
   

Evolution Support by Homogeneously Documenting Patterns, Aspects and Traces 
 

Johannes Sametinger 
Johannes Kepler University Linz, Austria 

sametinger@acm.org 
 
 

 
Matthias Riebisch 

Technical University of Ilmenau, Germany 
matthias.riebisch@tu-ilmenau.de 

 
 

Abstract 
 

The evolution of complex software systems is promoted 
by software engineering principles and techniques like 
separation of concerns, encapsulation, stepwise refinement, 
and reusability of design solutions. Design patterns capture 
the expertise for reusable design solutions. Aspect-oriented 
programming is a methodology that enables the modulari-
zation of cross-cutting concerns. Traceability links desig-
nate dependencies between requirements, design, and 
source code. In order to support maintenance, documenta-
tion has to enable understandability by describing these 
issues. Descriptions have to facilitate tool support for 
automating documentation activities. 

In this paper, we use the notion of patterns, aspects and 
traces for a homogeneous documentation approach. We 
integrate various types of documentation, keep track of 
traces from requirements to the source code, keep design 
information in the source code, and generate additional 
design views on software systems. We have implemented 
these ideas as an extension to javadoc, the documentation 
approach used by Java. This extension can be used to 
automatically generate views on the design and on aspects 
as well as on traceability links as part of the standard 
javadoc system documentation. 

Keywords: evolution, maintenance, documentation, de-
sign pattern,  traceability, object-oriented design, javadoc 

1. Introduction 

The complexity of software systems obstructs their evo-
lution by confusing developers during modifications, caus-
ing mistakes and design deficiencies. Managing the com-
plexity of software systems is one of the major challenges 
to both developers and maintenance personnel. Software 
engineering principles like hierarchically structuring, in-
formation hiding and separation of concerns help to master 
the complexity. The impact of changes to the architecture, 
the design, and the implementation has to be understood. 
Even if only one unit of work, e.g., one concern or aspect, 
is affected by a particular change, an understanding of in-
teractions with other parts of the system is necessary. 
Therefore, connections between separated units of work 
have to be provided. 

Design patterns capture the expertise for reusable design 
solutions [4]. Patterns describe repeatedly occurring prob-
lems and their solutions in such a way that these solutions 

can be reused manifold, without ever doing it the same way 
twice [1]. Design patterns are essential to maintenance as 
they provide information about design issues. Explicit in-
formation about such design issues can prohibit design 
blurring and degradation during the maintenance process. 
Design patterns have gained wide-spread acceptance and 
use. But despite their definite advantages, there are im-
pediments to pattern-based software engineering. Design 
patterns are treated only as non-software artifacts. Pro-
grammers create, extend, and modify classes throughout the 
software and tend to lose sight of the original patterns, 
which may lead to a major maintenance problem.  

The principle of separation of concerns helps mastering 
complexity during design. Aspect-oriented programming is 
a programming methodology that supports this principle 
within the implementation by modularization of cross-
cutting concerns [5]. Aspects provide a bridge between 
design and implementation. During design, aspects facilitate 
the thinking about crosscutting concerns as well-defined 
entities. During implementation, aspects make it possible to 
program in terms of design aspects [14]. Furthermore, com-
position techniques for components representing aspects 
supports flexibility and reusability. Aspects are essential to 
maintenance for the identification of related facets in the 
source code. 

The evolution of a complex software system requires 
comprehension about consequences and dependencies. 
Traceability links designate dependencies between require-
ments, design, and source code. They improve program 
comprehension by, e.g., showing the impact of changes due 
to new features [8]. Traceability represents an important 
factor enabling evolution. Successful reusability of arte-
facts, e.g., design, source code components or other, depend 
on their evolution in order to reach a higher level of matur-
ity and robustness. The product line approach [3]—a meth-
odology for large-scale reuse for families of systems—is 
supported by documenting traceability links, roles and other 
dependencies according to the approach explained here. 
Traceability information ensures that consistency is retained 
and as much information as possible is available to support 
the maintenance process.  

Documentation is the only tangible way of representing 
software and its process. It has to be consistent and read-
able. System documentation describes the implementation 
including the requirements specification, the system archi-
tecture, detailed design descriptions, the source code, test 
plans, etc. [12]. Hyperlinks facilitates navigation within 



   

 

complex structures, thus supporting understandability. 
However, in order to keep documentation up-to-date and 
consistent, automatic generation and CASE tool integration 
is needed. Javadoc is a tool that parses declarations and 
special documentation comments in a software system’s 
source files and produces web pages describing classes, 
interfaces, methods, and fields for an online, hypertext-
based documentation [13]. The content and format of the 
output can be customized.  

