

Timo Gerkmann and Martin Krawczyk-Becker

Phase-Aware Speech Processing

Universität Hamburg Department of Informatics Feb, 2019

1. Introduction

- The Role of Phase in Speech Enhancement
- Different Phase Representation
- 2. Phase Estimation
 - Iterative Phase Reconstruction
 - Harmonic Model

3. Phase-Aware Speech Estimation

- Phase-Aware Amplitude Estimation
- Phase-Aware Complex Estimation
- 4. Evaluation
- 5. Outlook and Conclusions

Hearing aids work well without noise

- Hearing aids work well without noise
- In presence of severe noise the performance drops

- Hearing aids work well without noise
- In presence of severe noise the performance drops
- Apply speech enhancement to reduce the detrimental effect of the noise!

Basic Concept

- The noise is reduced using only a single channel, e.g.
 - a single microphone signal (e.g. in-the-canal hearing aids)

Basic Concept

- The noise is reduced using only a single channel, e.g.
 - a single microphone signal (e.g. in-the-canal hearing aids)
 - the output of a spatial preprocessing stage

🙀 Single-Channel Speech Enhancement

Short-time Fourier Transform (STFT) setup

Real-valued time domain signal

Conventional approaches only enhance the amplitude

Phase-Aware Speech Processing

The Unimportance of Phase in Speech Enhancement

DAVID L. WANG AND JAE S. LIM

1982

Abstract-The importance of Fourier transform phase in speech enhancement is considered. Results indicate that a more accurate estimation of phase is unwarranted in speech enhancement at the S/Nratios where the intelligibility scores of unprocessed speech range from 5 to 95 percent, if the phase estimate is used to reconstruct speech by combining it with an independently estimated magnitude or to reconstruct speech using the phase-only signal reconstruction algorithm.

The Unimportance of Phase in Speech Enhancement

DAVID L. WANG AND JAE S. LIM

1982

Abstract-The importance of Fourier transform phase in speech enhancement is considered. Results indicate that a more accurate estimation of phase is unwarranted in speech enhancement at the S/Nratios where the intelligibility scores of unprocessed speech range from 5 to 95 percent, if the phase estimate is used to reconstruct speech by combining it with an independently estimated magnitude or to reconstruct speech using the phase-only signal reconstruction algorithm.

The importance of phase in speech enhancement

2010

Kuldip Paliwal, Kamil Wójcicki*, Benjamin Shannon¹

Signal Processing Laboratory, Griffith School of Engineering, Griffith University, Nathan, QLD 4111, Australia

Received 24 March 2010; received in revised form 30 November 2010; accepted 6 December 2010 Available online 24 December 2010

Phase Randomization for Click-Noise Removal^[1]

→ Magnitude modification is not sufficient for click removal!

 A. Sugiyama and R. Miyahara. "Phase randomization – A new paradigm for single-channel signal enhancement". In: IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada, 2013, pp. 7487–7491.

SF

Signal Processir

^[2] Y. Ephraim and D. Malah. "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator". In: IEEE Trans. Acoust., Speech, Signal Process. 32.6 (1984), pp. 1109–1121.

- Is the phase Φ_S just random and independent of A?
- If so, then the noisy phase would be the MMSE-optimal estimate^[2].

^[2] Y. Ephraim and D. Malah. "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator". In: IEEE Trans. Acoust., Speech, Signal Process. 32.6 (1984), pp. 1109–1121.

- Circular symmetric joint PDF
 - → Phase is uniformly distributed and independent of the amplitude
 - → The MMSE optimal estimate of the clean speech phase is the noisy phase^[2]

^[2] Y. Ephraim and D. Malah. "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator". In: IEEE Trans. Acoust., Speech, Signal Process. 32.6 (1984), pp. 1109–1121.

^[3] T. Lotter and P. Vary. "Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model". In: EURASIP J. Applied Signal Process. 2005.7 (2005), pp. 1110–1126.

 Histogram were computed from coefficients with similar SNR (19-21 dB).

