

EXTENDING THE UML TO MODEL SYSTEM FAMILIES

Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Bogdan Franczyk*

Ilmenau Technical University

Germany

*tranSIT GmbH Ilmenau
University of Essen

Germany

ABSTRACT

The system family paradigm aims towards developing
several applications out of a domain with just one
 underlying architecture. The foundation of this core
architecture are common properties. With this
prefabricated core, systems can be build faster. Modeling
and development of common parts and variants have to be
supported by methods and notations. This paper extends
the Unified Modeling Language (UML) to model variants
during analysis and design. The built-in extension
mechanisms of the UML are used without changing the
metamodel. An example demonstrates the application of
the extension.

INTRODUCTION

Developing a family of software systems instead of a
sequence of separate systems offers many economic
advantages. Gathering information about common
properties of the systems enables the development of
common, reusable core assets of the family. Information
about differences between the family members can be
used for the development of an extensible architecture of
the common core assets. If this knowledge is applied, the
“extension points” can be designed systematically. The
architecture of the core assets is rarely subject to changes
during further development, causing less degeneration of
the architecture than in the conventional way of system
development. This results in a longer usage period of the
architecture, so higher investments in architecture and
design will pay back eventually. Because of the higher
degree of prefabrication, the development effort for a
system as part of a family is lower than the effort for
building a single system. As a result, the development
process can be performed by a smaller team in a shorter
time (Clements and Northrop, 1999).

In this paper we continue from our previous work on
evolving single systems towards families of systems
(Riebisch and Franczyk, 1999). We present an initial step
for modeling system families using the Unified Modeling
Language (UML) (Rumbaugh et al., 1999). The remainder
of this paper is organized as follows: First, we examine
feature models as a basis for system family modeling. In
the next section we propose a notion for designating the
model elements in UML diagrams that are different across
the members of a system family. This notion is illustrated
by an example. Finally, we conclude by identifying areas
of future work.

FEATURE MODELS

Feature models are a means to describe mandatory,
optional, and alternative properties (so-called features) of
concepts within a domain. An important part of every
feature model is the hierarchically organized feature
diagram, describing the features within a tree. The tree’s
root specifies the concept being described; the nodes
represent the features. A feature is mandatory unless an
empty circle is attached to its node, indicating an optional
feature. A set of alternative features is depicted by an arc
spanning two or more edges of feature nodes (Kang et al.,
1990).

Fig. 1 shows an example of a feature diagram that lists
possible features of an automated teller machine (ATM).
Mandatory features of an ATM are, for instance, “money
slot” and “debit card reader”, whereas a “receipt printer”
is optional. To authenticate customers, two alternatives,
“PIN check” and “biometric check”, are available.

Integrated Design and Process Technology, IDPT 2000
Printed in the United States of America, June, 2000

© 2000 Society for Design and Process Science

MODELING SYSTEM FAMILIES

Applied to system family modeling, feature models are
used to describe the common and variable features of the
members of a system family. Mandatory features whose
super-features are neither optional nor included in sets of
alternatives represent the common features shared by all
family members. For example, the commonality of the
ATM consists of the features “money slot” and “debit
card reader”. These common features are implemented as
reusable components and frameworks. All other features
are called variable features. Family members may differ
from each other with respect to these variable features,
because they may or may not choose to implement a
variable feature. For each family member there is a list
called configuration map, which contains the choice of
variable features for a member (see Tab. 1). The
configuration map also references the elements of the
design model that are affected by the variable features.

The process for developing system families using
feature models looks as follows. With given requirements
and domain analysis information the modeling process is
started. The feature model describes the common and
variable features of the architecture which has to be
designed in the next step. The system family architecture
is abstract and has to be instantiated for a family member
through a configuration step (Riebisch and Franczyk,
1999). The resulting family member configuration
contains just the needed features for the specific problems
addressed by this member.

Compared to single system modeling, system family
modeling requires extended diagrams. Diagram elements
describing common features of the family are identical to
conventional models. They are used to describe all aspects
of a model, e.g. architecture, static structure, dynamic
behavior, and interfaces. For these aspects the diagrams of
the UML can be used without modification.

The adaptation of diagram elements to express
variability is essential for distinguishing between common
model elements and variable model elements. Diagram
elements implementing variable features need to be
specifically designated to give analysts and designers
information about:

• constraints between features and their implementation
• configuration aspects of features.

In particular, such elements must be associated with
their corresponding feature, i.e. they must name the
feature to define a reference to the feature model. This
association is essential to determine if diagram elements
implement (part of) optional or alternative features. In the
latter case the available alternatives and the corresponding
diagram elements implementing these alternatives can
also be determined. References between feature model,

design, and implementation should be supported by
modeling tools and explored by other CASE tools. They
allow automated code generation and configuration of
family members.

DESIGNATING VARIABLE MODEL ELEMENTS

Currently, the UML does not provide a notion to
designate variable model elements because the UML is
targeted at modeling single systems rather than families of
systems. Therefore, the UML needs to be extended what
can be done either by using the UML’s own extension
mechanism or by changing the metamodel underlying the
UML. Although the latter option offers the highest degree
of flexibility, we have not taken it into consideration
because the metamodel is not accessible or difficult to
change in existing UML tools. Instead, we use the
lightweight extension mechanisms defined in the UML,
namely stereotypes and tagged values.

Stereotypes are used to mark, classify, or introduce
new model elements. Every model element may be
annotated with at most one stereotype, which is depicted
in front of an element’s name enclosed in guillemets (or
double angle brackets). The UML already predefines
some stereotypes, e.g. «metaclass».

