
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

 1

EXTENDING FEATURE DIAGRAMS WITH UML MULTIPLICITIES
Matthias Riebisch, Kai Böllert, Detlef Streitferdt, Ilka Philippow

Ilmenau Technical University, Max-Planck-Ring 14, P.O.Box 100565;
98684 Ilmenau, Germany

{Matthias.Riebisch|Detlef.Streitferdt|Ilka.Philippow}@TU-Ilmenau.DE

ABSTRACT
Feature diagrams are an important product of domain
analysis for product lines or system families, respectively.
They describe relations between requirements and distin-
guish between common and variable characteristics. Fea-
ture diagrams, as part of the feature model, form the basis
for configuring the system. Current principles do not sup-
ply a complete description of the semantics of relation-
ships and dependencies between features. Thus, the devel-
opment of methods and tools for elaborating configura-
tions is not possible. This paper presents some enhance-
ments to feature diagrams. In addition the paper deals with
the inclusion of feature models in the development process
of product lines.
Index terms: domain analysis, software product lines,
system families, software reuse, feature modeling

INTRODUCTION

Software reuse employed to many applications leads to
economic advantages. By reusing once developed assets,
development costs will be reduced. In addition a faster
development cycle is possible when reusing existing as-
sets. Last but not least the maturity level of frequently used
software will be higher due to continuous bug fixes ap-
plied to the software. Since the middle of the 80th the main
objective of software engineering is software reuse (Tracz,
1987).

Multiple paradigms of software reuse at code and de-
sign level have been developed. Many efforts were taken
to reduce the number of systems developed from scratch in
favor of reusable software assets. Here software engineers
realized that communication aspects and the motivation of
the organization as well as the management need to be
considered, to develop reusable assets successfully. Reus-
able assets are developed using domain analysis tech-
niques, to handle and make use of similarities while inside
the requirements analysis phase. Product lines or system
families, respectively, aim towards a group of software
systems with similar requirements. The development of a
common and reusable core for all systems is addressed by
this development strategy as well as economic issues of
the development itself. Investments, profitability and or-
ganizing a software company are considered through com-
parison with other economic areas.

Product line development starts with modeling the
common and variable requirements of a group of software
systems. Requirements will be related to the hierarchically
organized features. Setting up rules and relationships
within the feature model reduces the possible choice of
features. The developer decides which parts of the system
will be realized as common and which will be realized as
variable parts based on the feature model.

Within the configuration step a system will be com-
posed out of common and variable elements. A developer
will choose out of the available features. The outcome is a
configuration describing a specific system of the product
line. A feature is related to a set of requirements as well as
to corresponding parts of the system architecture, to en-
sure a smooth development throughout all development
phases. Tool-based creation of configurations requires
clearly defined relations inside the feature model.

The advantage of product line development methods is
the development of many systems based on the common
architecture. Such a development needs to apply the meth-
ods of product line development in each development
phase. The requirements model will have to be separated
into common and variable requirements. The transforma-
tion of a requirements model into a feature model already
reveals variants of the product line, which can be used for
a prediction of further development tendencies. Creation
of a far reaching project plan and the evolutionary devel-
opment of a product line is now possible (Clements et al.,
2002; Riebisch et al. 1999). Feature models form an im-
portant foundation for the development of product lines
and contribute to the success of the product line.

STATE OF THE ART

Feature modeling focuses on the hierarchical structuring of
requirements elicited out of a given problem domain. An
important method is Feature-Oriented Domain Analysis
(FODA) (Kang et al., 1990). The feature diagram (Fig 1)
represents the relation between features and the corre-
sponding requirements. Czarnecki (2000) used features for
Generative Programming within requirements analysis and
developed an extension for feature diagrams.