- Histogram were computed from coefficients with similar SNR (19-21 dB).
- → Temporal and spectral correlations are not reflected.
- → In practice, we have past data available!

- Random phase

^[4] P. Vary. "Noise Suppression By Spectral Magnitude Estimation – Mechanism and Theoretical Limits". In: ELSEVIER Signal Process. 8 (1985), 387–400.

- Random phase

 - sounds rough
- Clean phase + random phase
 - π/2:
 - π/8:
 - clean:

^[4] P. Vary. "Noise Suppression By Spectral Magnitude Estimation – Mechanism and Theoretical Limits". In: ELSEVIER Signal Process. 8 (1985), 387–400.

- Random phase

 - sounds rough
- Clean phase + random phase
 - π/2:
 - π/8:
 - clean:
 - differences only perceivable when phase error $pprox \pi/4$
- → Phase errors perceivable when local SNR $< 6 \, dB^{[4]}$

^[4] P. Vary. "Noise Suppression By Spectral Magnitude Estimation – Mechanism and Theoretical Limits". In: ELSEVIER Signal Process. 8 (1985), 387–400.

- \blacksquare Transform to baseband by multiplying ${\rm e}^{-{\rm j}\frac{2\pi}{N}k\ell L}$
- Plot phase difference between neighboring frames
- Less phase wrapping!
- → In voiced segments, the phase-change and amplitude trajectories are clearly related!

Other Phase Representations^[5]

Phase-Aware Speech Processing

Phase Estimation

 When magnitude and phase are modified independently, their STFT is not consistent^[5]

^[5] T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux. "Phase Processing for Single Channel Speech Enhancement: History and Recent Advances". In: IEEE Signal Process. Mag. 32.2 (2015), pp. 55–66.

- Only the spectral amplitudes of a speech signal are known
- → Goal: Find the spectral phase that produces a consistent STFT
 - → Iteratively compute the iSTFT and STFT, refining the phase estimate in each iteration

^[6] D. W. Griffin and J. S. Lim. "Signal estimation from modified short-time Fourier transform". In: IEEE Trans. Acoust., Speech, Signal Process. 32.2 (1984), pp. 236–243.

- Only the spectral amplitudes of a speech signal are known
- → Goal: Find the spectral phase that produces a consistent STFT
 - Iteratively compute the iSTFT and STFT, refining the phase estimate in each iteration

[6] D. W. Griffin and J. S. Lim. "Signal estimation from modified short-time Fourier transform". In: IEEE Trans. Acoust., Speech, Signal Process. 32.2 (1984), pp. 236–243.

Time Domain

For now we consider only voiced speech

18

Harmonic Model

Time Domain

- For now we consider only voiced speech
- We model voiced speech with a harmonic model
 - → Sum of *weighted* and *shifted* sinusoids at the fundamental frequency f_0 and its harmonics f_h

Frequency Domain

• Infinitely long signal \rightarrow Impulse train at harmonic frequencies f_h

Signal Proce

Harmonic Model

Frequency Domain

- Infinitely long signal \rightarrow Impulse train at harmonic frequencies f_h
- Finite-length analysis window $w(t) \circ \bullet W(f)$
- Multiplication ○—● cyclic convolution

Harmonic Model

Frequency Domain

- Infinitely long signal \rightarrow Impulse train at harmonic frequencies f_h
- Finite-length analysis window $w(t) \circ \bullet W(f)$
- Multiplication ○—● cyclic convolution
- Process vicinity of each harmonic separately

Thanks to the convolution with W(f), the phases are directly related:

$$\Phi_{S}(f_{2}) = \Phi_{S}(f_{1}) - \Phi_{W}(f_{1} - f_{h}) + \Phi_{W}(f_{2} - f_{h})$$

$$\approx \Phi_{Y}(f_{1}) - \Phi_{W}(f_{1} - f_{h}) + \Phi_{W}(f_{2} - f_{h})$$

- Assumption: In each frequency band, only one harmonic is active
- Signal with frequency f_0

