
EVOLUTIONARY DEVELOPMENT OF FRAMEWORKS –
FROM PROJECTS TO SYSTEM FAMILIES

Matthias Riebisch and Bogdan Franczyk*

Technical University of Ilmenau

*tranSIT GmbH Ilmenau

University Essen

ABSTRACT

Object-oriented software engineering did not reach all
productivity objectives expected in the beginning. A lack
of methodical support results in low comprehensibility of
code and documentation. Reusability was attained only in
projects, in which a system family was the target. This
paper examines different attempts with respect to their
systematic support for development of system families.
Based on Domain Analysis, there is introduced an
evolutionary methodology for reaching multiple use of
software engineering results. The approach starts from an
existing system and offers a pragmatic and systematic way
to describe common and variable parts of systems
explicitly and comprehensively. Based on this
descriptions, the development of systems with high
adaptability and maintainability is attainable. Generative
Programming is mentioned as a new software paradigm
offering a way to simplify the implementation process by
utilization of meta-programming.

INTRODUCTION

The object-oriented software paradigm was developed
with the intent of firmly increasing the productivity of
software development. Its revolutionary concepts like
class and object, encapsulation, information hiding,
dynamic polymorphism and late binding doubtless
contributed to the increase of productivity in a number of
software projects. The object-oriented software paradigm
has facilitated the development of elegant and
maintainable software with concepts like class libraries
and frameworks. However, the analysis of several
framework based projects shows that reusability is less
utilized than expected. An example of a failed framework
project is Taligent, in which case it was impossible to
handle interdependencies between different frameworks
and their specializations.

Successful projects pursue the target to develop a
system family. In this way, an attempt is made to develop

a class of applications in a systematic way. First, this
article examines different attempts from research and
practice with respect to their contribution to the systematic
development of system families. An evolutionary
methodology is introduced, based on domain knowledge
(Wartik et al., 1992). The approach starts from usual
project oriented conditions and offers a pragmatic and
systematic way to the development of frameworks. In
order to determine commonalities and variabilities of
system families, a systematic procedure is necessary. On
this basis, the development of software with broad
reusability is attainable.

Generative Programming (Czarnecki, 1999) is
presented as a further attempt to achieve reusability,
radically turning away from conventional procedures by
utilizing descriptions above the level of programming
languages.

STATE OF THE ART

In its thirty-year history, software engineering has
produced several software paradigms, each connected
with expectations that reusability, adaptability, flexibility,
control of complexity and performance of software can be
attained. Practice has shown that, next to other subjective
factors, the mastery of complexity and the abilities to
support abstraction play a great part in the success of
reuse.

OBJECT-ORIENTED PROGRAMMING

Despite of new concepts like classes and objects,
encapsulation and information hiding, dynamic
polymorphism and relationships, and object identity, the
object-oriented software paradigm has not reached any
pioneering progress in the direction of maintainability,
reusability and development of system families. One of
the most important reasons for this is that methods still
provide insufficient support for the analysis and design of
frameworks and components. Most frameworks are
developed ad hoc and not really systematically. However,

Integrated Design and Process Technology, IDPT 1999
Printed in the United States of America, June, 2000

 © 1999 Society for Design and Process Science

the development of several applications in the same
domain results in economic benefits by using the concepts
of abstraction and generalization. Wirfs-Brock et al.
(1990) describe the process of framework development as
follows: ''Good frameworks are usually the result of many
design iterations and a lot of hard work''.

Framework development is not sufficiently supported
by object-oriented modeling languages and methods. The
means of object-oriented design are appropriate for
engineering of single systems. There is less support for
describing concepts of domain analysis and for specifying
the differences between similar systems. The software
engineering process does not lead to planned development
of reusable systems on a level above that of code.

In contrast to the traditional object-oriented analysis
and design methods, there is a set of newer methods, such
as OOram (Reenskaug et al., 1996) and Catalysis
(D`Souza et al., 1998), which explicitly support modeling
of frameworks and the application of design patterns. A
contribution of OOram to framework modeling is the
recognition that collaboration, instead of class, is the
fundamental abstraction in object-oriented designs. A
collaboration describes communicating objects, playing
specific roles in a certain pattern. A composition of
collaborations is more suitable for modeling a framework
at the conceptual level than modeling it as a composition
of classes. In Catalysis, the basic concepts are objects and
actions. An object represents a cluster of information and
functionality. Actions represent anything that happens, i.e.
event, task, job, message, change of state, interaction, or
activity. Catalysis places actions on an equal footing with
objects, because independent design requires the careful
consideration of actions and their results.

