
 1

Feature Scoping for Product Lines
Matthias Riebisch, Detlef Streitferdt, Ilka Philippow
Ilmenau Technical University, Ilmenau, Germany

{matthias.riebisch|detlef.streitferdt|ilka.philippow}@tu-ilmenau.de

Abstract
Product Line (PL) Engineering focuses on the development of complete system families as opposed to single
systems. Systems are built of a reusable platform common to the whole family, and of specific parts extending it.
The benefits of short time-to-market and lower development costs for each system within the system family are
achieved by reusing the platform for each new system to be developed. Therefore the scoping of features for the
reusable platform and the specific parts is crucial for PL success.
This paper proposes scoping with 4 priority levels and a decision-table based interpretation of the results. The
interpretation is shown both for start and for evolution of product lines. The paper is based on experiences on
large-scale reuse in industrial software projects.

1 Introduction
Reusability of software has been and is an important goal of software engineering researchers and
practitioners. Experiences with different approaches have shown that both technical and organiza-
tional, economical, and psychological factors are crucial for success of s/w reuse. Product Line Engi-
neering (PLE) focuses on the development of complete system families as opposed to single systems.
By defining a reusable platform for all members of the family, a professional and planned way of
software reuse is possible, based on domain analysis and other technologies. Additionally, PL offer a
way for economic planning, e.g. for the return-on-invest and other key figures.

However, there are still various steps which are critical for economic success. Scoping is one of the
most important steps, and one of the less formalized ones among them. Generally, scoping is the proc-
ess of deciding about the effort of a software development task. This decision is influenced by the
market situation, the customer needs and expectations, the strategic business goals, and the estimated
effort for this task. Schmid’s survey on scoping in PLE [Schmid 2000] classifies three ways of scop-
ing:

• identifying products that should be part of a product line: product portfolio definition
• bounding the domains which are relevant: domain-centric scoping
• identifying the specific assets that should be part of the reuse infrastructure: asset-centric scoping)
In this paper, scoping focuses on the decision, which features should be implemented in the reusable
platform on in a variable part of the PL. A feature is a property or a quality of a product. The set of
features implemented in a PL are modeled in a so-called feature model (see [Czarnecki et al. 2000]).
This way of decision is very similar to that supported by [DeBaud 2000], but extended by the decision
about features which are supported by the reusable platform, even if they are outside the pla tform.

For the described step of scoping there are descriptions in recent publications, e.g. [DeBaud 2000]
and PuLSE-Eco in [Bayer et al. 1999]. In practice however only sparse support for interpretation of
scoping results as the basis for further development steps can be found.

This paper is organized as follows: After a short investigation of scoping in conventional software
development there is a proposal for classifying scoping results in PLE by priority levels. An interpreta-
tion scheme of this priorities for deciding the next implementation tasks is described. In a separate
section, additional propositions for further discussion during the workshop are listed.

2 Scoping In Conventional Software Development
Scoping in conventional software development – without PLs – is performed as part of the require-
ments engineering activities. Its predecessor activities are requirements elicitation and requirements
modeling, which are followed by design and implementation phases. As mentioned above, scoping is
influenced by the current market situation, the customer expectations, the strategic business goals, and
the estimated effort for implementing a particular requirement resp. feature. Scoping results in the
form of priorities are assigned to the list of features. Often these priorities occur in three levels:

1 - to be implemented (as part of the next development cycle),
2 - to be implemented in a later development cycle,
3 - not to be implemented (at the moment).

 2

The task of assigning priorities consists of two main steps: the definition of business goals and their
assignment to features, and the calculation of priorities. There are successful techniques for perform-
ing these two tasks: the Goal-Question-Metric technique GQM [Solingen et al. 1999], and the Quality
Function Deployment QFD [Sullivan 1986].

3 Scoping In Product Line Engineering
In PLE, scoping is one of the most critical success factors.

• It influences the development effort during later changes of the reusable platform. Scoping repre-
sents the planning of reuse and therefore influences the return-on-invest.

• If performed according to the customer needs, it enables a short time-to-market and low develop-
ment costs.

• By planning reusability, it leads to a higher process maturity for the reusable platform. Thus, soft-
ware quality and evolvability are improved. Evolvability enables a longer usage time for the parts
of the PL and therefore influences the return-on-invest, too.
In PLE, priorities are used for the assignment of features to development cycles as well as for their

assignment to the reusable platform itself or to the variable parts respectively. Thus four priority levels
are proposed:

1 - to be implemented for all systems in the PL, part of the reusable platform
2 - to be implemented for some systems in the PL, variable parts,
3 - to be implemented for some systems in the PL in a later development cycle, at the moment,

however, no implementation
4 - not to be implemented (at the moment).

