Evolution of Product Lines Using Traceability

Matthias Riebisch, Ilka Philippow
[Imenau Technical University;
Hemholtzplatz 1, P.O.Box 100565, 98684 |Imenau, Germany;
Tel +49 3677 69-1459; Fax +49 3677 691220
{matthias.riebisch|ilka.philippow} @tu-ilmenau.de

Abstract

A high levd of software reusgbility is an important contribution to achieve evolvability and
maintainability of large software systems. Software product lines enable reusability driven by common
requirements of a family of smilar softwaresystems. This way, software product lines are a successor
of other reusability approaches. However, for successful evolution of a product line have to be
influenced severd technical and non-technical factors.

In this paper, an evolutionary development process for product lines and appearing problems and
difficulties are described. The stepwise extenson of a product line by new requirements can cause a
degeneration of its software architecture. To avoid this degeneration, information about dependencies
and traceability have to be included into models and products. An approach is described of how to
integrate activities of diciting, managing and exploiting traceghility information into the product lines
development process. Based on this information, tools can perform activities like reconfiguration
automatically. Other activities like change, refactoring and reconfiguration are supported to master the
complexity of large systems and to achieve maturity during evolution.

Introduction

During the last decade, software systems have become more and more complex. Their expected usage
period has grown, whereas the expected time-to-market for introducing changes becomes shorter and
shorter. In order to master these chalenges, software engineering has provided approaches for
reusability, adaptability, flexibility, and control of complexity and performance of software. Severd
software paradigms darted with an euphoria about the expected effects of reusability in terms of
reducing development effort and time as well as improving software quaity characteristics. Object-
oriented modeling, component technology, multi-tier architectures, process maturity and other
gpproaches lead to progressin evolvability and efficiency.

Prectical experience applying these approaches in large software systems has shown that non-technical
factors, eg. organizationa, economic and psychological aspects, are more critical for success than
some technological problems. Support for human abilities, eg. understanding solutions, mastering
complexity, thinking a higher abdraction levels and detecting deficiencies, have been motivation for
software engineering progress. Software reusability was developed from a sourcecode oriented
technique to black-box and later white-box approaches of component technology. Later, structure and
architecture became issues of concern while frameworks and design patterns have come up. They
enable reusability of architectures with both fully implemented parts and predefined variation points,
being patid abdract. Although the application of components and frameworks could lead to a lot of
advantages like reducing the development time, the success in increasing the portion of reused
eements in systems depends on many factors, e.g.

» effort for understanding reusable e ements

» acceptance for other’ sideas and third-party solutions

» applicability for actual user problems

« maintainability and robustness.
Fundamenta problems of reussble frameworks are the understandability to the developer and the
danger of mistakes during framework adaptation and integration. They are caused by insufficient
design documentation and by lacking tool support during application. Our research group developed
some solutions in the field of tool-support for evolution of components and framew orks, eg. to
describe abstractions within framework design [6], [7]. Based on these descriptions it is possible to
automate the creation of a new application using frameworks. This method, developed in corporation
with a large indugtria partner and implemented in a CASE tool, helps to reduce the influence of the
two problems mentioned above.

Softwar e Product Lines

Experiences with frameworks in large software systems showed that there is a need for support in
planning reusability and defining variation points. Furthermore, framework-based software projects
frequently suffer from low management support for the long-term activities for reusability. The idea of
clustering a family of similar software systems by establishing a reusable platform common to them
offers a way to overcome these difficulties. Domain engineering supplies the requirements to such a
system family. Providing long-term investments for establishing a product line is acceptable to the
management. Components and frameworks serve as building blocks for the family.

Software product lines describe a family of smilar systems out of a specific problem domain [2]. They
are based on a so-cdled reusable platform providing a set of features common to dl members of the
family. A system is built from the reusable platform extended by varidble parts, specific to this
paticular system. Both the definition of the reusable platform and the decison for varigble parts is
driven by requirements. Requirements to a product line are described using feature modes [3], with a
digtinction between common and varigble features.

A product line is economicaly successful if its reusable platform evolves through severd years. The
development process for a software product line is shown here with a multi-cyclic example. In
practice, the decison for developing a product line architecture is often made after a successful
development of severa (single) systems. Every of these development cycles can be represented as a
clugter [5] with a sequence of development activities. In [8 an evolutionary process for product line
development is described (see Fig 1). It starts from a corventiona development process of a single
system (Cluster 1). The result is a new software system. During the development of a next similar
system (Cluster 2) new requirements are dicited for the requirements specification. The former set of
requirements is compared againgt the new requirements. Domain analysis methods are used to obtain
common and variable features. Based on the design results in Cluster 2 common assets and useful
vaiation points have to be identified in order to define a reusable platfarm. This is the start of an
evolutionary process, with the product line methodology helping to reved common and varidble parts.
It will result in establishing a reusable platform and a set of variable parts.