In this paper we will provide an integration of the con-
cepts mentioned above by extending the standard documen-
tation. The approach includes important facets of a software 
system including patterns, aspects and traces, thus including 
and integrating design views, design documents as well as 
traces among them. In Section 2, we will give an introduc-
tion to basic concepts, including patterns, aspects, traces 
and javadoc. In Section 3, we present our documentation 
approach. In Section 4, we describe the implementation 
using javadoc. Conclusions follow in Section 5. 

2. Basic Concepts 

Design patterns [4], aspect-oriented programming [5, 
14], traceability links [8], and javadoc [13] build the cor-
nerstone of our approach for supporting evolution by ex-
tended documentation. 

2.1 Patterns 

Object-oriented design patterns provide a scheme for 
describing best practices in the domain of object-oriented 
design. They are frequently described as a problem/con-
text/solution triple [2,4,7]. "A design pattern systematically 
names, motivates, and explains a general design that ad-
dresses a recurring design problem in object-oriented sys-
tems. It describes the problem, the solution, when to apply 
the solution, and its consequences.  It also gives implemen-
tation hints and examples. The solution is a general ar-
rangement of objects and classes that solve the problem. 
The solution is customized and implemented to solve the 
problem in a particular context" [2]. 

Design patterns are abstract ideas that can be illustrated 
in different ways, for example, by using class diagrams [2], 
role models [9], or a combination thereof. The choice of a 
particular modeling technique depends on how well the 
presentation conveys the pattern idea to its readers [9]. 
Design patterns provide a common design vocabulary, a 
documentation and learning aid. Therefore, they are an 
adjunct to existing methods, and a target for refactoring. 
Their use typically involves several steps, i.e., reading the 
documentation for an overview; studying the structure, the 
participants, and collaborations; understanding the sample 
code; choosing names for pattern participants that are 
meaningful in the application context; defining the classes; 
assigning application-specific names for operations in the 

pattern; and implementing the operations to carry out the 
responsibilities and collaborations in the pattern [4]. 

2.2 Aspects 

Multiple concerns have to be considered in the case of 
complex systems. Even if separated in design, concerns 
frequently are merged during implementation. Aspect-
oriented programming enables the modularization of cross-
cutting concerns by providing module composition and 
interaction concepts, as well as references among them [5, 
14]. As a consequence of modularization, changes can be 
carried out by separate aspect modules. During implementa-
tion, the aspects are composed by what is called an aspect 
weaver [6]. 

Capturing and documenting aspects is useful even if not 
using the full power of aspect-oriented programming. We 
consider source code that is logically belonging together but 
which is possibly scattered over many locations as aspects. 
For example, write methods that are spread over many 
classes may all be used to write a complex data structure to 
a file. 

2.3 Traces 

Links between requirements, design, other subsequent 
models and source code can show the impact of changes to 
the developer. Most of these connections designate depend-
encies within the system parts. Such links are often called 
traceability links. Traceability is useful to support change. 
Various kinds of traces are important [8]: 
- traces between features and their implementation, 
- traces of relations between requirements, design deci-

sions, and features. 
In the approach of multi-layered rich traceability, links are 
used to support understandability and change in require-
ment specification by supplying navigation within a hierar-
chical structure, among document parts and reports. En-
riched multi-layer traceability concepts are used to visual-
ize:  
- relations and constraints between user requirements and 

features including their dependencies, 
- constraints within architecture, design and implementa-

tion, and 
- constraints among features that are relevant for feature 

configuration. 
Additionally, the use of patterns and aspects requires more 
types of relations between units of work, i.e.,  roles, compo-
sition nodes and instances. They can be represented by 
traces as well. 

Software process definitions, e.g. the CMM [11], de-
mand for documentation at all product levels: requirements, 
architecture, design, implementation, and installation. In 
order to keep all these documents consistent and complete 
during a sequence of iterations and changes, support is 
necessary at the methodical and at the tool level. The use of 



   

 

patterns and aspects especially affects architecture, design, 
and implementation. In order to simplify an update of the 
documents, an explicit description of constraints between 
the documents and their elements is needed. This traceabil-
ity information is added to the models and the relevant 
documents. 

2.4 Javadoc 

Javadoc is a tool from Sun Microsystems for generating 
API documentation out of declarations and documentation 
comments in Java source code. Javadoc produces HTML 
documentation describing the packages, classes, interfaces, 
methods, etc. of a software system. 

