representation
of speech, residual noise may remain especially between
spectral harmonics. To reduce the undesired residual noise
between harmonics, different solutions have been proposed.
In [19], a harmonic model has been used to attenuate the
remaining noise component between harmonics. Contrarily, an
estimate of the speech presence probability is employed in [20],
[21] to attain a suppression of the residual noise.

In this paper, we show that if super-Gaussian clean speech
estimators are used, postprocessing as in [19]-[21] is not
necessary. For this, we consider the parameterized clean speech
estimator proposed in [1]. An analysis of this estimator shows
that, under a super-Gaussian speech model, the background
noise can be reduced even if the speech PSD is overestimated,
e.g., between spectral harmonics when modeling only the
envelope. Furthermore, the estimator in [1] is employed
in two MLSE-based enhancement schemes. Both methods
serve as examples and can be considered as variants of
previously proposed methods in the literature. The first one is
a deep neural network (DNN)-based scheme similar to [20]
which is chosen due to its similarities to other MLSE-based
enhancement methods, e.g., [15]-[19], [21]. To demonstrate
the effectiveness of super-Gaussian estimators also for other
MLSE-based enhancement methods, the estimator in [1] is
additionally embedded in a supervised, sparse nonnegative
matrix factorization (NMF) enhancement scheme based on [22],
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[23]. Here, a low amount of basis vectors is employed such
that mainly spectral envelopes are represented by the NMF
basis vectors. We show that for the used non-MLSE-based
enhancement scheme, which is capable of estimating the
spectral fine structure of speech, the super-Gaussian speech
model yields only small improvements. However, for the
considered MLSE-based enhancement schemes, where only a
speech envelope model is employed, the super-Gaussian model
has a very beneficial effect as it allows to remove disturbing
residual noises. Besides the MLSE approaches addressed
here, also MLSE approaches with LogMax (also known as
MixMax) mixing models benefit from this effect [24]. Super-
Gaussian speech models have also been previously employed
in ML based speech enhancement algorithms, e.g., [25]-[27].
However, none of the papers provides an explicit analysis of
the obtained improvements over Gaussian estimators in terms
of the gain functions that result under super-Gaussian speech
models. Furthermore, the advantages of these estimators in
combination with spectral speech envelope models have not
been highlighted.

The paper is structured as follows. First, we recapitulate the
clean speech estimator proposed in [1] in Section II. After that,
we describe the considered MLSE-based enhancement schemes
in Section III and Section IV. In Section V and Section VI, an
analysis of the super-Gaussian estimator [1] and, respectively,
a comparison of clean speech estimators employed in different
enhancement schemes is presented. In Section VII, the results
of the subjective evaluation test are reported.

II. SIGNAL MODEL AND SPEECH ESTIMATORS

In this section, we revisit the clean speech estimator [1]. This
estimator is parameterized such that various known estimators,
e.g., [3], [4], [7], [8], [10], result as special cases. In particular,
it allows to incorporate super-Gaussian speech models and
the estimation of compressed amplitudes. As in [28], we use
the name (M)MSE estimation with (o)ptimizable (s)peech
(m)odel and (i)nhomogeneous (e)rror criterion (MOSIE) for
the estimator in [1].

In this paper, we employ input signals with a sampling
rate of 16 kHz. As MOSIE operates in the STFT-domain, the
sampled noisy input signal is split into overlapping segments
and each segment is transformed to the Fourier domain after
an analysis window has been applied. The segment length of
the STFT is set to 32 ms and a segment overlap of 50 % is
employed. This yields the noisy spectra Y}, o, where k denotes
the frequency index and ¢ the segment index. The physically
plausible additive corruption model is used where the noisy
coefficients Y}, , are described as

Yie = Ske+ Nie. (1

Here, Si¢ and Ny, represent the clean speech and noise
spectral coefficients, respectively. The estimate of the clean
speech spectral coefficients S”M is obtained from the noisy
observation Y}, , using [1]. Afterwards, the estimated clean
speech spectra SVM are transformed back to the time-domain
and a synthesis window is applied to the obtained time-domain
segments. For the analysis and the synthesis a square-root

Hann window is used. Finally, an overlap-add method is used
to reconstruct the complete time-domain signal. The STFT
framework is shared among all enhancement schemes including
the DNN-based scheme in Section III and the NMF-based
scheme in Section IV.