The consequences of the priority assignment depend on the stage of the PL development. Either it is
just started or it is to be evolved. The next section deals with these issues.

The new criteria for deriving priorities are a refinement of those in the preceding section. Differ-
ences are described as follows:

• The market situation and the customer expectations are analyzed to rate the current situation and to
predict future trends, since the future has much more impact on PLE than on single system devel-
opment.

• Strategic business goals correlate with investments in the PL’s reusable platform. They have to be
consistent with the marketing strategy and the organization of the company.

• The effort for implementing a particular requirement resp. feature is usually estimated by experts.
Due to the higher complexity of a PL such estimations are more complex, too. However, in the case
of an existing PL with existing feature models, cost estimations can be partly replaced by assessing
traceability links. Such links offer possibilities for automating several development steps (see
[Philippow et al. 2001]).

For the calculation of priorities, methodologies similar to QFD are used. In TrueScope [DeBaud 2000]
and in PuLSE-Eco [Bayer et al. 1999] these calculation schemes are called product map.

Interpreting Scoping Results For Successful Product Line Development
The results of scoping are priorities assigned to features in the feature model. To decide the next steps
of development these priorities have to be interpreted. In literature, there is no systematic way for de-
cision-making. The interpretation of the priorities depend on the development stage of the PL. In order
to achieve a more systematic way of interpretation, the use of decision tables [Kohavi 1995] for archi-
tecture, design and coding decisions is proposed. Decision tables are in use in several branches of en-
gineering, e.g. automation engineering. A decision table consists of scheme of input values as columns
and resulting actions in the rows with conditions in the body of the table. In one step, all actions are
performed, where the conditions are met by the input values. If in this step there is no matching action,
an optional default action is performed. Using the decision table, a decision about the implementation
of each feature of the PL is made. Here, we discuss three cases: the start of a PL development from
scratch, the start of a PL development from existing assets, and the evolution of an existing PL.

Start of a Product Line Development
The starting of a PL development from scratch is the simplest case. The decision table is very straight-
forward (Tab 1): Prio-1 features are implemented within the reusable platform. Prio-2 features are

 3

implemented by variable parts of the PL. The interfaces of these parts have to be supported by the
reusable platform.

Under some conditions prio-3 features influence architectural decisions for the reusable platform:
The architecture of the reusable platform is prepared for later implementation of these features, if the
effort for later refactoring is significantly higher than the preparation of the reusable platform at this
moment, and if the complexity of the platform’s architecture is not significantly increased by this deci-
sion. This way, decisions are influenced by the intentions of the Extreme Programming approach
[Beck 1999]. Although these considerations have not been discussed in current papers, they might lead
to economic advantages.

All other prio-3 and prio-4 features are neither considered for decision-making nor for implementa-
tion.

Tab 1: Decision Table for the Start of a Product Line Development

...is of
prio 1

…is of
prio 2

…is of
prio 3

…leads to significant
increase of complexity

…leads to higher refactoring
effort later than now

Feature in question …
Resulting action

yes no no don’t care don’t care
To be implemented as part of the
reusable platform

no yes no don’t care don’t care To be implemented as variable part

no no yes no yes Platform architecture to be prepared
for future support

 Default: no change

Start of a Product Line Development with Existing Products
In this case existing products need to be integrated in the PL. They will have to be refactored in order
to divide them into parts according to the features. The refactoring effort partly leads to economically-
driven decisions for re-development of large portions of the products. This effort has to be considered
when estimating the total implementation effort. All other decisions are identically to the section
above.

Evolution of an Existing Product Line
Here, the resulting decision table is more complex (Tab 2). Features with priorities of 3 or 4 are not
implemented. Prio-1 and prio-2 features are implemented in the reusable platform or by variable parts
of the PL, respectively. If the priority of a former prio-1 feature resp. prio-2 feature changes we have
to distinct, if its priority is increased or decreased, compared to the previous development cycle. In
these cases a refactoring has to be done.1

Tab 2: Decision Table for Evolution of an Existing Product Line

…was previously in
the reusable pla tform

…was previously
in a variable part

…was previously
not implemented

...is of
prio 1

...is of
prio 2

Feature in question …
Resulting action

no no yes yes no
To be implemented as part of the reus-
able platform

no no yes no yes To be implemented as variable part

yes no no no
don’t
care

Reusable platform to be refactored in
order to remove this feature; variable
parts to be a djusted accordingly

no don’t care don’t care yes no To be included in reusable platform;
variable parts to be adjusted accordingly

 Default: no change

4 Propositions for Discussion
The following issues came up during discussions in our research team. Our intention is to put the
given statements as “requests for comment” during the workshop.