- Assumption: In each frequency band, only one harmonic is active
- Signal with frequency f_0
- Phase at $t_1:\phi(t_1)=2\pi f_0t_1+\phi_0$, with initial phase ϕ_0

- Assumption: In each frequency band, only one harmonic is active
- Signal with frequency f_0
- Phase at $t_1:\phi(t_1)=2\pi f_0t_1+\phi_0$, with initial phase ϕ_0
- Phase at t_2 : $\phi(t_2) = 2\pi f_0 t_2 + \phi_0$

Signal Processing

- Assumption: In each frequency band, only one harmonic is active
- Signal with frequency f₀
- Phase at $t_1:\phi(t_1)=2\pi f_0t_1+\phi_0$, with initial phase ϕ_0
- Phase at t_2 : $\phi(t_2) = 2\pi f_0 t_2 + \phi_0$
- STFT segment shift of L samples: $\Delta \phi = \phi(t_2) \phi(t_1) = 2\pi f_0 \frac{L}{f_s}$

1. Compute STFT

Signal Process

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

- 1. Compute STFT
- 2. Estimate fundamental freq. f_0

Signal Proce

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

- 1. Compute STFT
- 2. Estimate fundamental freq. f_0
- 3. Reconstruct the clean speech phase Φ_S along time in frequency bands that contain harmonics (red)

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

- 1. Compute STFT
- 2. Estimate fundamental freq. f_0
- 3. Reconstruct the clean speech phase Φ_S along time in frequency bands that contain harmonics (red)

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

- 1. Compute STFT
- 2. Estimate fundamental freq. f_0
- 3. Reconstruct the clean speech phase Φ_S along time in frequency bands that contain harmonics (red)

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

- 1. Compute STFT
- 2. Estimate fundamental freq. f_0
- 3. Reconstruct the clean speech phase Φ_S along time in frequency bands that contain harmonics (red)

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

- 1. Compute STFT
- 2. Estimate fundamental freq. f_0
- 3. Reconstruct the clean speech phase Φ_S along time in frequency bands that contain harmonics (red)

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

- 1. Compute STFT
- 2. Estimate fundamental freq. f_0
- 3. Reconstruct the clean speech phase Φ_S along time in frequency bands that contain harmonics (red)
- 4. Starting from these bands, the remaining phases are reconstructed along frequency (blue)

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

Phase-Only Speech Enhancement

Phase-Only Speech Enhancement

T. Gerkmann

Phase-Only Speech Enhancement

Phase-Aware Speech Estimation

 Conventional speech enhancement schemes only modify the spectral amplitude

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

^[8] T. Gerkmann and M. Krawczyk. "MMSE-Optimal Spectral Amplitude Estimation Given the STFT-Phase". In: IEEE Signal Process. Lett. 20.2 (2013), pp. 129–132.

^[9] T. Gerkmann. "Bayesian estimation of clean speech spectral coefficients given a priori knowledge of the phase". In: IEEE Trans. Signal Process. 62.16 (2014), pp. 4199–4208.

^[10] M. Krawczyk-Becker and T. Gerkmann. "On MMSE-Based Estimation of Spectral Speech Coefficients Under Phase-Uncertainty". In: IEEE/ACM Trans. Audio, Speech, Language Process. 24.12 (2016), pp. 2251–2262.

- Conventional speech enhancement schemes only modify the spectral amplitude
- But: The clean phase can be estimated (e.g. via^[7]) and used
 - $1. \ \mbox{to directly replace the noisy phase}$

^[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

^[8] T. Gerkmann and M. Krawczyk. "MMSE-Optimal Spectral Amplitude Estimation Given the STFT-Phase". In: IEEE Signal Process. Lett. 20.2 (2013), pp. 129–132.

^[9] T. Gerkmann. "Bayesian estimation of clean speech spectral coefficients given a priori knowledge of the phase". In: IEEE Trans. Signal Process. 62.16 (2014), pp. 4199–4208.