All hierarchically organized feature diagrams start with
a concept node at the root position. The concept refers to a
property, a product or a domain. At the next level beneath
the concept features will follow hierarchically. Besides the

 2

normal hierarchies, Czarnecki (2000) also allows directed
graphs, which causes valid relations close to inheritance in
object-oriented languages. The relation of a feature to the
product line is expressed using one of the specifiers man-
datory, alternative or optional. This establishes the refer-
ence to commonalities and variabilities of similar systems
and thus to product lines.

Non-chooseable features are marked as mandatory.
These features will be present in all members of the prod-
uct line. A filled circle at the top of the feature identifies a
mandatory feature. Optional features are only present in an
application if the customer has chosen them. An empty
circle at the top of the feature identifies an optional fea-
ture. A path starting at the concept leading down to the
leaves of the tree and containing just mandatory features is
part of the core of the product line. If there is an optional
feature part of the path, then just the path above this op-
tional feature up to the concept is part of the core.

The excludes and requires relationships between fea-
tures enable the expression of additional constraints and
dependencies. Frequently, they are shown graphically by
dashed arrows between features with type descriptors
<<requires>> or <<excludes>> very similar to UML
stereotypes (Rumbaugh et al., 1999).

SETS OF ALTERNATIVE FEATURES

A segment of a circle between the outer edges of a set of
features denotes a choice out of a set of optional features.
Czarnecki et al. (2000) represents the logical OR-relation
by a filled segment. Here we can choose at least one out of
the specified set of features. Features may but do not have
to be part of the choice. Empty segments or arcs represent
alternative choices. Just one out of a set is a possible
choice. Out of all possible combinations of optional and
mandatory sets of features with OR-relations and alterna-
tives we have chosen a relevant subset for the paper as
shown in Fig 3.

The three diagrams forming the top line of Fig 3 refer
to the base types used in feature diagrams. In diagram (1)
features B, C and D have to be chosen. The alternative
choice in diagram (2) requires exactly and not more than
one feature out of the set B, C and D. Finally in diagram
(3) one could choose a non-empty set out of B, C and D.

By using these concepts, cases with ambiguous seman-
tics happen. To overcome this problem, Czarnecki (2000)
proposes a normalization into an unequivocal notation,
which is referred by the diagrams in the middle and bot-
tom line of Fig 3.

Diagrams (5) and (6) require the choice in two steps.
Based on the OR-relation a non-empty subset needs to be
chosen. After this choice of a set as in diagram (6), or the
set containing feature B in diagram (5) respectively, we
can choose again, contrary to the original intention of the
OR-relation. This will enable the empty set as a possible
solution. This ambiguity can be removed by normalizing
diagrams (5) and (6) to diagram (4).

The alternative choice in diagram (9) will lead to ex-
actly one feature, what causes in case of choosing feature

B again the empty set. This is also a choice in two steps,
which could be normalized as shown in diagram (10).

Removal of ambiguities and unification of the notation
requires the extension of feature diagrams.

FEATURE SPECIFIERS

If features in a feature diagram are organized as a tree,
then each feature has a property that holds the feature’s
specifier (mandatory, optional, or alternative). This solu-
tion, “specifier is a property of a feature”, is no longer
valid if the features in a diagram are organized as a di-
rected-acyclic graph, according to the definition of
Czarnecki et al. (2000). Fig 2 shows an example in which
feature C is a “subfeature” of feature A and B. From the
point of view of A, C is mandatory. However, viewed
from B, C is optional. Hence, we can no longer store a
feature’s specifier as a property of the feature. To circum-
vent this problem in both tree-based and graph-based
feature diagrams, specifiers should be stored as a property
of feature relations.

MULTIPLICITIES IN FEATURE DIAGRAMS

Multiplicities are a very common modeling element. They
are used in UML class diagrams or in entity-relationship
diagrams, to name a few (Rumbaugh et al., 1999). As-
sume, for instance, a class diagram in which one class is
associated with another class and the association is anno-
tated with the multiplicity “0..1”. The semantic of this
multiplicity is that at runtime each object of the first class
may have at most one relation to an object of the second
class.

