
Systematic Definition of Reusable Architectures

Ilka Philippow, Matthias Riebisch
Ilmenau Technical University

ilka.philippow@theoinf.tu-ilmenau.de
matthias.riebisch@theoinf.tu-ilmenau.de

Abstract

Reusable architectures like frameworks or product lines
can improve the efficiency of software development. In
this paper, methods from the areas of software engineer-
ing, domain engineering, software architectures and tool-
supported implementation are combined and integrated to
successfully build reusable architectures. Special empha-
sis is placed on process issues and on modeling. Software
product line architectures form the reusable base of simi-
lar systems and, thus, a system family. This architecture is
developed in an evolutionary process while using existing
systems and reusable components, so-called COTS.
Within this process the family’s reusable core is specified
by the integrated domain analysis methods. The imple-
mentation of the product line architecture is done with
reusable frameworks. These frameworks are automati-
cally instantiated by means of a method and a tool based
on Extended Collaborations. The description of variants
of the reusable architectures and the automatic instantia-
tion technique are based on UML.
Keywords: Reusability, Architecture, Evolutionary devel-
opment, Components, Software product lines, Frame-
works, Domain Analysis, Object technology

1. Introduction

Software reuse is one of the most important issues for
improving the productivity of software development proc-
esses. There are two different kinds of reuse. The first
possibility is the reuse at source code level. This can be
obtained by structuring code into modules, components,
classes or functions. The second, more abstract possibility
is the reuse of artifacts found in the system model. There,
reusable models are taken out of the analysis model and
the design model. Frameworks and product line architec-
tures allow source code reuse as well as reuse of modeling
artifacts. Most reuse approaches are based on object-
oriented technology. An object-oriented framework de-
fines the class structure and the interaction model for the
cooperating objects involved, and results in a generic
architecture. Variation points in a framework are neces-
sary to fulfill different requirements of several applica-
tions. Variation points are implemented by so-called hot

spots [17], which are predefined insertion points for a
specific functionality to be added. A product line de-
scribes a “group of products” out of a specific problem
[14]. A software product line is based on a system family
architecture offering a “common set of core assets” [4].

Within a specific problem domain software systems
are derived from predefined architectures which are de-
veloped with frameworks and product line architectures.
These architectures consist of common and variable parts.
Variable parts can be changed or adapted to satisfy the
special needs of an application. One or more frameworks
can be integrated in the product line. Complexity is man-
aged through architectures which are developed using
existing methodologies. Best Practice principles are ap-
plied to simplify documentation and to increase compre-
hension.

In practice, the development and application of reus-
able architectures are very difficult without an evolution-
ary development process and conceptual modeling. De-
velopment costs, missing know-how in the field of object
technology, long training periods to understand obscure
architectures are only part of the problems. In the next
paragraph the development process of reusable architec-
tures is explained in a simplified way to point out some of
the main problems.

2. The Development Process of Reusable Ar-
chitectures

The development process of reusable architectures like
frameworks or product lines is analyzed in order to pro-
vide support for different development activities. The
phases of development of reusable code are very similar to
those of software development in general (Fig. 1).

There are different starting points for building reusable
architectures, each with emphasis on other activities:
based on the generalization of several similar applications
[13], based on the reengineering of legacy software [17],
based on pattern languages [2] or completely new sys-
tems, based on models [10]. All approaches require a
smooth cooperation of stakeholders, whose roles vary in
different development phases. We picked out domain
experts, software engineers and end users.

Domain expert: He has the knowledge about the com-
mon and variable parts of problem domain. He is involved
in the acquisition of requirements and is the contact
person for the developer.

Developer of reusable architectures: He is an expert
in software development and the problem domain. To-
gether with the domain expert he points out the fundamen-
tal requirements. He is responsible for architecture, de-
sign, and documentation, enabling reuse with software
tools. His work aims towards improved maintainability of
the system, that means comprehensibility, traceability and
handling complexity of the reusable architectures.