MOSIE [1] is a statistically optimal estimator in the sense
of the mean-squared error (MSE). Such estimators consider
the quantities in (1) as random variables, where the involved
probability density functions (PDFs) are assumed to be known.
In [1], the estimate S‘kyg that minimizes the MSE given by
E{(|Sk.¢|® — |Sk.¢|?)?} has been derived. Here, E{-} denotes
the expectation operator and | - |® allows to incorporate
perceptually motivated compression functions. Here, 3 denotes
the compression factor. In general, the MSE optimal estimator
of Sj, ¢ depends on the PDFs of the speech spectral coefficients
Sk.¢ and the noise spectral coefficients Ny, .

In [1], the complex noise coefficients N , are assumed
to follow a circular-symmetric complex Gaussian distribution.
This assumption is often motivated by the Fourier sum and the
central limit theorem [14]. However, due to the strong corre-
lation of speech in the time-domain, a Gaussian distribution
does not appropriately describe the speech spectral coefficients
Sk [91, [13], [14]. Accordingly, a parametrizable circular-
symmetric possibly heavy-tailed super-Gaussian distribution
is employed to describe Sy, ¢ in [1]. Given the mixing model
in (1) and the statistical assumptions about the noise and speech
coefficients, the estimate of the amplitude AM is given by [1]

1

Ay = AR 8t {F(/i +8/2) M(p+ B/2,1; Ge) .

’ koo + 1 IN(D) M, 15 Coe)

2)
Here, iy = Aj,/A}, denotes the a priori signal-to-
noise ratio (SNR). The quantities Af , = E{|S),[*} and
Ap, = E{| Ny ¢|?} are the speech PSD and the noise PSD,
respectively. Further, (¢ is given by g &k ¢/ (pt+ &k, ¢) Where
Voo = |Yie?/A}, is the a posteriori SNR. The symbol
M(-,-; ) represents the confluent hypergeometric function. The
parameter 4 > 0 determines the shape of speech prior PDF
where p < 1 corresponds to a super-Gaussian distribution while
u = 1 corresponds to a Gaussian distribution. To obtain an
estimate of the complex speech coefficients Sk,é, the estimated
amplitude in (2) is combined with the noisy phase @Z, ¢, as
S’k7g = Ak)g eXp(j(I)z’Z), where j = \/jl

It is interesting to note that MOSIE [1], generalizes existing
clean speech estimators. For example, if § = 1 and p = 1,
MOSIE [1] is equivalent to Ephraim and Malah’s short-term
spectral amplitude estimator (STSA) [3] and, for very small
values of 3 and p = 1, the log-spectral amplitude estimator
(LSA) [4] is approximated. Super-Gaussian estimators are
obtained for . < 1. Table I gives an overview over the related
estimators.

To evaluate the expression in (2), estimates of the speech PSD
Aj. , and the noise PSD A} , are required. These can be obtained
from non-MLSE-based speech PSD and noise PSD estimators.
In this paper, the noise PSD A}CLJ8 is estimated using [6]. The
speech PSD of the non-MLSE-based enhancement scheme
is estimated using temporal cepstrum smoothing as proposed
in [5]. The enhancement scheme that results from using these
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TABLE I
LIST OF CLEAN SPEECH ESTIMATORS THAT MOSIE [1] GENERALIZES.

“w B8 Related estimator

1 1 Gaussian STSA [3]

1 B —0 Gaussian LSA [4]
n<l1 1 super-Gaussian STSA [8], [9]
npn<l B—=0 super-Gaussian LSA [10]

Input layer Hidden layer 1

Hidden layer 2
ha,1

Output layer
fla=1lve)

softmax

V2,¢

ReLU ReLU softmax

hi,mH, ha H,

fla=Qlve)

Fig. 1. Architecture of the employed DNN.

speech and noise PSD estimator in MOSIE is referred to as
non-MLSE-based enhancement scheme throughout this paper.
However, also ML based estimators of the clean speech and
the noise PSD can be employed which are considered next.