Javadoc output can be customized by means of doclets. 
A doclet is a program written with the doclet API that 
specifies the content and format of the output to be gener-
ated. Thus, a doclet can, for example, generate any kind of 
text file output, such as HTML, SGML, XML, RTF, and 
MIF. Sun provides a standard doclet for generating HTML 
format documentation. Doclets can also be used to perform 
special tasks not related to producing systems documenta-
tion. For example, a diagnostic doclet could be created to 
enable model checking, for example, whether all class 
members have documentation comments [13]. Javadoc 
parses special tags embedded within a Java doc comment. 
These doc tags are used to automatically generate a com-
plete, well formatted API from the source code. All tags 
start with an "at" sign (@), e.g., @author. The tags are used 
to add specific information like a method's parameters 
(@param), return type (@return), and exceptions 
(@exception), see example in Fig. 1. 

 
/** 
 * A class representing a simple drawing window on  
 * the screen. Example usage: 
 * <pre> 
 *    SimpleDraw s = new SimpleDraw(); 
 *    s.setVisible(true); 
 * </pre> 
 * 
 * @author  Johannes Sametinger 
 * @version  1.2 
 * @see  java.awt.Frame 
*/ 
class SimpleDraw extends Frame { 
   ... 
} 

Fig. 1: Javadoc Comment 

3. Documentation for Evolution Support 

Typically, object-oriented software systems consist of 
many classes, patterns, aspects, and traces. In practice, 
documentation contains details of classes. Overview infor-
mation covering e.g., architectural principles are contained 
in manually written documents. They are not updated auto-

matically during modifications to the source code. Our aim 
is to automatically document systems in many respects. In 
the following sections, we demonstrate how to integrate the 
documentation of patterns, aspects, and traces into regular 
system documentation. The extension of javadoc by this 
kind of links enables an automatic update of documents and 
their online availability in HTML format.  

3.1 Patterns 

Design patterns describe relations within an abstract ob-
ject-oriented model. These relations have to be mapped 
from a pattern description scheme onto concrete design and 
code. Roles enable such a mapping. They describe how 
collaborating objects that play one or more roles achieve a 
common goal according to a pattern.  

In Fig. 2 we can see the start page of the system docu-
mentation of an application. In the top left panel we can see 
the entries “All Aspects”, “All Classes”, “All Patterns”, and 
“All Traces”. By clicking on the item “All Patterns”, we get 
a list of patterns in the lower left panel. This panel provides 
a summary and a list of all patterns in the system. If we 
click on "Summary" we get the pattern summary as shown 
in the big right panel in Fig. 2. Here we can see a table with 
all patterns in the system as well as their type. In the pattern 
summary of Fig. 2, there are eight design pattern instantia-
tions, one abstract factory, two iterators, four observers, and 
one visitor. 

 

 
Fig. 2: Pattern Summary 

 
Following a link to any of the patterns in the left column 

of the summary brings us to more detailed information 
about a pattern as indicated in Fig. 3. The overview shows 
the name of a pattern, provides links to general information 
and lists all roles that have been found. Any role can be 
played by one or several classes, methods, and/or fields. 
These are listed for each role together with a short text. The 
documentation of any of the role players can be directly 
accessed by following the links that are shown as under-
lined in Fig. 3. 



   

 

QuizVisitor  
see: Visitor 
 
AbstractVisitor  
- interface quiz.Visitor 
Client  
- writeHTML(BufferedWriter), method in class 

quiz.QuizApplication 
produces HTML output by means of a visitor 

ConcreteVisitor  
- class quiz.HTMLVisitor  

We are producing HTML output.  
- class quiz.LaTeXVisitor  

We are producing LaTeX output.  
DataStructure  
- accept(Visitor), method in class 

quiz.QuestionCatalog  
QuestionCatalog accept visitor  

- accept(Visitor), method in class 
quiz.QuizApplication  
QuizApplication accept visitor  

- accept(Visitor), method in class quiz.Question  
this is the abstract method for all Question sub-
classes  

- accept(Visitor), method in class 
quiz.vocabulary.VocabularyQuestion  
accept visitor  

Fig. 3: Design Pattern Overview 

3.2 Aspects 

Aspects are meant to clearly capture important design 
decisions that involve code being scattered throughout the 
system, i.e., they crosscut the system’s functionality [5, 6]. 
Aspects have been introduced because programming lan-
guages do not provide abstraction and composition mecha-
nisms for several design issues, i.e., for all kinds of units a 
design process breaks a software system into. Aspects pro-
vide an important contribution in trying to capture design 
issues that cannot be adequately expressed otherwise. As-
pects cover only specific design aspects, but can be generic 
in that they can be applied to classes and methods with 
certain properties.  