Tagged values are used to specify additional
characteristics or attributes of model elements. Each
tagged value consists of a key—value pair, which appears
after an element’s name in curly braces, e.g. {author =
kb}. If more than one tagged value is associated with an
element, the values are separated by commas.

To designate model elements as being variable, we
introduce the new stereotype «variant». Furthermore,
every element that is annotated with this stereotype must
have a tagged value with the key “feature”. The key’s
value is a string which refers to the name of a feature in
the feature model and, hence, provides the link between
the feature and its representation in the design of the
system. In other words: These tagged values maintain the
traceability from the results of the domain analysis phase
to the results of the design phase and vice versa.

Fig. 2 and 3 illustrate the usage of the UML extension
in activity diagrams and component diagrams,
respectively. The activity diagram shows the steps to
withdraw money from an ATM: insert debit card,
authenticate customer, enter amount, withdraw money,
and print receipt. One point at which ATMs may differ
from each other is the way the authentification of
customers is done (cf. Fig. 1). Therefore, the activities
implementing those alternatives, “Authenticate by PIN”,
“Check fingerprint”, and “Check iris”, are designated as
variable model elements by annotating the stereotype
«variant». Traceability from activities to features is
possible through the tagged value named “feature”. For

instance, the activity “Check iris” corresponds to the
feature “iris check”. The same principle applies to the
component diagram in Fig. 3, e.g. the component
“ReceiptPrinter” implements the optional feature “receipt
printer”.

Within a configuration step features have to be
selected. An if-condition is implicitly given in the feature
configuration. According to the chosen features the
activity diagram is processed. As a result, the semantics of
the if-condition element in the activity diagram is changed
to process the selected variant set for each member of the
system family.

In general, stereotypes and tagged values could be
added to all model elements, making it possible to
designate every model element as being variable.
Experience, however, has shown that this results in quite
complex models which are – without sophisticated tool
support – difficult to understand and maintain.

CONCLUSION

The presented approach offers a consistent way for
modeling the variability of system families using the
UML. The adaptations of UML diagram elements are
restricted to the predefined extension mechanisms
stereotype and tagged value. In our future work, these
extensions will be provided for all relevant diagram
elements.

Variability aspects of analysis and design methods
have to be investigated in more detail. As a consequence,
tool support for system family development methods has
to be developed.

In order to reach more comprehensive support for
system family modeling the next step is the integration of
feature models into the UML. This work requires wide
cooperation among the object-oriented community in
order to extend the UML metamodel and the OMG
standards.

Currently, the need for effective method and tool
support is restricted by informal definition and application
of diagrams. More concise formalization of semantics
would allow the development of better consistency
checking and automation tools.

REFERENCES

Clements, P., Northrop, L. M., 1999, “A Framework
for Software Product Line Practice”, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh.

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson,
A., 1990, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Riebisch, M., Franczyk, B., 1999, “Evolutionary
Development of Frameworks – from Projects to System
Families”, Proceedings IDPT ’99, Kusadasi, Turkey,
Society for Design and Process Science.

Rumbaugh, J., Jacobson, I., Booch, G., 1999, “The
Unified Modeling Language Reference Manual”,
Addison-Wesley.

FIGURES

ATM

authentification
unit

mechanical
protection

PIN check biometric sensor

debit card
reader

money slot receipt printer

biometric check shielding
window

wall
installation

iris check fingerprint
check

Fig. 1 Feature diagram of an ATM

Start withdrawal
Insert debit

card

Open window
{feature = shielding window}

<<variant>>

Authent icate by PIN
{feature = PIN check}

<<variant>>
Check fingerprint

{feature = fingerprint check}

<<variant>>
Check iris

{feature = iris check}

<<variant>>

Enter amount

Check
withdrawal

Withdraw
amount

Print receipt
{feature = receipt printer}

<<variant>>

Close window
{feature = shielding window}

<<variant>>

End withdrawal

Return debit
card

Fig. 2 Activity diagram for withdrawing money from an ATM

ATM

Authenti fication
Unit

MechProtection

MoneySlot

DebitCard
Reader

Keypad
{feature = PIN check}

<<variant>>

FingerprintSensor
{feature = fingerprint check}

<<variant>>

ReceiptPrinter
{feature = receipt printer}

<<variant>>

IrisReader
{feature = iris check}

<<variant>>

ShieldingWindow
{feature = shielding window}

<<variant>>

WallUnit
{feature = wall installation}

<<variant>>

Fig. 3 Component diagram for implementing an ATM

TABLES

System Variation point Feature Design references
All n/a debit card reader readAccNum(); updateBalance()
All n/a money slot withdrawAmount()
MED-99 Authentification unit fingerprint check identifyUser(); getBIC()
MED-99 Receipt printer receipt printer printReceipt()
MED-99 Mechanical protection n/a n/a
SED-1034 Authentification unit PIN check identifyUser(); getKey()
SED-1034 Receipt printer n/a n/a
SED-1034 Mechanical protection shielding window PaneModule; LockingModule

Tab. 1: Configuration map for two types of ATM systems

	EXTENDING THE UML TO MODEL SYSTEM FAMILIES
	A
	ABSTRACT
	INTRODUCTION
	FEATURE MODELS
	MODELING SYSTEM FAMILIES
	DESIGNATING VARIABLE MODEL ELEMENTS
	CONCLUSION
	REFERENCES
	F
	FIGURES
	TABLES