REUSABILITY USING FRAMEWORKS

In this context, a framework is an arrangement of
classes for solving a task with some variants. In
frameworks, the variation points are implemented by Hot
Spots. Positioning of Hot Spots is done by so-called slide-
in methods (Pree, 1996). The quality of frameworks is
measured in terms of how the demanded variability is
reached. The variability reached by Hot Spots enlarges the
usability of frameworks. However, a systematic procedure
for the specification of useful variation points is still
missing. In the practical use of frameworks it often occurs
that a needed Hot Spot is not available or not applicable.
On the other hand, frameworks are also provided with
unnecessary Hot Spots. Maintainability as well as
clearness and understandability are reduced; effective
variability is not increased.

The unsystematic procedure often leads to
"Fragmentation Of Design". According to Czarnecki
(1999), this is based on the fact that the implementation of

design patterns (Gamma et al., 1995) is not possible in an
adequate manner in common programming languages. A
further reason for the limited comprehensibility of
frameworks can be found in an insufficient application of
the software engineering principle of "Separation Of
Concerns". In frameworks, there is a mix of code for
functions with code for purposes of synchronization, of
distribution and of optimization. Kiczales et al. (1997)
describe this situation, appearing especially in
frameworks, as "Tangled Code". This results in a
framework with low understandability and
maintainability; it is almost impossible to adopt and, thus,
is reusable in rare cases.

ASPECT ORIENTED PROGRAMMING

Aspect oriented programming (Kiczales et al., 1997)
provides techniques to avoid "Tangled code" in
frameworks. The aim is the separation of single aspects
like synchronization, distribution etc. in the source code.
The introduction of new aspects into program code,
however, is connected with the refactoring of single
program parts. Unfortunately, during the development of
applications, coding of functions is done first. Coding of
aspects is executed later, so refactoring leads to a loss of
clear structure. The framework code becomes very
complex.

Reusability of frameworks becomes impossible if their
combination leads to overlapping of their functions. This
effect appears if two frameworks implement identical
aspects in different ways. Czarnecki (1999) calls such
situations Object Collisions. Examples are Error Handling
methods, Memory management Schemes,
Synchronization Schemes etc. Again, this situation can be
attributed to the ad hoc design of the involved
frameworks.

An important deficiency in the framework design
consists in the "Semantic Gap" between domain concepts
and the used programming languages. The translation of
domain concepts into programming languages causes a
loss of design information. Thus the code of the
frameworks is less understandable and, as a consequence,
less maintainable. The transfer of the experiences
contained in the framework into other implementations is
often impossible. Therefore, during further development,
the frameworks and the systems based on them age
instead of mature.

DOMAIN ANALYSIS

Domain analysis models requirements at a level of
abstraction above programming language and software
architecture. It describes the application area, the so-called
domain, by semantic evaluation of concepts and their
connections (Neighbors, 1980). By means of this

abstraction, it is possible to omit irrelevant details during
analysis and design and, thus, to master the complexity of
software systems. The software designer works mainly by
means of abstraction. Abstraction allows the description
and the construction of multiple applicable solutions. The
principle of abstraction is the most important basis of all
software paradigms, even more important than the
differences between them.

Commonalities and variabilities are significant for
abstraction, according to Coplien (1998). Commonality
and variability group abstractions with equal properties.
An abstraction expresses a combination of properties.
Commonality enables the implementation of properties
common for different systems in the considered domain.
The examination of system families in the view of
commonality and variability is a main impact of domain
analysis. In the conventional object-oriented analysis,
abstractions are used to find objects (classes). In
comparison, in domain analysis, families of abstractions
are detected while modeling the application domain.
Feature modeling is the activity of modeling the common
and the variable properties of concepts and their
interdependencies and organizing them into a coherent
model, referred to as a feature model. Feature modeling
constitutes the major contribution of domain analysis in
comparison to conventional software engineering. Feature
modeling helps us to avoid the situation that relevant
features and variation points are not included, or that other
features and variation points are included but never used.