Developer of application: He is an expert for software
development. He creates new applications based on reus-
able architectures. Based on his experience with the archi-
tecture he helps improving the architecture. His decision
for or against a framework is based on the usability and
quality of the reusable architecture. He looks for low ef-
fort and short time for application development

Application user: He is mainly interested in the func-
tionality of the created new application, short develop-
ment time and low costs. New or refined architectural
requirements may arise from the coordination with the

application developer.
In the first stage of the development process, require-

ments for a particular domain need to be acquired. To
reach good results, a close cooperation between domain
experts and developers is necessary. The domain expert
specifies the variable and common parts of the architec-

ture based on his domain knowledge. Reusing requirement
specifications can be done in two ways. In most cases, a
combination of them is being applied. Firstly, conceptual
models of the specification may be reused, which in-
creases development efficiency [26]. Secondly, refinement
of requirements will lead to improved domain models. In
most cases, a combination of both ways is being applied.

The developer of reusable architectures has to include
additional techniques as domain engineering methods,
reverse engineering and refactoring, depending on the
starting point of the process mentioned above. In the next
activity, the architecture of the framework is elaborated.
Common and variable parts in the architecture are to be
identified by a highly qualified software engineer. He is
also responsible for providing the documentation and
adequate tools for the application developer, which de-
creases the efforts to be made for working with the reus-
able architecture. During the application development
process, the application developer cooperates with the
architecture developer to supply the necessary feature
changes or extensions. Thus, the reusable architecture is
further developed and improved. This can be performed
on the basis an efficient cooperation between application

developers and application users during the evaluation of
an application. The architecture developer may request
new or missing properties as a result of the evaluation.
Every application development results in extensions and
changes. Each change affects the maintainability of the
particular reusable architecture.

 Domain expert / Developer
 of reusable architecture

domain
analysis

Application developer Application user

requirement
analysis

requirement
 review

architecture
 definition evaluation architecture

 adaptation

evaluation application
 design

architecture
 design

 architecture
 implementation

application
implementation

 application
 evaluation

application
generation

Fig. 1 Activities in the development process of reusable architectures (simplified)

As shown in Fig. 2, loosely connected processes of
every application development cycle are represented as a
cluster [8]. The process visualization is reduced to the
essential phases of requirements analysis and specifica-
tion, design, implementation and integration as well as
deployment and maintenance. Activities for future reus-

ability are to be financed within a single cluster.
New clusters are developed by reusing results of for-

mer work, which exist in the form of design documents or
source code (DesignDocum, SourceCode). A development
process starting with former results, compared to a devel-
opment from scratch, is more efficient. The main task
within this reuse process is the comparison of new re-
quirements with existing results. Existing systems are
poorly documented and in most cases just the source code
can be used for this comparison. The manual comparison
of two distinct levels of abstraction, requirements and
implementation, results in a loss of design principles. A
developer is not able to match the informal requirements
with the formal implementation while keeping the archi-
tectural structure. Each new application version (cluster 2
in Fig 2) can lead to a destabilization of the architecture.
The result is a degenerated software structure having low
quality characteristics, like clearness and maintainability.

Nevertheless, a reusable architecture can be developed
and improved by several application development cycles.
In the following a methodology for evolutionary devel-
opment of product line architectures is presented.

3. Evolutionary Development Process
for Product Line Architectures

The development process of product line architectures
and of reusable frameworks are similarly organized [20].
To enable a stepwise improvement of a framework, the
process is performed in an evolutionary way. A connec-
tion with domain analysis enables a systematic design of
the hot spots. Furthermore, it results in less architectural
changes and thus in less efforts to be made for framework
development.

However, in practice the decision for developing a
product line architecture is often made after successful
development of one or more applications. The proposed
evolutionary process may either start from a conventional
development process of a single application or may di-
rectly lead to a product line. During the evolution of the
single application, the methodology helps to reveal com-

mon and variable parts. It will close with the creation of a
product line architecture.