^[10] M. Krawczyk-Becker and T. Gerkmann. "On MMSE-Based Estimation of Spectral Speech Coefficients Under Phase-Uncertainty". In: IEEE/ACM Trans. Audio, Speech, Language Process. 24.12 (2016), pp. 2251–2262.

- Conventional speech enhancement schemes only modify the spectral amplitude
- But: The clean phase can be estimated (e.g. via^[7]) and used
 - 1. to directly replace the noisy phase
 - and/or as extra information to facilitate speech estimation (e.g.^{[8][9][10]})

[7] M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement". In: IEEE/ACM Trans. Audio, Speech, Language Process. 22.12 (Dec. 2014), pp. 1931–1940.

[8] T. Gerkmann and M. Krawczyk. "MMSE-Optimal Spectral Amplitude Estimation Given the STFT-Phase". In: IEEE Signal Process. Lett. 20.2 (2013), pp. 129–132.

[9] T. Gerkmann. "Bayesian estimation of clean speech spectral coefficients given a priori knowledge of the phase". In: IEEE Trans. Signal Process. 62.16 (2014), pp. 4199–4208.

[10] M. Krawczyk-Becker and T. Gerkmann. "On MMSE-Based Estimation of Spectral Speech Coefficients Under Phase-Uncertainty". In: IEEE/ACM Trans. Audio, Speech, Language Process. 24.12 (2016), pp. 2251–2262.

Notation:

• Noisy speech:
$$Y = |Y|e^{j\Phi_Y} = \underbrace{|S|e^{j\Phi_S}}_{\text{clean speech}} + \underbrace{|V|e^{j\Phi^V}}_{\text{noise}}$$

- Classic, phase-blind Bayesian amplitude estimation $\widehat{|S|}^{\beta} = E(|S|^{\beta} | Y)$
 - → The clean speech phase is considered unknown and random.

Notation: Noisy

Noisy speech:
$$Y = |Y|e^{j\Phi_Y} = \underbrace{|S|e^{j\Phi_S}}_{\text{clean speech}} + \underbrace{|V|e^{j\Phi^V}}_{\text{noise}}$$

- - \Rightarrow The clean speech phase is considered unknown and random.

Proposed phase-aware amplitude estimator

$$\begin{split} \widehat{S} &|= \left(\mathbf{E} \left(|S|^{\beta} \mid Y, \Phi_{S} \right) \right)^{\frac{1}{\beta}} \\ &= \sqrt{\frac{1}{2} \frac{\xi}{\mu + \xi} \sigma_{v}^{2}} \left(\frac{\Gamma(2\mu + \beta)}{\Gamma(2\mu)} \frac{\mathbf{D}_{-(2\mu + \beta)}(\nu)}{\mathbf{D}_{-(2\mu)}(\nu)} \right)^{\frac{1}{\beta}} \end{split}$$

 eta, μ : compression, degree of super-Gaussianity D.(ν), $\Gamma(\cdot)$: parabolic cylinder function, Gamma function, $\xi = \sigma_{\rm s}^2/\sigma_{\rm v}^2$: a priori SNR

 $\nu {:}\,$ contains the phase difference $\Delta \phi$

$$\nu = -\frac{|Y|}{\sigma_{\rm V}} \sqrt{2\frac{\xi}{\mu+\xi}} \cos(\underbrace{\Phi_Y - \Phi_S}_{\Delta\phi})$$

^[8] T. Gerkmann and M. Krawczyk. "MMSE-Optimal Spectral Amplitude Estimation Given the STFT-Phase". In: IEEE Signal Process. Lett. 20.2 (2013), pp. 129–132.

Input-Output Characteristic at low SNRs

- If $(\Phi_Y \Phi_S) \rightarrow 0$, *less* attenuation is applied,
- If $(\Phi_Y \Phi_S)$ large, *more* attenuation is applied.
- → New way to distinguish noise outliers from speech!

^[8] T. Gerkmann and M. Krawczyk. "MMSE-Optimal Spectral Amplitude Estimation Given the STFT-Phase". In: IEEE Signal Process. Lett. 20.2 (2013), pp. 129–132.