Feature models provide an abstract, implementation
independent, concise, and explicit representation of the
variability contained in the software. A feature should
have a concise and descriptive name. The name enriches
the vocabulary for describing concepts and instances in
the domain. By organizing features into feature diagrams,
we actually build taxonomies. Features are primarily used
in order to discriminate between instances of a system
family. In this context, important characteristics of a
feature are primitiveness, generality and independence.
Features occur at any level, e.g. system requirements
level, architectural level, subsystem and component level,
and implementation level. Modeling the semantics of
features requires some additional formalisms, e.g. object
diagrams, interaction diagrams, state diagrams, etc.

A feature model consists of a feature diagram and
some additional information such as a short semantic
description of each feature. A feature diagram consists of
a set of nodes, a set of directed edges and a set of edge
decorations. Figure 4 shows an example. The nodes and
edges form a tree. The root of a feature diagram represents
a concept. The parent node of a feature node is either the
concept node, or another feature or subfeature node,
respectively. Feature diagrams allow us to represent
concepts in a way that makes explicit the commonalties

and variabilities among their instances. A common feature
of a concept is present in all instances of a concept.
Variability in feature diagrams is expressed by options
and alternatives. Alternatives are shown by arcs. The
nodes with attached variable features are called variation
points (Jacobson et al., 1997).

This domain analysis based approach is not applicable
where project organization demands a sequential phased
model of the software development process. In these
cases, the target and the provision of the budget are
focused on the implementation of the single current task
and not on the development of a system family.
Development of similar systems is carried out
independent of the previous work, even if further
developments are intended. The independent process of
every development cycle is represented in Figure 1 as
cluster, as suggested by Henderson-Sellers et al., 1990.
Essential phases of the process are requirements analysis
and specification (Specif), design, implementation and
integration (DesignImplem) as well as deployment and
maintenance (Maintenance).

Measures for future reusability within a single cluster
are to be financed only on a low volume. Ad hoc domain
knowledge is not structured or not even available; a
complete analysis of the domain is usually not practicable
by time and cost reasons. Therefore, commonality and
variability with respect to a system family can not be
investigated systematically. The first development cycle
(Cluster 1) implements only the current requirements
(ReqSpec). Systematic measures for assuring variability
are not possible. Nevertheless, if such measures are
performed, they frequently prove unsuitable during later
development. This is the reason why the willingness of
management for future reusability measures goes down.

If there are available new requirements in a new
Cluster, an attempt is made to continue the development
of former results like design documents and source code
(DesignDoc, SrcCode). The continuation should be more
economic than development from scratch. The new
requirements are compared to the former solutions at
implementation level. A systematic comparison with the
requirement descriptions is impossible due to their
informal character. Implementing the new requirements is
carried out by revision of the former solution. Lacking
methodical support, this process leads to the loss of
structure within the solution. Design principles are no
longer recognizable. A documentation of principles with
design patterns is impossible. The maturity process
required for framework development does not take place.
Instead of maturing the structure degenerates and the
quality parameters of the solution become worse. Quality
characteristics like clearness and maintainability are
especially effected.

GENERATIVE PROGRAMMING

Generative programming is a novel approach to the
systematic development of system families. It includes
both, the development of a domain model and its
implementation. The domain model defines the
terminology of a domain by means of concepts and their
relations. A domain model is implemented by refining the
feature model, providing the base for the generator. The
implementation of the domain model contains knowledge
in form of domain concepts, rules of composition and
relations to other domains (Eisenecker, 1997 and
Czarnecki, 1999). Its transformation into an executable
program is performed by a generator. Thus, problem
solving with generative programming is performed on a
higher level of abstraction. System families can be
described at the level of domain modeling, making
reusability of results possible at the same level.

Generative programming uses several techniques and
couples them to a methodology. Domain-specific
language techniques (Van Deursen, 1997) are used to
improve clearness of program code, and to enable
domain-specific optimizations and error checking.
Separation of concerns is achieved by separating aspects
from functional components by using aspect-oriented
techniques. Configuration knowledge is used to map
between the problem space and solution space. The
implementation of automatic configuration often requires
metaprogramming (Breymann, 1998). This technique can
further be used to implement the necessary language
extensions. Metaprogramming involves writing programs
whose parts are related by the ''about'' relationship, i.e.
templates in C++ or reflections in Smalltalk and Java.

Practical application of generative programming
depends very much on the power and flexibility of the
used generators. The generator for matrix algebra
purposes developed by Neubert (1998) is an example.