The first development cycle is shown as cluster 1 in
Fig. 3 and is performed in the conventional way. The
result is a new application with documentation, code etc.
(DesignDocum, Source Code). For the development of a
further, very similar application (cluster 2, step 1) new
requirements are elicited for the requirements specifica-
tion. The former set of requirements is compared with the
new requirements. Reuse of requirements is performed as
described in paragraph 2. Domain analysis methods are
used to elaborate commonalities and variabilities. The
design of the cluster 1 application is analyzed to identify
core assets and useful variation points. In practice, the
quality of most design documentations is not sufficient for
this task. Design decisions are based on alternatives and
motivations and have proved to be very helpful for identi-
fying variation points and commonalities. Reverse engi-
neering is an essential technique to discover and under-
stand design decisions. Design decisions represent a high
value for later evolution. Extensive knowledge about
common solution principles is necessary to perform the
reverse engineering task.

Design decisions need to be documented to increase the
comprehensibility and readability of the cluster 2
documentation. Design patterns are a way to describe
solution principles, which facilitate the generalization of
the solution structure. Product line architecture
development is supported by these techniques; the change
effort is reduced. As a result, the quality of the solution,
especially the maintainability is increased. The maturity is
increased by the evolutionary development.

The next part of the development cycle of cluster 2,
Design and Implementation, is performed in a conven-
tional way (Fig. 3). In this task, requirements of cluster 2

Specification
Design

Implementation Maintenance

cluster 1

cluster 2

Version

Time

Specification
Design

Implementation Maintenance

DesignDocum
SourceCode

Fig. 2 Conventional process of the evolution of a system

as well as commonalities and variabilities, found in cluster
1 and 2, are implemented. The product line architecture
properties described with feature diagrams are available
for the next development cycles (cluster 3 etc.).

The experience gathered from using and maintaining
systems has great significance for the development of
product line architectures. Change requests and other user
requirements supply essential information for the evolu-
tion of the product line architecture. In addition, changes
over time within this domain are discovered. Knowledge
about common and variable parts of the product line in-
creases during domain analysis. An implementation of this
generalization is possible during the following develop-
ment cycles. The process introduced represents a prag-
matic way to make use of the concept of product line
architectures with an evolutionary character. Starting at
cluster 1 it leads to cluster 2 and 3, while evolving and
systematically completing the commonalities and vari-
abilities. The gray arrows in Fig. 3 illustrate this. The
process of evolution within every cluster takes place in an
evolutionary way. The spiral model according to [1] is a
representation best suited for the needs of practical system
development. The collection of domain specifications in
the form of commonalities and variabilities is performed
very similarly in an evolutionary process which overlaps
with the system development process.

The development of product line architectures is not
only performed at conceptual level, but also at all other
levels of system development, such as requirements speci-
fication, design and implementation. Evolutionary devel-
opment takes place at each of these levels, providing two
aspects: the contents of the results on the one hand, and
their quality characteristics like maintainability, clearness
and portability on the other hand. Experience management
is related to the evolutionary generalization process repre-
sented. It plays an essential role for the evolution since
generalization in development is only attainable by mak-
ing use of the strong interaction of the editors experience.

Vice versa, domain analysis also contributes to the sys-
tematic improvement of the technical know-how of the
editors by providing the means of structuring and of me-
thodical processing of their experiences.

The evolutionary development process for product line
architectures explained above can only be successful if
techniques used in the field of domain engineering are
integrated and adapted to techniques used in software
development processes.

4. Integration of Techniques

In the following, relevant parts of the development
process of product line architectures are investigated al-
lowing us to examine, evaluate and integrate approaches
of software engineering. The goal is to find approaches for
developing a complete methodology for the evolutionary
development of reusable architectures.

In paragraph 4.1. the traceability of requirements and
features during the development process is discussed.
Some of the issues are subject of current research and
development. Successful methodologies for the elabora-
tion of the architecture and design have been developed as
ACME [22], Wright [23], C2 [24] and Rapide [25]. De-
sign Patterns [5] are applied to simplify documentation
and to profit from the Best Practice principles. In the fol-
lowing paragraph, the possibilities of connecting methods
and domain engineering mo dels with the UML are dis-
cussed.

4.1. Traceability of Requirements and Features

At the requirements level, domain analysis uses feature
models to describe common and different properties of
product line architectures, so-called commonality and
variability.

Feature Oriented Domain Analysis (FODA) [12] or-
ganizes the concepts of a product line architecture in a

Specification Design/Implem. Maintenance

cluster 1

cluster 2

Version

Time

Specification Domain Engineering. DesignDecision
Recovery.