Speech amplitude averaged over 1 kHz

- Speech amplitude averaged over 1 kHz
- Distorted by a noise burst

- Speech amplitude averaged over 1 kHz
- Distorted by a noise burst
- Noise is hardly suppressed by conventional phase-blind estimators

- Speech amplitude averaged over 1 kHz
- Distorted by a noise burst
- Noise is hardly suppressed by conventional phase-blind estimators
- Phase difference yields additional info

- Speech amplitude averaged over 1 kHz
- Distorted by a noise burst
- Noise is hardly suppressed by conventional phase-blind estimators
- Phase difference yields additional info
- New means to distinguish noise outliers from speech

- Recall: Using the phase estimate may result in harmonic artifacts!
- While combining with enhanced magnitudes reduces the effect, in stationary broadband noise, these artifacts remain audible

Challenge: Use phase estimate also for signal reconstruction.

Idea: Joint estimation of amplitude and phase with uncertain phase prior

$$\widehat{S}^{(\beta)} = \mathbf{E} \left(A^{\beta} \mathbf{e}^{\mathbf{j} \Phi_S} \mid y, \widetilde{\Phi_S} \right)$$

- Main difference to existing phase-blind estimators:
 - → Choice of the phase prior $p(\Phi_S | \widetilde{\Phi_S})$

Choice of Phase Prior

- We model the phase prior with a flexible von Mises distribution:
 - $p(\Phi_S | \widetilde{\Phi_S}) = \mathcal{M}(\widetilde{\Phi_S}, \varkappa) \qquad \begin{array}{c} \widetilde{\Phi_S}: \text{ mean direction} \\ \varkappa: \text{ concentration around } \widetilde{\Phi_S} \end{array}$
- \varkappa is used to model the uncertainty in the initial phase estimate $\widetilde{\Phi_S}$

Choice of Phase Prior

- We model the phase prior with a flexible von Mises distribution:
 - $p(\Phi_S | \widetilde{\Phi_S}) = \mathcal{M}(\widetilde{\Phi_S}, \varkappa) \qquad \begin{array}{c} \widetilde{\Phi_S}: \text{ mean direction} \\ \varkappa: \text{ concentration around } \widetilde{\Phi_S} \end{array}$
- \varkappa is used to model the uncertainty in the initial phase estimate $\widetilde{\Phi_S}$

x = 0: Uniform phase prior
 ⇒ Phase-blind estimators

•
$$\varkappa > 0$$
: Uncertainty in $\widetilde{\Phi_S}$

• $\varkappa \to \infty$: Assumes that the prior phase is exactly the true clean speech phase $\widetilde{\Phi_S} = \Phi_S$

Input-Output Characteristic at low SNRs^[9]

^[9] T. Gerkmann. "Bayesian estimation of clean speech spectral coefficients given a priori knowledge of the phase". In: IEEE Trans. Signal Process. 62.16 (2014), pp. 4199–4208.

	Complex estimators	Amplitude estimators
phase-blind $\varkappa = 0$	[10]	PBA ^[11]
uncertain phase $0 < \varkappa < \infty$	PAC ^[9]	PAA ^[10]
certain phase $\varkappa ightarrow \infty$	PAC ^[8]	PAA ^[8]

- PBA: Phase-blind amplitude
- PAC: Phase-aware complex
- PAA: Phase-aware amplitude

[11] C. Breithaupt, M. Krawczyk, and R. Martin. "Parameterized MMSE Spectral Magnitude Estimation for the Enhancement of Noisy Speech". In: IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). Las Vegas, NV, USA, 2008, pp. 4037–4040.

[9] T. Gerkmann. "Bayesian estimation of clean speech spectral coefficients given a priori knowledge of the phase". In: IEEE Trans. Signal Process. 62.16 (2014), pp. 4199–4208.

[10] M. Krawczyk-Becker and T. Gerkmann. "On MMSE-Based Estimation of Spectral Speech Coefficients Under Phase-Uncertainty". In: IEEE/ACM Trans. Audio, Speech, Language Process. 24.12 (2016), pp. 2251–2262.