SUGGESTED SOLUTION: EVOLUTIONARY
DEVELOPMENT

Searching for competitive advantages, an increase of
effectivity in software development is necessary. Multiple
use of software fulfills this purpose. Development of
system families by use of frameworks has been successful
in cases where collecting experiences and generalization
of requirements were conducted purposefully. Examples
for successful frameworks are ET ++, SanFrancisco and
Mathematica. The generalization of solutions is made on a
level above the programming language, instead of reusing
design documents and source code.

In the following, a methodology for the evolutionary
development of system families is introduced. It starts
from the conventional development process of a single
system solution. During the further development of this

system, the methodology guides systematically towards
the discovery of commonality and variability and shows a
track towards the creation of a system family.

The development cycle first considered on the track is
shown in Figure 2 as cluster 1. It is performed in the
conventional way and could even have a longer
development history. The result is a new version of a
system with documents, code etc. (DesignDoc, SrcCode).

At first, new requirements for the further development
of the system (cluster 2) are recorded in a requirement
specification (ReqSpec). They are compared to the
requirements implemented in the predecessor system
(cluster 1). Domain analysis methods are used to
investigate commonalities and variabilities (Comm&Var
Spec). The design of the predecessor system is analyzed to
identify design decisions which are relevant for revision in
cluster 2.

Discovering design decisions (DesignDecRec) is an
essential step in the development track towards a system
family. The investigation of commonalities requires an
analysis of alternatives and motivations of former design
decisions. This necessitates extensive knowledge about
common solution principles.

In the implementation of a system, existing variation
points can usually be easily identified. They can be
implemented at different levels. Variation points in
frameworks are often implemented at the code level as
Hot Spots (Pree, 1996). Variabilities at requirements level
can be expressed in Use Cases, as Jacobson et al. (1997)
show. Templates are an example at code level in C ++.
Modules modified by parameters and parameter files for
configuration allow variabilities in runtime. The choice of
components like DLLs are possibilities at link and
installation time.

To represent solution principles comprehensibly, it is
necessary to explicitly describe the design decisions. By
comparison of the requirements between Cluster 1 and
Cluster 2 some commonalities and variabilities can
already be found. The increase in clarity leads to an
improvement of structure in the solution. The description
of solution principles can frequently be carried out by
means of design patterns. Thus, the possibilities of
generalization towards a system family increase; the effort
for changes diminishes in correspondence. As a result, the
quality of the solution e.g. in terms of maintainability is
increased. This all leads to an evolutionary maturation
during the process of development.

The next part of the development cycle of cluster 2,
DesignImplem, is performed in a conventional way (see
Figure 2). In this task, both the requirements of cluster 2
and the commonalities and variabilities found in cluster 1
and 2, are implemented. The system family properties in
terms of feature diagrams are available for the next
development cycles (cluster 3 etc.).

The experiences gathered in the use and maintenance
of the systems have great significance for the development
of a system family. Change Requests and other
requirements of the users supply essential information
concerning the further development of the system family.
In addition, the changes over time within this domain are
discovered. The set of available information is enlarged in
terms of commonality and variability during domain
analysis. An implementation of that generalization is
possible during the following cycles of development.

The introduced process represents a track towards a
pragmatic application of the concept of a system family
demonstrating an evolutionary character. This track is
going via Cluster 1 to Cluster 2 and 3, while further
development and systematic completion of the
commonalities and variabilities is carried out. The gray
arrow in Figure 2 illustrates this.

The process of further development within every
cluster takes place in an evolutionary way. The spiral
model by Boehm (1988) (Figure 3) is a representation best
suited for the needs of practical system development. The
collection of domain specifications in the form of
commonalities and variabilities is performed very
similarly in an evolutionary process which is overlapped
with the system development process.

During the development of a system family there are
further similar processes which are dependent on the main
development process, e.g. refactoring of a framework or
proofing the practicability of a design decision. These
cycles can be characterized using fractal extensions of the
spiral model (Hesse, 1997).

The development of a system family is not only
performed at concept level, but also at all other levels of
the system development, such as requirements
specification, design and source code. Evolutionary
development takes place at each of these levels, providing
two aspects: the content of the results on the one hand,
and in its quality characteristics like maintainability,
clearness and portability on the other hand.

Experience management is connected closely with the
represented evolutionary generalization process. It plays
an essential role for the further development, because a
generalization in the system development is only
attainable by strong interaction of the experiences of the
editors. Vice versa, domain analysis also contributes to the
systematic improvement of the technical know-how of the
editors by providing the means of structuring and of
methodical processing of their experiences.