Feature diagrams also have multiplicities, though they
are less obvious than in UML class diagrams. In feature
diagrams a multiplicity shows up whenever features are
combined into a set. Fig 3 depicts all types of sets that are
possible using the feature diagram notation introduced by
Czarnecki (2000). The multiplicities of the sets shown are
as follows:

0..1 at most one feature has to be chosen from the
set, (9) and (10)

1 exactly one feature has to be chosen from the
set, (2)

0..* an arbitrary number of features (or none at all)
have to be chosen from the set, (5) and (6)

1..* at least one feature has to be chosen from the
set, (8)

Certainly, this list of possible multiplicities in feature
diagrams covers the most common cases. In practice,
however, often situations arise in which a set of features
has a multiplicity like “0..3”, “1..3”, or simply “3”. Such
multiplicities cannot be expressed using the current nota-
tion.

Therefore, we propose to change the notation of fea-
ture diagrams. The goals for the new notation are:

(a) To annotate multiplicities for sets of features in a
more convenient, understandable way;

 3

(b) To allow for other multiplicities besides the four
common ones listed above;

(c) To unify the notation of multiplicities in feature
diagrams with the multiplicity notation prevalent in
the UML.

Our new notation uses the following elements:
• A feature is a node in a directed-acyclic graph. Rela-

tions between features are expressed by edges between
features. A circle at the end of its corresponding edge
determines the direction of a relation.

• If this circle is filled, then the relation between the
features is said to be mandatory, i.e. when the feature at
the relation’s origin is chosen, the feature at the rela-
tion’s destination has to be chosen, too. If the circle is
empty, then the relation is non-mandatory, i.e. the fea-
ture at the relation’s destination needs not to be chosen;
it is optional.

• Optional relations that originate from the same feature
node can be combined into a set. Every relation can
only be part of one set. A set has a multiplicity that de-
notes the minimum and maximum number of features to
be chosen from the set. Possible multiplicities are: 0..1,
1, 0..n, 1..n, m..n, 0..*, 1..*, m..* (m,n ∈ Ν). Visually a
set is shown by an arc that connects all the edges that
are part of the set. The multiplicity is drawn in the cen-
ter of the arc.

• Relations between features that are located in different,
not adjacent parts of the graph may not be shown in
feature diagrams, because this reduces the clarity of the
diagrams. Instead, such relations can be described in a
textual form in the feature model.

The remainder of this section compares the old with the
new notation using a couple of figures. First of all, Fig 4
(1) shows a mandatory relation from A to B, C and D. The
notation of this relation remains unchanged, because it is
unambiguous and easy to understand. Fig 4 (2) shows the
same relations as (1), but this time combined into a set of
alternative features. The multiplicity of this set is “1”, so
the new notation of this alternative relation is (3).

Fig 5 (4) shows optional relations from A to B, C and
D. The diagrams (5) and (6) express the same semantic as
(4) with a set of optional OR-features. The multiplicity of
all three diagrams is “0..*”, so the new notation of (5) and
(6) may be either drawn as in (7), which is the preferred
way, or may be normalized to (4).

Fig 6 (8) shows a set of OR-relations from A to B, C
and D. The multiplicity of this set is “1..*”, so the new
notation of (8) is (11).

Fig 7 (9) shows a set of optional alternative features B,
C and D, which can be normalized to (10). The multiplic-
ity in both diagrams is “0..1”, so the new notation is (12).
Fig 8 shows how the new notation might be used to ex-
press specific multiplicities.

ADDITIONAL CONSTRAINTS AND
DEPENDENCIES

The relationships mentioned in the last section lead to-
wards hierarchically structured features. In contrast, ex-
cludes and requires relations are part of this hierarchy but
are not hierarchically organized themselves. They are used
to formulate constraints and dependencies between any
pair of features of the diagram. Given these new graphical
elements, the complexity of the diagram is increased while
the clarity is reduced. As a result, developers face a higher
effort for program comprehension and maintenance. Thus,
we propose to express constraints and dependencies in a
textual and formal manner, by using a subset of UML's
Object Constraint Language (OCL).