 

 
Fig. 4: Aspect Summary 

From the understandability point of view, the relations 
among aspects have to be represented to enable their com-
position as well as their evolution. For aspects, we intro-
duce the same kind of information about roles and relations 
as for patterns of a software system, see Fig. 4. 

Kiczales et al. distinguish among various forms of as-
pects, e.g., join points, pointcut designators, advices [6]. 
These aspect forms can be used to associate code bodies to, 
say, method calls and, thus, define when the code should be 
executed. We pursue a much simpler notion of aspects, i.e., 
we simply document that certain locations in the source 
code play a role for the performance of a certain task. For 
example, writing the complex data structure involves 
method calls of many classes comprising this data structure. 
The source code for writing this data structure is spread 
over many locations, and it makes sense, to have an entry 
point for the access of all these locations. Figure 5 provides 
this entry point for the aspect of writing a quiz. It lists all 
the classes and methods involved in the task of writing a 
quiz. Again, the documentation of any of the players for this 
aspect can be directly accessed by following the links that 
are shown as underlined in Fig. 5. 

 
Aspect: WriteQuiz 
- save(String, String), method in class 

quiz.QuizApplication  
here we go saving a quiz. 

- write(BufferedWriter), method in class 
quiz.QuestionCatalog 
here we continue. 

- write(BufferedWriter), method in class 
quiz.QuizApplication  
here we write the quiz. 

- write(BufferedWriter), method in class 
quiz.Question  
here we continue with writing the question. 

- write(BufferedWriter), method in class 
quiz.vocabulary.VocabularyApplication  
here we write the vocabulary quiz. 

- write(BufferedWriter), method in class 
quiz.vocabulary.VocabularyQuestion  
here we continue with writing the vocabulary ques-
tion. 

- write(BufferedWriter), method in class 
quiz.mchoice.MchoiceChoice 
here we continue with mchoice choice. 

Fig. 5: WriteQuiz Aspect 

3.3 Traces 

Modifications and extensions as well as the reuse of exist-
ing software systems require comprehension. The impact of 
changes to both design and implementation have to be well 
understood. Such impacts can be made visible by traceabil-
ity links among documents of software systems, i.e., re-
quirements, design, models, and the source code. Traceabil-
ity is to be shown as relations among requirements, design 
decisions, features, and their implementation 



   

 

In Fig. 6 we can see a list of traces on the left side and a 
summary on the right side. Traces can be organized hierar-
chically. For each of them we need a link to the documenta-
tion, e.g., to the description of a requirement, and a link to 
the appropriate source code where the requirement is being 
implemented. Missing links to the source code indicate 
either that the requirement had not been implemented yet or 
that the documentation is not complete yet, i.e., the link 
between requirement and source code had not been in-
cluded yet.  

Links to the source code can involve classes or methods. 
This will mostly be the case for rather detailed require-
ments. Often, fulfilling a certain requirement cannot be 
done by a single portion of the source code. We can either 
provide links to all relevant locations in the source code or, 
what we prefer, to a separate aspect covering this source 
code. As a consequence, a single link points to an aspect as 
a cluster of source code rather than source code that is pos-
sibly spread over many locations of a solution. 

The acquisition of traceability information is not cov-
ered by existing development process models. However, 
dependencies can be derived following the flow of the de-
velopment processes. They can be elicited by recording 
design decisions during forward engineering. In our experi-
ence, most design decisions during the usual engineering 
activities are implicitly made by developers, without paying 
special attention to them. Recording them is a demanding 
task. Recording fact-based decisions documented in prod-
ucts of high-maturity development processes, e.g., accord-
ing to higher CMM levels [11], is much easier. Further-
more, reverse engineering activities directly result in the 
discovery of design decisions. 

 

 
Fig. 6: Trace Summary 

3.4 Source Code Integration 

There have to be links from the regular system docu-
mentation, i.e., documentation generated by standard java-
doc, to this extra documentation about patterns, aspects and 

traces, wherever a class, method or field is involved. In Fig. 
7 we can see the documentation for the class HTMLVisitor 
where the entry "Patterns:" gives all the information about 
any roles played by this class in a particular design pattern. 
Again, links can be followed to get information about the 
pattern instantiation of which the class plays a role, as well 
as about the design pattern itself. 