EXAMPLE

An example of a project in the field of logistics may
illustrate the introduced methodology. The objective of
this project is the further development of a storage

management system for automatic circular stockrooms.
The system currently exists in approximately 50 different
variants. The variety of software and their complexity are
difficult to master; a systematic implementation as system
family is required. This form of implementation is
intended to serve as the basis for the development of new
variants, thus permitting the acquisition of additional
customers. The expansion of the items of storage by
aggregations is discussed in the following as example for
analysis, description and implementation of commonality
and variability.

The recent version of the system can manage different
types of tools, semi products and products, each with
various features, and containers. There are several storage
strategies. Figure 4 shows that part of the feature diagram.
The notation used is introduced by Simos (1997) and is
described in the section Domain Analysis. Storage
management includes mandatorily the concepts storage,
storage object and storage strategy. Storage objects can
be items or containers or both together. Items can be tools,
semi products and products as alternatives.

The next version of the system is planned for clinics.
One of the requirements to be met by this version is to
manage prepared sets of surgical instruments. This
requirement leads to an expansion in the feature diagram
concerning the concept item. Essential attributes of the
concept tool are by now name, dimensions, and life. The
sets of surgical instruments can be reflected as an
aggregation of different items of the type tool, each
described by its specific attributes.

To include the surgical instrument set, the shown
taxonomy of concepts is extended by a tool set, which is
defined as a set of tools. The feature diagram describes the
expansion at requirement level. Use Cases describe
business processes at the same level. The Use Cases for
stored input and stored output are expanded to dissolve
tool sets and put together single tools, initiating the
corresponding business process for each tool. This
expansion is made by variation points.

The implementation of the new feature and of the
corresponding variation points in the design are shown
with a class diagram (Figure 5). Here, the UML notation
(Booch, et al. 1999) is used. The variation point expresses
the additional specialization tool set and the composition
relation to tool.

The variation points are implemented at the code level
by the design pattern Strategy (Gamma et al., 1995) for
variation of algorithms and by the design pattern State for
state dependent variation of object behavior.

CONCLUSION

The introduced approach shows a pragmatic way to
develop a system family. The methods of domain analysis

offer means of expression on a higher level of abstraction.
This is used to achieve reusability on the level of
requirements specification and design. This makes it
possible to describe the variability and commonality of a
system family. The result is an evolutionary process that
leads to the maturation of a framework.

The mapping of variability and commonality from the
requirements level to the design and code level is an
expensive manual process, requiring comprehensive
experiences and knowledge of solution principles, like
design patterns.

Generative programming is a new software paradigm
offering a way to simplify this implementation process.
Following this approach, the application domain is first
examined by means of domain analysis. During this
analysis, variabilities and commonalities are specified.
The necessary variabilities at code level are generated
based on these specifications. Development of a system
family is performed on the level of concepts and
requirements. Thus the paradigm is designed to bridge the
"Semantic Gap" between domain knowledge and program
code. However, the paradigm has not proven its effectivity
in practical use to date.

ACKNOWLEDGEMENTS

We wish to thank Wolfram Riebisch and Wilhelm
Rossak for useful hints for the improvement of the paper.
Thanks also to Torsten Hummel and Kelly Smith who
helped to improve the english version.

REFERENCES

Boehm, B. W., 1988, “A spiral model of software
development and enhancement”, Computer, May, pp. 61-
72.

Booch, G., Rumbaugh, J., Jacobson, I., 1999, “The
Unified Modeling Language – User's Guide”, Addison
Wesley.

Breymann, U., 1998, “Designing Components with
The C++ STL - A New Approach To Programming”,
Addison Wesley.

Coplien, J. O., 1998, “Multi-Paradigm Design for
C++”, Addison-Wesley.

Czarnecki, K., 1999, “Generative Programming”,
Dissertation, TU Ilmenau.

Van Deursen, A., 1997, “Domain-Specific Languages
vs. Object-Oriented Frameworks: A Financial Engineering
Case Study”, STJA'97 Conference Proceedings, Technical
University of Ilmenau, pp. 35-39,
Available at: http://nero.prakinf.tu-
ilmenau.de/~czarn/generate/stja97/vandeursen.ps.