[8] T. Gerkmann and M. Krawczyk. "MMSE-Optimal Spectral Amplitude Estimation Given the STFT-Phase". In: IEEE Signal Process. Lett. 20.2 (2013), pp. 129–132.

^[10] M. Krawczyk-Becker and T. Gerkmann. "On MMSE-Based Estimation of Spectral Speech Coefficients Under Phase-Uncertainty". In: IEEE/ACM Trans. Audio, Speech, Language Process. 24.12 (2016), pp. 2251–2262.

Evaluation

Algorithm Overview

Different Degrees of Non-Stationarity

- Speech: Gender-balanced TIMIT core-set at 16 kHz
- Speech PSD $\sigma_{\!\rm S}^2$ estimation via the decision-directed approach $^{[2]}$
- Noise PSD σ_v^2 estimation based on speech presence probability^[12]
- Two noise types with increasing amount of non-stationarity
 - 1. Pink noise modulated with an increasing modulation frequency
 - 2. Multi-talker babble with decreasing number of talkers
- → Increasingly challenging for phase-blind speech enhancement

^[2] Y. Ephraim and D. Malah. "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator". In: IEEE Trans. Acoust., Speech, Signal Process. 32.6 (1984), pp. 1109–1121.

^[12] T. Gerkmann and R. C. Hendriks. "Unbiased MMSE-based noise power estimation with low complexity and low tracking delay". In: IEEE Trans. Audio, Speech, Language Process. 20.4 (2012), pp. 1383–1393.

Different Degrees of Non-Stationarity, 0 dB SNR, $\varkappa
ightarrow \infty$

Clean speech phase Φ_{S} is known

■ Increasing non-stationarity → increasing benefit of phase-aware processing

Known Clean Speech Phase

- 128 TIMIT sentences (gender balanced)
- Averaged over 4 noise types (pink, modulated pink, factory, babble)

Known Clean Speech Phase

- 128 TIMIT sentences (gender balanced)
- Averaged over 4 noise types (pink, modulated pink, factory, babble)
- → Phase-aware amplitude estimator outperforms phase-blind counterparts

Known Clean Speech Phase

- 128 TIMIT sentences (gender balanced)
- Averaged over 4 noise types (pink, modulated pink, factory, babble)
- → Phase-aware amplitude estimator outperforms phase-blind counterparts
- → The phase-aware complex estimator yields further improvements

Estimated Clean Speech Phase

- ${\ensuremath{\,\bullet\)}}$ The initial phase $\widetilde{\Phi_S}$ is estimated from the noisy signal
- → Highest PESQ scores for the phase-aware complex estimator
- → Highest STOI scores for the phase-aware amplitude estimator

Estimated Clean Speech Phase

- ${\ensuremath{\,\bullet\)}}$ The initial phase $\widetilde{\Phi_S}$ is estimated from the noisy signal
- → Highest PESQ scores for the phase-aware complex estimator
- → Highest STOI scores for the phase-aware amplitude estimator
- → Considering the uncertainty \varkappa yields further improvements

Experimental Setup

- Pairwise comparison test separately for
 - Speech quality (SQ)
 - Noise reduction (NR)
 - Overall preference (OP)
- Clean speech sentences (TIMIT database) mixed with
 - babble noise with hammering (-/+5 dB)
 - walk in the park (-/+5 dB)
 - stationary pink noise (-/+5 dB)
- Clean speech was always provided as a reference
- Diotic headphone presentation at 65 dB SPL
- 20 self-reported normal hearing listeners

Estimated Speech Phase

(SQ) speech quality – (NR) noise reduction – (OP) overall preference

Most gain in challenging acoustic scenarios

Estimated Speech Phase

- Only head-to-head comparisons of PBA and PAA
- Statistically significant preference in noise reduction and overall

^[13] M. Krawczyk-Becker and T. Gerkmann. "An evaluation of the perceptual quality of phase-aware single-channel speech enhancement". In: J. Acoust. Soc. Amer. 140.4 (2016), EL364–EL369.