A CASE STUDY

This section describes a more complex example, very
similar to one of our current projects in industry, in which
the new notation of multiplicities in feature diagrams has
proven to be useful.

The project started with the development of a software
system for our university library. We used the UML to
model the system and Java to implement it. After the sys-
tem was released, we recognized that the system would be
of interest not only to university libraries, but also to the
local city library including their buses, which drive
through the countryside, lending books to customers who
live in the villages. All three libraries have the same basic
requirement: They want to manage the books borrowed by
their readers. Beyond that the requirements differ: The
university library needs to categorize their readers because
some of them, namely the employees of the university,
enjoy more relaxed conditions when to return borrowed
books. The city library, on the other hand, would like to
daily synchronize their data with data collected by the
buses during their tours. However, we did not have the
resources to develop and maintain two different library
systems, so we decided to build a system family based on
the existing system.

Common Features

Fig 9 shows the initial version of the feature diagram for
the family of library systems. The diagram contains those
functionality (or features) that are common to all systems
in the family: borrowing books, managing books and read-
ers, reminding readers of overdue books, and the necessity
for readers to identify themselves if they want to borrow a
book. The parameter “time limit” (an integer value > 0)
specifies after which period of time a reader has to return a
borrowed book to the library.

Variable Features

Next the requirement engineering identified the optional
feature “Reminding overdue books by e-mail”. To realize

 4

this feature technically, readers must notify the library of
their e-mail address; another optional feature was found
and added to the feature diagram as a subfeature of “Man-
aging readers”. The dependency between both optional
features is expressed in the diagram by the «requires»
relation. Fig 10 depicts the second version of the feature
diagram for the family of library systems.

Finally, three features with sets were identified in the
library system family (see Fig 11):
1. Different items that libraries can manage and lend to

their readers
2. Different ways to identify readers when borrowing

items from the library
3. Different data that libraries store about their readers in

the system
First, a library system developed from the family can man-
age one or more of the following items: books, journals,
and/or audiobooks. At least one of these items must be
managed by the system. Otherwise no reader can borrow
anything from the library.

Second, if a reader wants to borrow a book, he has to
identify himself to the librarian. This can be done either by
a chipcard or a biometric sensor (e.g. fingerprint check). A
library system supports only one procedure, i.e. when
developing the system one of the two alternatives has to be
chosen.

Third, every time a new reader registers himself at the
library, the librarian has to enter data about the reader into
the system. The data can be used to authenticate the reader
if he has lost his chipcard or wants to prolong a book by
phone. Some of the data is optional, i.e. the reader may
choose not to reveal the data to the library. Other data is
required by the system. The feature „Required reader
data“ determines the required ones. A mandatory data item
for all library systems is the reader's name. In addition,
two more data items must be chosen from the set. If the
system is to be built for a German library, suitable data are
the reader's address and its birthday. For a library in the
USA, the reader's social security number (SSN) and his
mother's maiden name are more appropriate.

In these three cases, feature relations can be modeled
much more straightforward with the extensions of this
paper than without. Feature multiplicities - as shown in the
feature set for Required Reader Data in Fig 11 (bottom) -
are needed frequently when constraints and resource limits
apply. The extensions lead to higher understandability; the
danger of inconsistent feature relations reduces. In many
cases, requires- and excludes-relationships are needed in
addition to the extensions presented here. Our experience
shows, that in some cases relations within the tree and
requires-relationships can be used alternatively. However,
due to complexity of industrial projects, model clearness is
an important issue.