III. DNN-BASED SPEECH ENHANCEMENT SCHEME

As the first example of an MLSE enhancement scheme,
a method using a DNN-based phoneme recognizer similar
to [20] is considered. Similarly, MLSE models have also been
used for enhancement schemes in [15]-[19], [21]. In [20], a
two step procedure is used for speech enhancement. First, the
spoken phoneme is identified from the noisy observation. After
that, a learned speech PSD corresponding to the recognized
phoneme is used in a clean speech estimator, e.g., MOSIE [1],
to enhance the noisy observation. As speech is modeled on
a phoneme level, the speech spectral fine structures, e.g., the
spectral harmonics, are not resolved.

For phoneme recognition, a DNN is used with the architec-
ture shown in Fig. 1. The DNN’s input is given by 13 Mel-
frequency cepstral coefficients (MFCCs) including the A and
AA accelerations which are extracted for each frame . To these
features, a context is added by including the features of the three
previous and three future segments which results in the feature
vector vy = [v1.¢,...,vy,]" with dimensionality V = 273.
Here, v; ¢ denote the elements of the feature vector v,. Further,
T denotes the vector and matrix transpose. For the employed
segment length and segment shift, the context is approximately
100 ms. To improve the robustness of the recognition in noisy
environments, the feature vectors are normalized using cepstral
mean and variance normalization (CMVN) [29] before they are
employed for training or testing [20]. The CMVN is applied
per utterance.

The features are passed through two hidden layers to finally
obtain a score f(g|v,) for each phoneme ¢ € {1,...,Q}. We

Algorithm 1 DNN-based enhancement scheme.

Require: Trained DNN and offline computed AZ‘q.
Require: Noisy observations Y , of a complete utterance.

1: Extract MFCCs v; from Y}, , for complete utterance and

add context.

2: Apply CMVN over complete utterance to give vy.

3: for all segments ¢ do

4:  Estimate noise PSD /A\Ze using [6].
Obtain f(g|v) from the DNN.
for all phonemes ¢ do

Obtain clean speech estimate S ,(fg

N W

for phoneme q.
For this, AZ‘q and Agl are employed in (2).

8: end for .

9:  Obtain final clean speech estimate Sy, using (3).

10: end for

base the number of phonemes on the annotation given in the
TIMIT database [30] which distinguishes between @@ = 61
classes including pauses and non-speech events. The hidden
layers of the DNN consist of H; and H, outputs, where
H, = Hy = 512 is used. Similar to [20], [31], [32], rectified
linear units (ReLLUs) are employed as transfer functions of these
two layers. For the output layer, a softmax transfer function is
used which is interpreted as the posterior probability f(q|ve)
that phoneme g was spoken given the features vy.

For the enhancement, MLSE-based clean speech PSDs AZ‘q
are employed where each Azlq represents the speech PSD of a
specific phoneme q. During processing, each Azlq is used in (2)
via {0 = AZ‘q /AR ,, which yields the phoneme specific clean
speech estimates S ,(fz For this, the noise PSD A} , is estimated
using [6]. Similar to [20], the estimates S,(qu are averaged based

on the recognition scores f(q|v¢) to give a final estimate Sy .
More specifically, the clean speech coefficients are obtained
by

Q
Ske = Z flg= j|VZ)SlE-(,Il2'

j=1

3)

The steps required to enhance the noisy observations Y} ¢
using the DNN-based enhancement scheme are summarized in
Algorithm 1.

For the training of the DNN-based MLSE system, we employ
1196 gender and phonetically balanced sentences from the
TIMIT training set. As in [20], the DNN is trained only
using clean speech to ensure that the phoneme recognition
does not depend on the background noise type. The target
vectors for the training are given by a one-hot encoding of the
TIMIT phoneme annotation [30]. The error function is given by
the cross-entropy which is minimized using scaled conjugate
gradient back-propagation [33]. Before back-propagation, the
weights of the DNN’s two hidden layers are initialized using
the Glorot method [34]. The weights of the output layer are
initialized using the Nguyen-Widrow method [35].