Design decisions need to be documented to increase the understandability of the results of Cluster 2
for later clusters. Design patterns are a way to describe solution principles, which ease the
generdization of the solution structure. To introduce design patterns and to update the architecture due
to changes, refactoring is an important task. By adopting the ideas of Extreme Programming [1],
refactoring activities have to be applied to improve the architecture permanently in terms of
understandability and structuring. As a consequence, the change effort will be reduced and the quality
of the solution, especialy the maintainability is increesed. This way, the maturity of the product line
can be increased during evolutionary development. The double-lined arrow in Fig 1 indicates this
aspect of evolution.

During design and implementation in Cluster 2, both the requirements of Cluster 2, and the common
and variable features derived from Cluster 1 and 2 are implemented. The product line architecture
properties described eg. with feature diagrams are available for the next development cycles (Cluster
3 etc).

Cluster 1 version

|

i

|
1

v :
:

1

|

Implementation \,\

Cluster 2

Cluster 3

Domain
Engineering

Domain
Engineering

DesignDecision
Recovery

DesignDecision
Recovery

Design
I mplementation

The evolutionary development process of product lines is characterized by several fundamentd tasks
for refinement and improvement:

V¥ time

Fig1: Evolutionary Processof Software Product Line Development

to reverseengineer and to understand former gpplication architectures

to compare new requirements to the former ones

to develop a new design due to both the new and the former requirements

to reengineer and redesign the architecture due to the new design

to implement new common and variable parts

to document design decisions, intentions and the new architecture for future refinements.
Tasks 3 and 4 represent refactoring activities aiming a evolving the product line.

ouklhwdnpE

If a new cluster with changed requirements is established, developers attempt to reuse the results of
former work, which exist in the form of design documents or source code. In a product line
development, this reuse activities am a an evolution of the reussble platform. Evolution shdl be
achieved both in terms of functiondity and software quality. There are some dangers for reaching this
god, listed here corresponding to the ligt of tasks above:

to misunderstand structure and design principles
not to find the right parts for change
to fail to support some of the former requirements
to develop a“tangled” code instead of an understandable architecture
to produce inconsistent interfaces or invisible dependencies between variable parts, thus
disabling some possible configuration variants

6. toresultin lower qudity characteristics like clearness and maintainability than before. The

later consequences are high effort for changes and low robustness.

If some of these dangers could influence the development process, the results are a loss of maturity
ingtead of evolution, a degenerated software structure instead of a mature one. There is a need for
supporting the developers by methods and tools. Activities of change and refactoring demand for
specia support.

aghrMwdpE

Traceability to Support Change, Refactoring and Reconfiguration
Changes, extensions, and reuse of existing systems require their understandability. The impact of
changes due to new features to architecture and implementation of both reusable platform and varigble
parts has to be understood by a developer. Links between requirements, design, other subsequent
models and source code can show this impact to the programmer. Most of these connections designate
dependencies within the system parts. Such links are often cdled tracesbility links. During
development and application of product line architectures the traceability of the following aspects is
useful:

» traceability between requirements and feature implementation

» tracesbility of design decisons

» traceability of relations between requirements, design decisions, and features
To meet these three aspects the approach of multi-layered rich traceability [4] appears as very useful. It
is used as a basis for our work.

We developed an gpproach which extends [4] by methods for trace acquisition, by methods for
management, visudization and exploitation of traceability links, and by integration into the product
line development process. It corsists of several parts described in the following.

Enriched multi-layer tracesbility concepts are used in our approach to visudize
» reldions and congtraints between user requirements and common features with their

dependencies

e condraints within architecture, design and implementation

« condraints between features relevant for feature configuration.
Software process definitions, eg. the CMM [9], demand documentation & all levels. requirements,
architecture, design, implementation, and ingtdlation. However, to keep al these documents consistent
and complete during a sequence of iterations and changes, methodical and tool support is necessary. In
order to smplify an update of the documents, an explicit description of congraints betw een the
documents and their elements is needed. This tracesbility information is added to the models and thus
to the repodtory where the modds are stored [10],[11]. The addition requires an extenson of the
modd’s scheme, often called metamode. Every item out of requirement, architecture, design and
implementation is extended by this information. Traceahility links can connect items of different type.
CASE tools usng the repoditory have to support activities by providing references to items based on
the traceability links.