SUMMARY AND OUTLOOK

This paper introduced a new notation for feature diagrams,
emphasizing the multiplicity of sets of features. Unlike the
current notation, explicit modeling of multiplicity is used
in our extension of feature diagrams. The annotation of the
multiplicity of feature subsets is realized in BNF, which
eases the acceptance for developers, who are aware of the
UML. In addition, the applicability of the new notation
was shown within a case study of middle-sized complex-
ity.

Future efforts aim towards the integration of feature
modeling into a CASE tool environment. Further im-
provement will be obtained through the use of traceability
links between features and design elements as well as the
implementation itself. As a result, reengineering, mainte-
nance and automated documentation activities will be
supported (Sametinger et al., 2002).

Finally, configuration tools for product lines are under
development. They are making use of the new feature
model with dependencies and constraints. This work is
performed in cooperation with industrial partners to ensure
permanent screening of the practical relevance.

REFERENCES

Clements, P.; Northrop, L., 2002, “A Framework for
Software Product Line Practice. Version 3.0”, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh. Available online at: http://www.sei.cmu.edu/plp/

Czarnecki, K., Eisenecker, U.W., 2000, “Generative
Programming” Addison-Wesley, Reading, MA, USA.

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson,
A., 1990, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Riebisch, M., Franczyk, B., 1999, “Evolutionary De-
velopment of Frameworks – from Projects to System
Families”, Proceedings IDPT-99, Kusadasi, Turkey, Soci-
ety for Design and Process Science.

Rumbaugh, J., Jacobson, I., Booch, G., 1999, “The
Unified Modeling Language Reference Manual”, Addison-
Wesley, Reading, MA, USA.

Sametinger, J., Riebisch, M., 2002, “Evolution Support
by Homogeneously Documenting Patterns, Aspects and
Traces”, Proc. 6th European Conference on Software
Maintenance and Reengineering, Budapest, Hungary,
March 11-13, 2002, IEEE Computer Soc. 2002, pp. 134-
140

Tracz, W. (Ed.), 1987, “Software Reuse - emerging
technology”, Computer Society Press, 1987

 5

FIGURES

Fig 1: Example of a feature diagram (Kang et al.,1990)

� �

�

Fig 2: Relations between features in feature diagrams organized as graphs

��������	
�����

���
�	�������

�������
����������

����
�	��������

������
����
�	��������

������

������
����	� ���������
��

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

Fig 3: Relation between features according to Czarnecki et al. (2000).

car

transmission

manual

horsepower
air conditioning

automatic

alternative
features

optional
featuremandatory

features

 6

�

� � �

����	
��
��� ����
����
����

	��������� ����

�

� � �

�
����
����
���

�

� � �

Fig 4: New notation for mandatory and alternative features

���������	
�

�

 � �

����	���
������

������

����	���
������

������

�

 � �

�

 � �

�

 � �

���������	
��

������������ ��������

Fig 5: New notation for optional OR-features

������

�

� 	

�����

�����������

����

�

� 	

����

Fig 6: New notation for OR-features

��������	
���

�������

�

� � �

����

�

� � �

�

� � �

����

�����

��
���
����� ����

Fig 7: New notation for optional alternative features

� �� �

������

��

Fig 8: New notation for arbitrary multiplicities for sets of features

 7

�������

���	
���� ������
���� �����	

����	��

����

������
���	��

�����

������ �	������������

���� ����� �
�

Fig 9: Common features of all library systems in the family

�������

���	
���� ������
���� �����	

����	��

����

������
���	��

�����

������

�	������������

���� ����� �
�

������

�		��
 ��	 ��

������

!��"����#

Fig 10: Optional features in the library system family

�������

���	
���� ������
���� �����	

����	��

����

������
���	��

�����

������

���� �	������������

���� ����� �
�

����

�������

 �	������ !"�#���	 ���������

����

$%����

�		��
&��	 ��

�%����

��'����	

���	��
	���

(���

����"	��

 		��
&&(

���"��)

���	��
����

*��'����+

,--. ,

/--.

Fig 11: Feature diagram of the case study with sets of features