DesignDocum
SourceCode

cluster 3 Domain Engineering Maintenance.

Design/Implem. Maintenance
.

Design/ Implem.

Fig. 3 Evolutionary process of development of a product line architecture

feature model. In this model, the common and the variable
properties of concepts and their interdependencies are
organized into a coherent model. Feature models are a
possibility to describe mandatory, optional, and alternative
properties (so-called features) of concepts within a do-
main. Important characteristics of a feature are primitive-
ness, generality and independence. Features occur at any
level, e.g. the system requirements level, the architectural
level, the subsystem and component level, and the imple-
mentation level. An important part of every feature model
is the hierarchically organized feature diagram describing
the features within a tree (Fig. 4). The root of this tree
specifies the described concept; the nodes represent the
features. A feature is mandatory unless an empty circle is
attached to its node, indicating an optional feature. An arc
spanning two or more edges of feature nodes depicts a set
of alternative features.

FODA offers a high level view onto a product line with
the concepts of commonality and variability. There is no
connection between requirements and features. Further-
more, FODA is not intended for cooperation with object-
oriented methods. Reuse-driven Software Engineering
Business (RSEB) [11] is a method based on object tech-
nology with a use-case-driven characteristic. RSEB uses a
reference architecture for reusing comp onents. Graphical
notations are based on UML, with variation points added
to define variable parts and to connect them to model
elements. However, the combination of variants and their
configuration within a product line architecture is not
supported in RSEB. The extension of RSEB with feature
modeling is called FeatuRSEB [7]. Here a product line
architecture view was added. Use cases are classified and
grouped into mandatory and optional features. Even if

adopted to object technology, FeatuRSEB has still most of
the limitations of FODA.

The traceability of requirements and features is needed
to keep the consistency during the evolution of product
line architecture. Tool support is essential for using and
processing traceability information. Presently, we are
developing data structures as extensions to FeatuRSEB,
which are added to requirement statements, features and

variable elements. These structures are defined and ex-
pressed using XML as standard. We describe relations
between features, design elements and implementation.
They are used for management activities in the early de-
velopment process such as scooping of variants and esti-
mation of effort per feature.

4.2. Modeling Variability using Object Oriented
Methods

The state-of-the-art technology for modeling and de-
signing software systems is based on object technology.
At architectural, design, and implementation level the
UML is the standard for describing software systems.
However, in a system family we have to describe common
and variable parts. In [19] an approach for extending the
UML elements by designating variable elements is de-
scribed. These extensions can be used to describe frame-
work architecture and design with good comprehensibil-
ity. They are described briefly in the following para-
graphs.

Diagram elements describing common features of the
family are the same as for conventional models. They are
used to describe all aspects of a model, e.g. architecture,
static structure, dynamic behavior, and interfaces. For
these aspects the diagrams of the UML can be used with-
out modification.

The extension of UML diagram elements to express
variability is essential for distinguishing between common
model elements and variable model elements. Diagram
elements implementing variable features need to be im-
proved to give analysts and designers information about:
- constraints between features and their implementation
- configuration aspects of features.

In particular, such elements must be associated with
their corresponding feature, i.e. they must refer the feature
to define a reference to the feature model. This association
is essential to determine if diagram elements implement
(part of) optional or alternative features. In the latter case
the available alternatives and the corresponding diagram
elements implementing these alternatives can also be
determined. References between feature model, design,
and implementation should be supported by mo deling
tools and further elaborated by other CASE tools. They
allow automated code generation and configuration of
product line variants.

The extension of UML can be done either by using
UML’s own extension mechanism or by changing the
metamodel underlying the UML. Although the latter op-
tion offers the highest degree of flexibility, we have not
taken it into consideration because the metamodel is not
accessible or difficult to change in existing UML tools.
Instead, we use the lightweight extension mechanisms
defined in the UML, namely stereotypes and tagged val-
ues. In the UML, stereotypes are used to mark, classify, or

 car

transmission

manual

horsepower
air

conditioning

automatic

alternative
features

optional
feature

mandatory
features

Fig. 4 Feature diagram example [12]

introduce new model elements. Every model element may
be annotated with one stereotype, which is depicted before
an element’s name enclosed in guillemots (or double an-
gle brackets). The UML already predefines some stereo-
types, e.g. «metaclass». Tagged values are used to specify
additional characteristics or attributes of model elements.
Each tagged value consists of a key-value pair, which
appears after an element’s name in braces, e.g. {author =
kb}. If more than one tagged value are associated with an
element, the values are separated by commas.