Similar to the non-MLSE-based enhancement scheme, the
noise PSD A} , is estimated using [6]. The speech PSDs A‘,jq

2329-9290 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2017.2778151, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 00, NO. 00, 2017 4

that are linked to the phonemes ¢ are obtained as

slg 1 2
A= IL(@)] D ISuel?

£eL(@)

“4)

where (2 denotes the set that contains the segments that
belong to the phoneme ¢ in the training data. As (4) is scale-
dependent, we normalize the time-domain clean speech input
signal both in training and testing such that all sentences have
the same peak value. During training, the clean speech data is
available, while during testing, oracle knowledge is provided.
This normalization is also employed for the other enhancement
schemes, i.e., for the non-MLSE-based and the NMF-based
enhancement scheme given in Section IV. Here, however, the
normalization has no influence as these approaches are scale-
independent.

IV. NMF-BASED SPEECH ENHANCEMENT SCHEME

In this part, the MLSE-based enhancement scheme that
employs NMF is described. It serves as a second example
for MLSE-based enhancement schemes. NMF approximates a
nonnegative matrix Y as Y ~ BH, where B and H are also
nonnegative matrices. The columns of B are referred to as
basis vectors and the columns of H as activation vectors. NMF
has been used for source separation, e.g., [22], [36], [37], and
has also been applied to speech enhancement, e.g., [38]-[40].

Here, a simple, supervised, sparse NMF approach is used
which employs the Itakura-Saito (IS) divergence as the cost
function [22], [23]. As argued in [22], if the noisy spectral co-
efficients Y}, , are independent and follow a circular-symmetric
Gaussian distribution, minimizing the IS divergence for ap-
proximating the noisy periodogram as [|Y;¢|>] =Y ~ BH
allows the elements of the product BH to be interpreted as the
noisy PSD A} ,. The IS cost function including the sparsity
constraint is gi’ven by [23]

_ (Y)i,; (Y)is \

where (-); ; denotes element of the respective matrix, | - |; the
L+i-norm, and v is the factor that controls the sparsity. This
cost function can be optimized using the multiplicative update
rules in [23].

For estimating the speech and the noise PSD, it is assumed
that the basis matrix B is given by the concatenation of a
speech basis matrix B(*) and a noise basis matrix B(™ as
B = [B(®),B(™)]. The speech and noise basis matrices are
learned prior to the processing and are held fixed during
processing. This means that only the activation matrices
are updated. For obtaining an estimate of A}, and A},
also the activation matrix H is split into a sjpeech and
noise dependent part as H = [(H®)T (H™)T]" such that

Algorithm 2 NMF-based enhancement scheme.

Require: Speech and noise basis matrix B®), B,
I Set B = [B®),B™)].

. for all segments ¢ do
Create vector y, = |V ¢|* and add context.
Initialize H with positive random numbers.
repeat

Update H with the update rule in [23, (4)].

until convergence or maximum iterations reached

end for

: Obtain A3 , and A7, using (6) and (7).

: Use estimated PSDs in (2) to obtain S’H.

R A A T o

—_
=

Y ~ BH = [B®), B®|[(H®)T, (H™)T]"
speech and the noise PSD can be obtained as

. With this, the

70

ke = Z(B(S))k,i(H(s))i,e
=1
7™

Ap = (BM)(HM), ,,

i=1

(6)

)

where I(*) is the number of speech basis while (") denotes
the number of noise bases. The steps for enhancing the noisy
observations are summarized in Algorithm 2.

For the NMF-based enhancement scheme, the same speech
audio material is employed for training as for the DNN-based
enhancement scheme. Also here, a context of 7 segments
is employed, i.e., three past and three future segments are
appended to the noisy input vectors. As a consequence, the
number of rows of the basis matrices is increased and the speech
PSD and the noise PSD are reconstructed with a context. For
the enhancement, however, only the elements corresponding
to the current segment are employed. We use 30 bases in the
speech basis matrix B(*) and the noise basis matrix B("™) while
the sparsity weight in (5) is set to v = 10.