D`Souza, D. F., Wills, A. C., 1998, “Objects,
Components, and Frameworks with UML – A Catalysis
Approach”, Addison-Wesley.

Eisenecker, U., 1997, “Generative Programming with
C++”, Proceedings of Modular Programming Languages,
Linz, Austria, March , H. Mössenbeck, (Ed.), Springer-
Verlag, Heidelberg, pp. 351-365.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995,
“Design Patterns - Elements of Reusable Object-Oriented
Software”, Addison-Wesley.

Henderson-Sellers, B., Edwards, J. M., 1990, “Object-
oriented software systems life cycle”, CACM Vol. 33, No.
9.

Hesse, W., 1997, “From WOON to EOS: New
development methods require a new software process
model”, In: A. Smolyaninov, A. Shestialtynow (Eds.):
“Proc. WOON '96/WOON '97, 1st and 2nd International
Conference on OO Technology”, St. Petersburg, pp. 88-
101.

Jacobson, I., Griss, M., Jonsson, P.,1997, “Software
Reuse”, Addison Wesley.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J. M., Irvin, J., 1997, “Aspect-
Oriented Programming”, Proceedings ECOOP97 – 11th
European Conference of Object-Oriented Programming,
Jyväskylä, Finland, June 1997, Mehmet Aksit and Satoshi
Matsuoka (Eds), LNCS 1241, Springer-Verlag.

Neighbors, J. M., 1980, “Software Construction Using
Components”, Tech Report 160. Department of
Information and Computer Sciences, University of
California. Irvine, CA.

Neubert, T., 1998, “Anwendung von generativen
Programmiertechniken am Beispiel der Matrixalgebra”
Diplomarbeit, Technische Universität Chemnitz, (in
German).

Pree, W., 1996, “Framework Patterns”, Sigs
Publications.

Reenskaug, T., Wold, P., Lehne, O. A., 1996,
“Working with Objects. The Ooram Software Engineering
Method”, Manning.

Simos, M., 1997, “Organization Domain Modelling
and OO Analysis and Design, Integration, New
Direction”, Proceedings 3th STJA Conference (Smalltalk
and Java in Industry and Education, Erfurt, September
1997), Technical University of Ilmenau, pp. 166-175.

Wirfs-Brock, Johnson, R., 1990, “Surveying Current
Research in Object-Oriented Design”, Communication of
the ACM, 33(9).

Wartik, S., Prieto-Diaz, R., 1992, “Criteria for
Comparing Domain Analysis Approaches”, International
Journal of Software Engineering and Knowledge
Engineering, vol. 2, no. 3, September, pp. 403-431.

FIGURES

Progress

Time

DesignDoc
SrcCodeReqSpec

Specif Mainte-
nance

Design
Implem

DesignDoc
SrcCodeReqSpec

Specif Mainte-
nance

Design
Implem

DesignDoc
SrcCode

Cluster 1

Cluster 2

Figure 1 Conventional Process of the Further Development of a System

Comm&Var
Spec

Time

Time

DesignDoc
SrcCodeReqSpec

Specif Mainte-
nance

Design
Implem

DesignDoc
SrcCode

ReqSpec

Specif

Mainte-
nance

Design
Implem

Domain
Engineering

Design
DecRec

Comm&Var
Design

DesignDoc
SrcCode

Cluster 1

Cluster 2

Cluster 3

Domain
Engineering

Figure 2 Evolutionary Process of development of a system family

Operational
Use

Implementation

Analysis

Design

planning,
analyzing
activities

synthesizing,
executing
activities

Problem space

Solution space

Figure 3 Phases of Generalization

storage management

storage storage strategy

item container

tool semi product producttool set

storage object

Figure 4 Feature Diagram, expanded by ToolSet

StorageObject

SemiProduct ProductTool

ContainerItem
0..1

0..1

0..1

0..1

ToolSet

0..*0..*

Figure 5 Instantiation of Feature Diagram

	Matthias Riebisch
	
	
	Bogdan Franczyk

	ABSTRACT
	INTRODUCTION
	STATE OF THE ART
	OBJECT-ORIENTED PROGRAMMING
	REUSABILITY USING FRAMEWORKS
	ASPECT ORIENTED PROGRAMMING
	DOMAIN ANALYSIS
	GENERATIVE PROGRAMMING

	SUGGESTED SOLUTION: EVOLUTIONARY DEVELOPMENT
	EXAMPLE
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	FIGURES