To designate model elements as being variable, we in-
troduce the new stereotype «variant». Furthermore, every
element that is annotated with this stereotype must have a
tagged value with the key “feature”. The key’s value is a
string, which refers to the name of a feature in the feature
model and, hence, provides the link between the feature
and its representation in the design of the system. Thus,
tagged values enable traceability from the domain model
to the design and vice versa.

4.3. Complexity and Traceability of
Architecture and Design

As stated above, stereotypes and tagged values could
be added to all diagrams and model elements of UML,
making it possible to model every element as being vari-
able. Experience, however, has shown that this results in
quite complex models. In addition to the aspects described
by UML the models contain several variants for model
elements and their relations to other parts as features.
Such models are – without sophisticated tool support –
difficult to understand and to maintain both by the system
family developer and by the application developer. Sepa-
rating the model into views according to the features is a
way to handle complexity for some of the activities of the
product line architecture development process. The use of
colors for designating the relation to features has been
taken into account. However, during case studies this
approach was not flexible enough. Separating the model
elements by so-called hypermo dules derived from the
approach of Subject Oriented Design [3] contributes to
lower complexity in each view. Subject Oriented Design
(SOD) provides traceability between requirements and
design. Hypermodules, called subjects, are used to sepa-
rate model elements, which are related to a set of require-
ments. This approach can be used to provide traceability
of features to model elements by introducing hypermo d-
ules containing all model elements related to a feature. In
the same way, the model elements of the common part of
the product line architecture are contained in a hypermo d-
ule. In the configuration step all the desired features are
selected. These features refer directly to the corresponding
hypermodules, which are composed to a new application.
SOD offers three composition relations to provide flexible

merge possibilities. Multiple variants of the same feature
can be combined this way.

4.4. Description and Application of Frameworks
by Using Extended Collaborations

Including the models mentioned above, a system fam-
ily is described both with its requirements and features,
and its architecture and design. The selection of a configu-
ration of features for a particular system leads to an
instantiation of the product line architecture in terms of
models. Consequently, we have to consider the implemen-
tation of the system as well. The common parts of product
line architecture are often implemented using frameworks.
Variable parts are implemented as hot spots of such a
framework.. One fundamental problem of the framework
based application development is caused by poor docu-
mentation and lacking tool support. To automate frame-
work usage, it is necessary to create so called application
recipes during the process of framework development
(Fig. 5).

evaluate

framework

framework
developer

application
developer

define/apply
recipe

<<uses>>

develop
framework apply

framework

<<uses>> <<uses>>

Fig. 5 Use case model of framework application
using application recipes

Application recipes describe the possibilities of modifying
or adapting hot spots for a particular application. Applica-
tion recipes are part of the framework documentation.
During software development with frameworks these
recipes are used to create the new application.

For the tool-supported and automated application of
recipes it is necessary to describe a framework in a prede-
fined way. UML collaborations are useful to describe and
specify design patterns [5]. In [16], [9] an approach is
shown how to describe a framework during the develop-
ment process, based on an extension of the UML
collaborations. We extend these UML collaborations such
that they are useable not only for patterns but also for the
automated instantiation of collaboration [10].

The framework description is based on the proposed
framework metamodel (Fig. 6) for extended collabora-
tions. According to the framework metamodel the frame-
work model is part of a repository. The repository also
contains a set of application recipes. The final application
system is generated with recipes and tool supported in-
stantiation of collaborations. To define application recipes
it is necessary to describe existing relationships between
elements of packages.