4. Implementation 

A basic infrastructure is indispensable in order to pre-
sent a system’s patterns, aspects and traces in appropriate 
form to development and maintenance personnel. Tool 
support has to be provided at the source code level. That 
means that links to and information about patterns, aspects 
and traces are kept in the source code, e.g., by means of 
special comments. All other development activities and 
tools operating on the source code can make use of the 
extra information. For example, design tools are able to 
extract design views out of the source, to present it, and to 
allow design modifications, supporting appropriate changes 
in the source code. All changes affecting the source code 
are resulting in changes to the extra information as well. 
Tags as targets for links are changed appropriately. Docu-
menting patterns, aspects and traces in the source code can 
easily be done by means of comments like that used for 
javadoc, where comments contain information about name, 
type, and role of an aspect or pattern. This information can 
be used to recreate design information, as had been outlined 
in the previous section. 

 
quiz  
Class HTMLVisitor 
java.lang.Object

|
+--quiz.HTMLVisitor

 
public class HTMLVisitor  
implements Visitor 
 
HTMLVisitor contains all methods needed for HTML 
output creation. 
 
Patterns:  
- Visitor,  

instance: QuizVisitor,  
role: ConcreteVisitor  
We are producing HTML output.  

 
...

Fig. 7: Class Overview 
 
We keep most of the information in the source code and 

have defined additional tags to standard javadoc. Our tags 
will be described in Section 4.1. In Section 4.2 we provide 
an example for the usage of these tags. 



   

 

4.1 Javadoc Tags 

In order to describe design patterns, aspects and trace-
ability links in source code, we introduce new tags that are 
used similar to any other tag for javadoc. They can be used 
for classes, methods and fields. For the description of de-
sign patterns we use the @pattern tag. The syntax is as 
follows: 

@pattern  <pattern name>.<instance name>. 
<role name>  <text> 

<pattern name> specifies the name of the pattern, e.g., 
Aspect, Iterator, Visitor. <instance name> specifies the 
name of the specific instance, e.g., QuestionIterator, Frame-
Iterator. With the name of an instance we can distinguish 
various instances of the same pattern, e.g., there are two 
iterator instances named ChoiceListIterator and Ques-
tionListIterator in Fig. 2. <role name> specifies the name of 
the role played by a class, method, or field, e.g., Abstract-
Visitor, ConcreteVisitor. <text> is optional and provides 
additional information to appear in the documentation. 

In order to document aspects and traces, we use the tags 
@aspect and @trace. These tags can also be used for 
classes, methods and fields. The syntax is as follows: 

@aspect <name>  <text> 
@trace <name>  <text> 

We have implemented a doclet that processes the 
@pattern, @aspect and @trace tags and produces documen-
tation output similar to the standard javadoc doclet with 
additional information as demonstrated in the previous 
sections. 

Javadoc tags are being used in the source code only. In 
order to support traces, we have added links from and to 
other documents also. There are two possibilities to provide 
such connections. First, we can include tags within other 
documents, e.g., by using hidden text or fields in MS Word 
documents, or by explicitly stating them in simple text 
documents. This form of inclusion requires that the docu-
ment be parsed like the source code and the gathered infor-
mation about found tags be included in the generated 
documentation. In the case of design documents, identifiers 
are used as link targets, and the UML’s built-in extensions 
tagged values are used for describing links [10]. In the case 
that we if are not be able to include tags to other documents 
easily, then we use a connector document. Such a document 
can specify tags and the documents where they belong to.  

4.2 Example 

We will demonstrate how to use @pattern tags for the 
documentation of a Visitor pattern. According to this pat-
tern, an abstract visitor, a concrete visitor, an abstract ele-
ment, concrete elements, and an object structure are the 
participants [4]. We can use these names for the roles 
played in the pattern, which we recommend, but we may 
also use arbitrary names. Figures 8 to 10 show how the 
participants of the visitor pattern are being identified by 
means of the @pattern tag.  

 
package quiz; 
/** represents an operation to be performed on 
 * elements of a quiz 
 * @author Johannes Sametinger 
 * @pattern Visitor.QuizVisitor.AbstractVisitor  
 *  declares a visit operation for each class in quiz 
 */ 
public interface Visitor { 
 ... 
} 