The acquidtion of traceability information is not covered by existing development process models.
However, dependencies can be derived following the flow of the development processes. They can be
elicited by recording design decisons during forward engineering. In our experience, most design
decisons during the usud engineering activities are made by developers implicitly, without paying
specid attention on them. Recording them is a very abstraction demanding task. Recording fact-based
decisons documented in products of high-maturity development processes e.g. according to higher
CMM leves [9] is much easier. Furthermore, reverse engineering activities result in discovery of
design decisons directly.

The complexity of real software systems - and of software product lines in particular - shows up in the
quantity of dependencies. To enable the exploitation of tracesbility links, they have to be qudified,
e0. using types and atributes.

The information about dependencies and congraints provided by tracesbility links can be applied for
automation and tool support of a wide range of activities of product line evolution. Dependencies are a
key information for understanding solutions in design and implementation. Backward traces can be
used for comparison of new user requirements with design and source code of existing parts of the
product line. Dependencies endble the description and identification of variation points for enhancing
or modifying a product line. During changes and refactoring, dependencies can be used for early effort
edimation as well as for assuring complete execution of a task. While executing changes, each visited
tracegbility link can be qudified by specifying the actua degree of dependency. Findly, these
qudification of links results in helps for mastering complexity in later changes.

The composition of new systems by selecting variable parts is performed feature-based. Congtraints
for the configuration of features gpply, based on dependencies within design and implementation. To
enable a featuredriven automatic configuration of a new system variant, congraints of features are
derived from traceahility information.

Summary and Conclusion

Software product lines enable reusability in a more complete way than former approaches. By
integrating domain andyss information, the evolution of a product line is performed requirement-
driven. Due to the described development process, the reusable platform of a product line is evolved in
an evolutionary way. In order to avoid degeneration of this reusable part, specid attention has to be
paid a the activities of change and refactoring. An extended tracesbility approach is shown to provide
information needed for tool support. This information about dependencies and condraints is exploited
to reach the gods of product line development and to incrementaly increase the maturity of the
product line.

Evolvability of software systems is improved by product lines and by the proposed tracesbility
approach. However, besides of technical aspects like software engineering methods and principles of
architecture and design, this criteria is influenced by severa nonetechnica aspects. psychologicd and
quaity characteristics like understandability of structures and documents, development processes, as
well as organizationd and culturad environment. We do not expect the gopearance of a “Silver Bullet”
by an upcoming new paradigm. Strong cooperation between experts of software engineering, quality
management, business adminidration, and of the particular agpplication doman is necessary to
stepwise improve both, efficiency and evolvability.

References
[1] Beck, Kent: Extreme Programming Explaned: Embrace Change. Addison Wedey Longman, Reading MA,
19%.

[2] Clement, P. ;Northrop, L.: A Framework for Software Product Line Practice, Version 2.7., 1999

[3] Czarnecki, K., Eisenecker, U.W.: Generative Programming; Methods, Tools, Applications. Addison Wedey,
Reading, MA, 2000.

[4 Dick, J: Rich Tracesbility. Teldogic Technicd Peper, Teldogic AB, Mamé, 1999. Avalable online a
http:/AMmww.tel e ogic.com/industries/tel ecoms/papers.cfm

[5] Henderson-Sdllers, B., Edwards, J. M., Object-oriented software systems life cycde. CACM Vol. 33, No. 9,
1990.

[6] Ivanov, E.; Philippow, I.. A Methodology and Tool Support for the Development and Application of
Frameworks, Journd of Integrated Design and Process Science, Val. 3, No. 2, June 1999, pp. 21-23.

[7] Ivanov, E. A Methodology for Development and Application of Object-Oriented Frameworks. (Eine
Methodik fir die Entwicklung und Anwendung von objektorientierten Frameworks, in German), PhD Thesis.
IImenau Technica University. Verlag ISLE, ISBN 3-932633-41-5, 1999.

[8] Philippow, I.; Riebisch M.: Systematic Definition of Reuseable Architectures Proceedings of the &' Annua
IEEE Internationd Conference and Workshop on the Engineering of Computer Based Systems, Washington
April 17-20, 2001. pp. 128-136

[9] Software Enginesring Indtitute (Ed.): Software Process Maturity Questionnare, Capability Maturity Modd,
Version 1.1.0. Software Engineering Indtitute, Pittsburgh, April 1994.

[10] Riebisch, M.; Bdllet, K.; Streitferdt, D.; Franczyk, B.: Extending the UML to Modd System Families.
IDPT 2000, Dalas, Texas, USA, June 58 2000. In: Tanik, M.M, Ertas, A. [Eds]: IDPT 2000. Society for
Design and Process Science, ISSN 1090-9389. 2000, S. 13.

[11] Streitferdt, D.: Tracesbility for System Families. ICSE 2001 Doctord Symposum. Toronto, May 12-19
2001. Computer Soc. Press, 2001.