Extended collaborations are used to model not only in-
teractions and relations between framework elements but
also possibilities of modifying a framework. Figure 6
shows the metamodel of extended collaborations. In ex-
tended collaborations, description elements of object ori-
ented systems like class, method, attribute, object and role
can be defined as exchangeable parameters. Parameters
are variable parts of collaborations. They serve as place-
holder for concrete elements. There are two kinds of pa-
rameters: Collaboration-Parameters and Collaboration-
Component-Parameters. Collaboration parameters are
placeholders for a white-box-reuse, for example: inherit-
ing a class, overwriting a method. Component parameters
are used for black-box-reuse, for example: selection and
composition of exis ting components.

Application recipes explain the possibilities of modify-
ing or changing parameter values. Parameters refer to
elements. The value of parameters is used to exchange or
modify elements (for example some methods or attributes)
to get a new functionality. Symbolic parameters refer to
component parameters where only the name has to be
determined during the framework application.

During the application of frameworks an extended col-
laboration will be instantiated automatically by using the
application recipes. Parameter based application recipes
can imp ly actions like
- derivation of application-specific classes from frame-

work classes,
- overwriting of predefined methods,

- declaration and definition of additional classes, meth-
ods and relations

- instantiation of relevant classes
- configuration of predefined objects
- selection from a set of predefined calling arguments.

The application model will be generated by using these
recipes. The source code of the application will be gener-
ated out of the application model, which itself is the result
of the tool supported instantiation of a collaboration.
Given this, the collaboration is the fundamental part of an
automated framework usage. The extended collaboration
approach for automated modification of hot spots is al-
ready implemented in a commercial CASE tool [15].

5. Conclusion

This paper proposes ideas for the systematic develop-
ment of reusable architectures. According to the activities
in
development and application of reusable architectures a
process model for evolutionary development of such ar-
chitectures is introduced which is based on existing appli-
cations. During domain analysis a feature model is devel-
oped to describe common and variable properties which
have to be implemented in a reusable architecture. The
common parts are built into a framework with hot spots as
anchors for variable parts. Architecture and design of the
framework are modeled with an UML-based description.
The framework description is completed using additional
parts for framework instantiation. A method for automatic
framework instantiation was presented. The method is
based on extended collaborations, enabling the description
of application recipes for instantiating the hot spots. This
work was performed in cooperation with the research
department of Siemens AG, in Munich. To complete our
work on the development method, we need to put addi-
tional effort into the following activities:

0..*

1..1

1..1

1..1

1..*
1..1

0..*

0..*
<<UML>>
 Package

<<UML>>
 Diagram

 <<Extension>>
CollaborationCompone

<<UML>>
Collaboration

 <<Extension>>
CollaborationParameter

0..*
<<Std>>
 string

0..1

<<Extension>>
CollaborationInstanz

<<Extension>>
ApplicationRecip
e

<<Extension>>
 RecipeParameter

<<Extension>>
CollaborationValue

0..*

Fig. 6 Meta model of extended collaborations

- integration of the feature model into UML
- extension of diagram elements to describe variability
- extension of diagram elements and model elements to

enable tool supported traceability
- developing the metamodel for feature diagrams ac-

cording to the UML metamodel
- XML-definition for the feature metamodel, including

traceability oriented links
The work is organized in a research project named AL-

EXANDRIA and consists of several PhD and master theses
and is partly promoted by the research department of
Siemens AG, in Munich.

6. References

[1] B. W. Boehm, A spiral model of software development and
enhancement. Computer, May 1988, pp. 61-72..

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal, Pattern-Oriented Software Architecture: A System of Pat-
terns. Wiley, 1996.

[3] S. Clarke, W. Harrisson, H. Ossher; P. Tarr, Subject Oriented
Design – Towards Improved Alignment of Requirements, Design
and Code. OOPSLA’99. ACM, 1999.

[4] P. Clement, L. Northrop, A framework for software product
line practice, version 2.7., 1999

[5] E.Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pat-
terns – Elements of Reusable Object-Oriented Software, Addi-
son-Wesley, 1995

[6] M. Shaw, D. Garlan: Software Architecture: Perspectives on
an Emerging Discipline, Prentice Hall, April 1996.

[7] M. Griss, J. Favaro, M. d’Allesandro, Integrating Feature
Modeling with RSEB. Hewlett-Packard Comp., 1998.