The noise basis matrices B(™) are trained for a set of specific
background noise types. The used types are babble noise,
factory 1 noise, and pink noise taken from the NOISEX-92
database [41]. Further, an amplitude modulated version of the
pink noise similar to [6] and a traffic noise taken from [42]
are included. These noise types are also used later in the
evaluation in Section VI. To ensure that different audio material
is used in the evaluation, only the first two minutes of the
respective noise type are used for training. This corresponds to
a partitioning where 50 % of the background noise material is
used for training and 50 % for testing. For training and testing, a
maximum of 200 iterations are performed for the multiplicative
updates in [23]. For testing, the noise matrix appropriate for
the respective noise type is chosen in the evaluation, i.e., the
background noise type is assumed to be known. The employed
non-MLSE-based and the DNN-based enhancement scheme
do not require such prior knowledge. However, as discussed
in [40], [43], such a supervised approach may be appropriate
for some applications, e.g., where the environment can be
identified using an environment classifier.
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Fig. 2. Gain function G}, , of MOSIE [1] over the a posteriori SNR 7y, ¢
for different values of shape p and compression /3. The upper row shows the
results for an a priori SNR of -5 dB and the lower for an a priori SNR of
10 dB. See Table I for related estimators for the values of p and 3.

V. IMPORTANCE OF SUPER-GAUSSIANITY FOR MLSE
BASED SPEECH ENHANCEMENT

In this section, we analyze the effect of the super-Gaussian
speech estimators on non-MLSE-based and MLSE-based
speech enhancement schemes. Before that, we analyze how
the shape p and the compression [ influence the behavior of
MOSIE [1].

A. Analysis of the Gain Functions

In this part, we analyze the behavior of the clean speech
estimator MOSIE [1]. For this, the gain function is considered
which is defined as

G = St/ Y ®)
= [Sk.el/Viel. ©)

The equality between (8) and (9) holds due to the fact
that MOSIE [1] combines an estimate of the clean speech
magnitude Ak,g with the noisy phase @Z,Z' Thus, the gain is
a real-valued function that describes by how much a spectral
coefficient is boosted or attenuated depending on the speech
PSD Aj ,, the noise PSD A}, and the noisy input Yy ¢.
Fig. 2 shows the gain G, of MOSIE [1] over the a
posteriori SNR vy, ¢ for two a priori SNRs: &, o = —5 dB is

shown in the upper row and ;¢ = 10 dB in the lower row.

The compression parameter 3 is varied and the shape p is kept
fixed in the left panel and vice versa in the right panel. It is well
known that super-Gaussian estimators (u < 1) preserve speech
better than Gaussian estimators (u = 1) for large a posteriori
SNRs [13]. However, in the context of MLSE-based speech
enhancement, it is of particular interest to observe in Fig. 2
that with decreasing shape p, a stronger attenuation is applied
to the input coefficients for low a posteriori SNRs ~j, ¢ even if

Fig. 3. Same as Fig. 2 but over the a priori SNR &, , and for two fixed a
posteriori SNRs vy ¢ = 0 dB and v, ¢ = 10 dB.

the a priori SNR &, ¢ is large. A similar effect is observed if a
stronger compression, i.e., smaller values for 3, are employed.

These observations are supported by Fig. 3 where the gain
function G, ¢ is shown over the a priori SNR &, . Here, the
two rows show the behavior for two a posteriori SNRs v;, ¢ =
0 dB and 7, = 10 dB. For the Gaussian case (u = 1),
Fig. 3 shows that the gain G, mainly depends on the a priori
SNR & ¢. If the a posteriori SNR y, ¢ is close to 0 dB and
low values for S and p are employed, i.e., the super-Gaussian
case is considered, the attenuation remains low over a wide
range of a priori SNRs &, ¢. Hence, for MLSE-based speech
enhancement schemes, the residual noise can be suppressed
even for large overestimations of the a priori SNR ;. . This
occurs, e.g., between speech spectral harmonics which are not
resolved by spectral envelope models.