• Scoping is one of the most critical steps for economic success in requirements engineering of PLs.
While there are formalized ways for the elicitation of business goals (GQM) and for the computa-

1 As the attentive reader will notice, the 1st and 4th row of the decision table could be joined in a normalization
step, because the corresponding actions differ only slightly.

 4

tion of scoping priorities (QFD), there is no systematic way for interpreting the results and deciding
about the next steps. Decision tables offer such a way.

• Similar to the Extreme Programming (XP) philosophy all development task should be simplified as
much as possible. Especially no effort for future requirements is to be invested to keep the reusable
core simple and to assure a high evolvability.

• The thresholds for the priority levels 1 to 4 are defined on cooperation of management, marketing
and development. They can be verified in every development cycle.

• In some cases there is a need for an additional priority level between 2 and 3 for requirements,
which are to be implemented in a later product, but resources for them have to be implemented or
to be prepared in the reusable platform in this development cycle.

• Effort estimation for scoping purposes is usually carried out by developers based on their expert
knowledge. If the PL development is documented using feature models and traceability links, then
effort for changes can be derived by tools in a more systematic way. Traceability links could be
collected in a way similar to e.g. TrueScope’s Increment Control List.

• Marketing and customer relations have adopt the PL philosophy. Their support for the evolution of
a PL is more critical for long-term success than technical development.

• Similar to the experiences with software reusability, software quality requirements for the reusable
platform are stronger than for other parts. This fact has to be considered in planning development
cycles.

References

[Bayer et al. 1999] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen,
J.-M. DeBaud: PuLSE – A Methodology to Develop Software Product Lines. Symposium on
Software Reusability, Los Angeles, CA, USA (SSR’99), 1999, pp. 122-131.

[Beck 1999] Beck, Kent: Extreme Programming{ XE "Extreme Programming" } Explained: Em-
brace Change. Addison Wesley Longman, Reading/Massachusetts, 1999.

[Czarnecki et al. 2000] Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison Wesley,
Reading, MA, 2000.

[CQM 1993] -: Kano's Method Special Issue. Center for Quality of Management Journal, ISSN
1072-5296, Vol. 2, No. 4, Fall 1993, http://cqmextra.cqm.org/cqmjournal.nsf/issues/vol2no4

[Clements et al. 1998] Clements, Paul, Northrop, Linda M., et al.: A Framework for Software Prod-
uct Line Practice – Version 1.0. SEI, CMU, Sept. 1998. http://www.sei.cmu.edu/plp

[DeBaud 2000] DeBaud, Jean-Marc: TrueScope – A Full LifeCycle Approach to Develop Software
Product Lines. In: [SPLC 2000], Tutorial 6.

[Kohavi 1995] R. Kohavi: The Power of Decision Tables. In the European Conference on Machine
Learning, 1995. http://robotics.stanford.edu/users/ronnyk/ronnyk-bib.html

[Philippow et al. 2001] Ilka Philippow, Matthias Riebisch: Systematic Definition of Reusable Archi-
tectures. In Proceedings of the 8th IEEE International Conference and Workshop on the Engi-
neering of Computer Based Systems (ECBS 2001), April 2001, pp. 128-135.

[Schmid 2000] Schmid, Klaus: Scoping Software Product Lines. In: [SPLC 2000], pp513 – 532.

[Solingen et al. 1999] R.Solingen, E.Berghout: The Goal/Question/Metric Method. McGraw-Hill
Publishing Company, 1999.

[SPLC 2000] Donohoe, Patrick (Ed.): Software Product Lines – Experiences and Research Direc-
tions. Proc. 1st Software Product Lines Conf. (SPLC1), Aug. 28-31, 2000, Denver, Colorado,
Kluwer Acad. Publ. 2000. http://www.sei.cmu.edu/plp/conf/SPLC.html

[Sullivan 1986] L. P. Sullivan: Quality function deployment. Quality Progress, 19(6), 1986. pp. 39-50.