Outlook and Conclusions

- In the last 1-2 years, we observe a drastic increase on ML-based phase-aware processing
- Again, avoiding phase wrapping is crucial
- Phase and amplitude can be jointly estimated in a multi-objective DNN
- → Exciting and challenging ML-problem

N. Zheng and X.-L. Zhang. "Phase-Aware Speech Enhancement Based on Deep Neural Networks". In: IEEE Trans. Audio, Speech, Language Process. 27.1 (2019), pp. 63–76

D. S. Williamson. "Monaural Speech Separation Using a Phase-Aware Deep Denoising Auto Encoder". In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). Aalborg, Denmark, 2018, pp. 1–6

Z.-Q. Wang et al. "End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction". In: Proc. Interspeech 2018. Hyderabad, India, 2018, pp. 2708–2712

K. Oyamada et al. "Generative adversarial network-based approach to signal reconstruction from magnitude spectrogram". In: 2018 26th European Signal Processing Conference (EUSIPCO). Rome, Italy, 2018, pp. 2514–2518

Is phase important?

Is phase important?

- It yields valuable information that can be used to
 - → Distinguish speech from noise
 - → Benefit speech enhancement in challenging acoustic scenarios

Is phase important?

- It yields valuable information that can be used to
 - → Distinguish speech from noise
 - → Benefit speech enhancement in challenging acoustic scenarios

And it remains an interesting research topic:

- Phase estimation in unvoiced sounds
- Research on phase-aware machine learning based algorithms

References

A. Sugiyama and R. Miyahara. "Phase randomization - A new paradigm for single-channel signal enhancement". In: IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada, 2013, pp. 7487-7491. Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator". In: IEEE Trans. Acoust., Speech, Signal Process. 32.6 (1984), pp. 1109-1121. T. Lotter and P. Vary, "Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model", In: EURASIP J. Applied Signal Process, 2005.7 (2005), pp. 1110-1126. P. Vary. "Noise Suppression By Spectral Magnitude Estimation - Mechanism and Theoretical Limits". In: ELSEVIER Signal Process, 8 (1985), 387-400. T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux. "Phase Processing for Single Channel Speech Enhancement: History and Recent Advances". In: IEEE Signal Process. Mag. 32.2 (2015), pp. 55-66. 5 D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform", In: IEEE Trans. Acoust., Speech, Signal Process. 32.2 (1984), pp. 236-243. M. Krawczyk and T. Gerkmann. "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement", In: IEEE/ACM Trans. Audio. Speech, Language Process, 22.12 (Dec. 2014), pp. 1931-1940 T. Gerkmann and M. Krawczyk, "MMSE-Optimal Spectral Amplitude Estimation Given the STFT-Phase". In: IEEE Signal Process. Lett. 20.2 (2013), pp. 129-132. T. Gerkmann, "Bayesian estimation of clean speech spectral coefficients given a priori knowledge of the phase". In: IEEE Trans. Signal Process. 62.16 (2014), pp. 4199-4208. M. Krawczyk-Becker and T. Gerkmann. "On MMSE-Based Estimation of Spectral Speech Coefficients Under Phase-Uncertainty", In: IEEE/ACM Trans. Audio, Speech, Language Process, 24.12 (2016). pp. 2251-2262. C. Breithaupt, M. Krawczyk, and R. Martin. "Parameterized MMSE Spectral Magnitude Estimation for the Enhancement of Noisy Speech", In: IEEE Int, Conf. Acoust., Speech, Signal Process, (ICASSP), Las Vegas, NV, USA, 2008, pp. 4037-4040. T. Gerkmann and R. C. Hendriks. "Unbiased MMSE-based noise power estimation with low complexity and low tracking delay". In: IEEE Trans. Audio, Speech, Language Process. 20.4 (2012), pp. 1383-1393. M. Krawczyk-Becker and T. Gerkmann, "An evaluation of the perceptual quality of phase-aware single-channel speech enhancement", In: J. Acoust. Soc. Amer. 140.4 (2016), EL364-EL369.