B. Effects of Super-Gaussian Estimators on the Enhancement

In this part, we analyze how the behavior of MOSIE [1]
influences the considered enhancement schemes. For this, a
speech signal taken from the TIMIT test set is corrupted by
stationary pink noise at an SNR of 5 dB. The spectrogram of
the used signal is shown in Fig. 4. This signal is processed
by the non-MLSE-based enhancement scheme and the two
MLSE-based enhancement schemes. In Fig. 5, we depict the
resulting a priori SNRs &, o. For the DNN-based enhancement
scheme, the a priori SNR of the phoneme that is most likely to
be present is shown for each segment. Note that this selection
is only performed for the visualization in Fig. 5. Otherwise,
S’k,g is estimated as in (3). In Fig. 5, the estimated a priori
SNRs &, ¢ obtained from the non-MLSE-based enhancement
scheme shows a fine structure which is similar to the speech
structure visible in Fig. 4. Contrarily, the structure of the a
priori SNRs ¢, ¢ estimated by the MLSE-based enhancement
schemes is very coarse and reveals no or only little of the
harmonic fine structure shown in Fig. 4. Using these envelope
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Fig. 4. Spectrogram of the example speech signal in stationary pink noise at
at 5 dB SNR. Here, f denotes frequency and ¢ time.

models for the speech component leads to an overestimation
of the a priori SNRs &, ¢ between spectral harmonics.

Next, the gain as defined in (8) is considered. For this
example, we use MOSIE [1] with two different parameter
setups. First, a setup is used where the clean speech coeffi-
cients S}, ¢ are assumed to follow a complex circular-symmetric
Gaussian distribution. For this, the parameters of MOSIE [1]
are set to u = 1 and 8 = 0.001, which approximates the
Gaussian LSA [4]. For the second setup, the shape is reduced
to u = 0.2, i.e., a super-Gaussian LSA is employed. To limit
speech distortions, the gain is limited such that attenuations
larger than 12 dB are prevented. This limit is applied throughout
the paper if not stated otherwise. The applied gains for the
Gaussian and super-Gaussian case are shown in Fig. 6.

The upper row in Fig. 6 shows that the overestimations
of the a priori SNR & ¢, e.g., between spectral harmonics,
result in a poor suppression for the MLSE-based enhancement
schemes when using a Gaussian estimator (4 = 1). The non-
MLSE-based enhancement scheme is, however, not affected
and achieves high suppression values between harmonics. As
discussed in Section V, this behavior can be explained from
Fig. 3. For © = 1, the attenuation is mainly controlled by
the a priori SNR &, o where lower a priori SNRs ¢, lead
to higher suppression values. From this it follows that an
overestimation of &y ¢ results in lower attenuations as observed
for the MLSE-based enhancement schemes. As a consequence,
using Gaussian clean speech estimators (see Table I) for MLSE-
based enhancement schemes results in audible artifacts.

Interestingly, the lower row in Fig. 6 shows that the issues
observed for 4 = 1 can be reduced if a super-Gaussian
estimator (u < 1) is employed. In contrast to Fig. 6, noise
is suppressed also between harmonics. Further, also higher
attenuations are applied to the noise only segments. Considering
Fig. 2 and Fig. 3, the behavior can be explained by the fact
that lower shape values cause more suppression for low a
posteriori SNRs ;. 0. Hence, our key conclusion is that using
super-Gaussian clean speech estimators, the background noise
can be suppressed also when MLSE-based approaches are
employed.

VI. INSTRUMENTAL EVALUATION

We evaluate the performance of the different speech es-
timators using instrumental measures such as Perceptual
Evaluation of Speech Quality (PESQ) improvement scores [44]
and segmental SNR (SegSNR) improvements [14], [45]. The

improvements are based on the noisy signal, i.e., they are
computed as the difference between the raw scores of the en-
hanced signal and the noisy signal. Additionally, the segmental
speech SNR (SegSSNR) and the segmental noise reduction
(SegNR) [14] are employed to quantify the speech distortions
and noise suppression, respectively. Higher values for the
SegSSNR indicate less speech distortion and higher values
for the SegNR indicates more noise reduction.

For this evaluation, we use 128 sentences from the TIMIT
core set. Again, it is ensured that the amount of audio material
is balanced between genders. The clean speech signals are
artificially corrupted by the same noise types used for training
the NMF-based enhancement scheme. The SNRs are ranging
from -5 dB to 20 dB in 5 dB steps. For each sentence, the
segment of the noise signal where the speech signals are
embedded in is randomly chosen. The instrumental measures
are only evaluated after a two second initialization period to
avoid initialization artifacts that may bias the results. Similarly,
also the SNRs used for the artificial mixing are determined
based on the signal powers in speech presence. Further, the
noise segments that were used for training the NMF-based
enhancement scheme are excluded in the evaluation for all
enhancement schemes, i.e., also for the non-MLSE-based and
the DNN based enhancement schemes. This is done to make
the enhancement schemes more easily comparable.