[8] B. Henderson-Sellers, J.M. Edwards, Object-oriented soft-
ware systems life cycle. CACM Vol. 33, No. 9, 1990.

[9] E. Ivanov, I. Philippow, R. Preisel, A Methodology and Tool
Support for the Development and Application of Frameworks,
Journal of Integrated Design and Process Science, Vol. 3, No. 2,
S.21-23, June 1999

 [10] E. Ivanov, Eine Methodik für die Entwicklung und Anwen-
dung von objektorientierten Frameworks, PhD thesis, Techni-
sche Universität Ilmenau, Verlag ISLE, .ISBN 3-932633-41-5,
1999 (in German)

[11] I. Jacobson, M. Griss, P. Jonsson, Software Reuse –
Architecture, Process and Organization for Business Success.
Addison-Wesley-Longman, 1997.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson,
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, 1990.

[13] K. Koskimes, H. Mössenback, Designing a Framework by
Stepwise Generalization. 5th European Software Engineering

Conference Barcelona, Lecture Notes in Computer Science 989,
Springer, 1995.

[14] Ph. Kotler, F. Bliemel, Marketing-Management: Analyse,
Planung, Umsetzung und Steuerung. Schäffer-Poeschel, 9th
edition (in German) 1999.

[15] OTW 2.4 Objekttechnologie-Werkbank OTW® 2.4,
Modellierungswerkzeug zur Modellierung mit der UML, Hand-
buch, OWiS Software GmbH, 2000 (in German)

[16] Philippow, E. Ivanov, R. Preissel, A Method for the
Development and Application of Frameworks. The Third Con-
ference on Integrated Design & Process Technology of ASME
Engineering Systems Design and Analysis Conference (ESDA),
Berlin, IDTP- Vol. 4, S. 38-45, 1998

[17] W. Pree, Framework Patterns. White Paper, SIGS Books,
New York, 1996.

[18] M. Riebisch, B. Franczyk, Evolutionary Development of
Frameworks – from Projects to System Families IDPT 1999,
Kusadasi, Turkey, June 27th – July 2nd, 1999. in: M.M.Tanik, A.
Ertas [Eds.]: IDPT 1999. Society for Design and Process Sci-
ence, 2000, S. 13. ISSN 1090-9389

[19] M. Riebisch, K. Böllert, D.Streitferdt, B. Franczyk, Extend-
ing the UML to Model System Families. IDPT 2000, Dallas,
Texas, USA, 5.-8. June 2000. in: M.M.Tanik, A. Ertas [Eds.]:
IDPT 2000. Society for Design and Process Science, 2000, S. 13.
ISSN 1090-9389

[20] The Product Line Practice (PLP) Initiative. Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, 2000.
http://www.sei.cmu.edu/plp/

[21] Object Management Group, Unified Modeling Language
Specification, Version 1.3, http://www.omg.org, 1999

[22] David Garlan, Robert T. Monroe, David Wile, Acme - An
Architecture Description Interchange Language, Proceedings of
CASCON '97, November 1997. http://www.cs.cmu.edu/~acme/

[23] Robert J. Allen, A Formal Approach to Software Architec-
ture, Ph.D. Thesis, Carnegie Mellon University, Technical Re-
port Number: CMU-CS-97-144, May, 1997,
http://www.cs.cmu.edu/afs/cs/project/able/www/wright/wright_b
ib.html

[24] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and
Richard N. Taylor: Using Object-Oriented Typing to Support
Architectural Design in the C2 Style. In: Proceedings of SIG-
SOFT'96: The Fourth Symposium on the Foundations of Soft-
ware Engineering (FSE4), San Francisco, CA, October 16-18,
1996. http://www.enel.ucalgary.ca/~olson/C2_Report.html

[25] David C. Luckham, James Vera and Sigurd Meldal, Three
Concepts of System Architecture, Rapide Technical Report CSL-
TR-95-674, July 1995, http://pavg.stanford.edu/rapide/

[26] Maiden, N. A. M. & Sutcliffe, A. G. Exploiting Reusable
Specifications Through Analogy. Communications of the ACM,
34(5): 55-64. 1992.