Fig. 8: Abstract Visitor 
 
All these tags start with the name Visitor, indicating that 

the Visitor pattern is being documented. The second name 
QuizVisitor indicates the instance name of this pattern, 
thus, indicating that all three classes not only play a role in 
a Visitor pattern, but also play this role in the same in-
stance. There may be several instance of the same pattern in 
a software system. The interface Visitor in Fig. 8 plays the 
role of an abstract visitor, class HTMLVisitor in Fig. 9 is a 
concrete visitor producing HTML output, and class Ques-
tion in Fig. 10 is an abstract element providing an accept 
operation and taking a visitor as argument. 

 
package quiz; 
/** produces HTML output of a quiz 
 * @author Johannes Sametinger 
 * @pattern Visitor.QuizVisitor.ConcreteVisitor.  
 *       We are producing HTML output. 
 */ 
public class HTMLVisitor implements Visitor { 
 ... 
} 

Fig. 9: Concrete Visitor 
 
@aspect and @trace tags are used in a similar way. For 

traces we additionally need links from and to documents 
other than source code. We are currently experimenting on 
how to best realize such links. 

 
package quiz; 
/** represents the basic structure of quiz questions 
 * @author Johannes Sametinger 
 * @pattern Observer.QuestionObserver.Subject. 
 * @pattern Iterator.QuestionListIterator.Item 
 */ 
abstract public class Question extends Observable { 
 ...  
/** defines an accept operation that takes a visitor  
 * as an argument.  
 * @param v Visitor to be accepted 
 * @pattern Visitor.QuizVisitor.AbstractElement.  
 *    this is the abstract method for all Question 
 *    subclasses 
 */ 
    abstract public void accept(Visitor v);  
} 

Fig. 10: Visitor's Data Structure 



   

 

5. Conclusion 

We have presented a supporting methodology for evolv-
ing software systems by a homogeneously extended docu-
mentation approach for patterns, aspects and traces. We 
keep information in the source code and provide links to 
other documents. We use an extension to javadoc to gener-
ate HTML documentation. The generated documentation 
includes regular class and method information plus summa-
ries and descriptions of patterns, aspects and traces with 
links to and from the regular system documentation. 

Utilization of this additional information supports com-
prehension, such that modifications are made consistently 
and according to requirements, architecture and design. We 
have implemented javadoc support for source code, includ-
ing patterns, aspects and traces. Currently, we are working 
on the support of documents other than source code also, 
e.g., specification documents in a word processing format. 
For a next step, we plan to integrate an aspect-based prod-
uct line composition toolkit. 

6.  References 

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, 
I. Fiksdahl-King, S. Angel, A Pattern Language, Oxford 
University Press, New York, 1977.  

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, 
M. Stal, Pattern-Oriented Software Architecture, Wiley & 
Sons, 1996. 

[3] L.M. Northrop, A Framework for Software Product 
Line Practice, Version 3.0, October 24, 2001. available at 
http://www.sei.cmu.edu/plp/framework.html 

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design 
Patterns. Elements of Reusable Object-oriented Software, 
Addison-Wesley, 1995. 

[5] T. Elrad, R.E. Filman, A. Bader (eds.), “Aspect-
Oriented Programming”, Communications of the ACM, 
Vol. 44 ,  No. 10. October 2001. 

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. 
Palm, W. Griswold, “An Overview of AspectJ”, Proceed-
ings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), Hungary. June 2001. 

[7] W. Pree, Design Patterns for Object-Oriented Software 
Development, Addison-Wesley, 1995. 

[8] Matthias Riebisch, Ilka Philippow, “Evolution of Prod-
uct Lines Using Traceability”, OOPSLA 2001 Workshop on 
Engineering Complex Object-Oriented Systems for Evolu-
tion, Tampa Bay, Florida, USA, October 15th 2001. 

[9] L. Rising (ed.), The Patterns Handbook: Techniques, 
Strategies, and Applications, Cambridge University Press. 
1998. 

[10] J. Rumbaugh, I. Jacobson, G. Booch, The Unified 
Modeling Language Reference Manual. Addison-Wesley, 
1999. 

[11] Software Engineering Institute (eds.), Software Proc-
ess Maturity Questionnare, Capability Maturity Model, 
Version 1.1.0. Software Engineering Institute, Pittsburgh, 
April 1994. 

[12] I. Sommerville, Software Engineering, 6th edition, 
Addison Wesley, 2000. 

[13] Sun Microsystems, Javadoc Tool Home Page, 
http://java.sun.com/j2se/javadoc/ 

[14] WWW, Aspect-Oriented Software Development, 
http://aosd.net/ 

 
 
 
 