A. Performance Impact of MOSIE’s Parameters

In this section, we analyze how the choice of the shape and
the compression parameter influences the performance of clean
speech estimators if used for the MLSE-based enhancement
schemes.

Fig. 7 shows the PESQ improvement scores for MOSIE [1]
as a function of the shape parameter p and the compression
parameter (. The graphs depict the average over all considered
noise types and speech files for two different input SNRs.
For the non-MLSE-based enhancement scheme, increasing
super-Gaussianity (u < 1) and compression (8 < 1) slightly
improve the predicted speech quality by PESQ. However, the
key message is that for the MLSE-based enhancement schemes,
increasing super-Gaussianity (¢ < 1) and compression (5 < 1)
improve the signal quality predicted by PESQ considerably
stronger.

B. Comparison with Common Enhancement Schemes

In this final part of the evaluation section, we compare
the super-Gaussian estimators, i.e., MOSIE [1] to Gaussian
approaches. To demonstrate that super-Gaussian estimators con-
siderably improve the performance of MLSE-based methods,
we use the following two parameter settings for MOSIE [1]:
B = 0.001,4 = 0.2 and 8 = 1,u = 0.2. The parameters
are chosen as a compromise such that all MLSE-based
enhancement schemes yield satisfying results.

Fig. 8 shows PESQ improvement scores and segmental
SNR measures for the considered enhancement schemes. The
results again show that for the non-MLSE-based enhancement
scheme, a super-Gaussian estimator only slightly improves
the performance. Contrarily, the super-Gaussian setup for
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Fig. 6. Gain applied to the noisy input coefficients Y} , by MOSIE [1] for different MLSE-based enhancement schemes for the excerpt shown in Fig. 4. In
the upper row, . = 1 and 8 = 0.001 which approximates the Gaussian LSA proposed in [4] as shown in Table I. In the lower, © = 0.2 and 8 = 0.001 is
used which corresponds to a super-Gaussian LSA. Here, f denotes frequency and ¢ time.

MOSIE [1] performs considerably better than the Gaussian
clean speech estimator, i.e., the Gaussian STSA [3] and the
Gaussian LSA [4], if the MLSE-based estimators are considered.
As shown in Section V, the suppression capability of the
Gaussian approaches is mainly controlled by the a priori
SNR resulting in low suppressions between harmonics for
the MLSE-based enhancement schemes where the a priori
SNR is overestimated. Here, this is reflected by the low
segmental noise reduction values observed for the DNN-based
and the NMF-based approach if the Gaussian STSA [3] or
the Gaussian LSA [4] are employed. However, for the super-
Gaussian estimators MOSIE (u = 0.2, 8 = 0.001) and MOSIE
(u = 0.2,8 = 1) the noise reduction is strongly increased
and the residual noise, e.g., the noise between harmonics, is
reduced. This comes with a slight increase in speech distortion
for MOSIE (1 = 0.2,8 = 0.001) as visible in a decrease
in SegSSNR. For MOSIE (1 = 0.2, = 1), the SegSSNR
remains unchanged or is even slightly increased. Overall, the
behavior of the super-Gaussian estimators helps to improve
the quality predicted by PESQ and to improve the SegSNR.

VII. SUBJECTIVE EVALUATION

As the results of instrumental measures cannot perfectly
represent the impressions of human listeners, we verify the
results using a subjective listening test. For this, we em-
ploy a multi-stimulus test with hidden reference and anchor
(MUSHRA) [46]. In the experiment, two different acoustic

scenarios are tested: traffic noise and babble noise both at an
SNR of 5 dB. For both acoustic scenarios, an utterance of
a male and a female speaker taken from the TIMIT test set
are used. These signals are processed by the non-MLSE-based
enhancement scheme, the DNN-based enhancement scheme,
and the NMF-based enhancement schemes. For all enhancement
schemes, a Gaussian STSA (@ = 1,8 = 1) and a super-
Gaussian STSA (¢ = 0.2,5 = 1) are compared (see Table I).
Even though MOSIE with ¢ = 0.2 and 8 = 0.001 achieves the
highest scores in most instrumental measures, we use MOSIE
with 8 = 1 in the subjective listening test as this configuration
produces less musical artifacts.

In each trial, four signals are presented to the listeners: the
noisy signals processed by the Gaussian and the super-Gaussian
estimator, an anchor, and a hidden reference. The trials are
repeated over all combinations of acoustic conditions, speakers
and enhancement schemes. The reference signal is a noisy
signal with an SNR 17 dB. Finally, for the anchor, the clean
speech utterance is filtered using a low-pass filter at a cutoff
frequency of 4 kHz and mixed at an SNR of —5 dB. This
signal is processed using a non-MLSE-based enhancement
scheme where the noise PSD is estimated using [6] and the
speech PSD is obtained using the decision-directed approach [3]
with a smoothing constant set to 0.9. A Wiener filter with a
minimum gain of —20 dB is employed to obtain the anchor.
The sound examples used in the experiment are also available
at https://uhh.de/inf-sp-tasl2018a.
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MLSE-based approaches, the differences are significant in
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Fig. 7. PESQ improvement scores of MOSIE [1] for all considered
enhancement schemes in dependence of the shape p and compression .
For relations to other clean speech estimators, see Table 1.

A total of 13 subjects have participated in the MUSHRA.
The test took place in a quiet office and the subjects listened to
diotic signals played back through headphones (Beyerdynamic
DT-770 Pro 250 Ohm) through a RME Fireface UFX+ sound
card. The test was conducted in two phases. In the first phase,
the subjects were asked to listen to a subset of the files used in
test such that they can familiarize themselves with the different
signals. During this training phase, the listeners were also asked
to set the level of the headphones to a comfortable level. In
the second phase, the listener’s task was to judge the overall
quality of the signals on a scale ranging from O to 100, where
0 was labeled with “bad” and 100 with “excellent”. The order
of presentations of algorithms and conditions were randomized
between all subjects.

The obtained MUSHRA scores are summarized in Fig. 9
using box plots. The upper and the lower edge of the box
show the upper and lower quartile while the bar within the box
is the median. The upper whisker reaches to the largest data
point that is smaller than the upper quartile plus 1.5 times the

interquartile range. The lower whisker is defined analogously.

The crosses denote outliers that do not fall in the range spanned
by both whiskers. For each box plot, the results of all acoustic

conditions and speakers are pooled, which yields 52 data points.

The result show that all participants were able to detect the
hidden reference, which had to be rated with 100, and that the
anchor was consistently given the lowest scores. Further, the
results clearly confirm that for the DNN and the NMF based
enhancement scheme, the sound quality of the super-Gaussian
estimator is considered better than the Gaussian estimator. For

measures.

VIII. CONCLUSIONS

In this paper, super-Gaussian clean speech estimators have
been analyzed in the context of machine-learning based speech
enhancement approaches that employ spectral envelope models.
We refer to these approaches as MLSE. In the analysis part,
we showed that the usage of envelope models results in an
overestimation of the a priori SNR, e.g., between speech spec-
tral harmonics. As a consequence, using Gaussian estimators,
noise between harmonic structures cannot be reduced such that
residual noises remain after the enhancement. However, in this
paper, we show that employing super-Gaussian clean speech
estimators, such as MOSIE [1], leads to a reduction of the
undesired residual noise. This interesting result stems from
the higher attenuation that is applied by the super-Gaussian
estimators if the a posteriori SNRs are low. This allows the
estimators to compensate for the overestimated a priori SNRs
without any further post-processing steps. As a consequence, we
showed via theoretical analysis and experimental evaluation that
for MLSE-based enhancement schemes, super-Gaussian estima-
tors have a much larger effect on improving the enhancement
performance than for classic non-MLSE-based enhancement
schemes. Sound examples of the considered algorithms are
given at https://uhh.de/inf-sp-tasl2018a.
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