

42

Design Pattern Recovery in Architectures for
Supporting Product Line Development and

Application
Ilka Philippow, Detlef Streitferdt, Matthias Riebisch

Technical University of Ilmenau
ilka.philippow[matthias.riebisch, detlef.streitferdt]@.tu-ilmenau.de

Abstract. Product lines can improve the efficiency of software devel-
opment. Product lines offer reference architecture for the development of
similar products. This architecture is developed in an evolutionary process
while using existing systems and reusable components. The start of the de-
velopment of product lines very often is based on the reengineering and
generalization of several similar existing applications. Design Patterns can
support the understanding of former architectures and the application of
product line reference architectures. In this paper a short explanation of the
development and application of product lines points out the relevance of
patterns. The paper discusses existing pattern search methods and describes
an approach suitable for the automated search. This approach enlarges the
existing search criterion based methods for pattern recognition for the
automated detection of all Gamma Patterns.

1 Introduction

The complexity of software systems has increased extremely during the last
decade. Meanwhile, there exist various methods and tools in order to support the
development and management of very large and complex software systems. A
high degree of software reuse offers possibilities for reducing development efforts
and improving software quality. Most reuse approaches are based on object-
oriented technology. There are different kinds of reuse, e.g. source code in form of
modules, functions, classes or components and other artifacts related to analysis,
design, and architectures. The reuse of architecture artifacts is closely connected
with the application of patterns [1], [2], [3].

For similar software products the software development based on product
lines is connected with expectations for enhancements in reusability, adaptability,
flexibility, and control of complexity and performance of software. A software
product line is a “group of products” from a specific problem domain [4]. They
are based on a system family architecture offering a “common set of core assets”
[5]. In the range of a specific problem domain software product lines are derived
from predefined architectures these architectures consist of common and variable
parts. Variable parts can be changed or adapted to satisfy the special needs of an
application.

In section 2 the development process of reusable architectures for product lines
is explained in a simplified way to point out the relevance of architecture reengi-
neering. The understanding of architectures and the reuse of architecture artifacts

43

can be supported by the application of design patterns. In section 3 an approach
for detecting design patterns is introduced.

2 The Development and Application of Product Lines

The evolutionary process of the development of product line architecture is

described in [6]. The process phases and activities are similar to those of software
development in general, but they have to pay more attention to aspects like do-
main requirements, reuse and configuration ability (Fig. 1).

1. Reverse Engineering of
 (legacy) Software Products

4. Modeling of core
 and variable elements � Design of

core architecture and variability

3. Determination of Requirements
and Use Cases �

 Analysis of core and
 variable elements

5.Implementation
 and Generation

6.Maintenance,
 Refinement

2. Domain Engineering
 and Feature Modeling

Fig. 1 Iterative Activities of the Development Process for Software Product Lines

The decision to build a product line and the development starting point very

often is based on the generalization of several similar applications [7], [8] and the
reengineering of legacy software. The phases 1-3 serves for the determination of
product line requirements. During the phases 4-6 the product line architecture has
to be designed and implemented. New costumer requirements lead to further itera-
tions.

Fig. 2 illustrates the relations between the development of a software product
line and the application development. Every new application is based on the prod-
uct line reference architecture. Summarizing it can be said, the evolutionary de-
velopment process of product lines and its application is characterized by the
following activities for reuse, refinement and improvement:

- reverse-engineering and understanding existing application architectures,
- comparing new requirements to the former ones,
- creating a new design, including both the new and the former require-

ments,
- redesigning the architecture and implementing new common and vari-

able parts

44

- Documenting design decisions, intentions and the new architecture for
future refinements.

The process of development and application of product lines can be supported

by a pattern based development of the reference architecture. On condition that
patterns had been used for the development of former applications these patterns
can be found by the reverse-engineering activities. Pattern helps to understand
former applications and serves for the determination and description of the prod-
uct line reference architecture. To integrate pattern into the development and
application process of product lines it is necessary not only to apply known stan-
dard patterns e.g. [1] but also to recognize and determine domain specific patterns
based on the family requirements. During the development process of product
lines defined and used domain and standard patterns have to be documented. Dur-
ing the application of product lines these patterns help to understand the product
line architecture and applications based on it. To simplify this procedure it is nec-
essary to support the search and detection of patterns automatically.

 Domain Analysis Domain Design Domain Implementation

• Scoping
• Feature Modeling
• UML Family Modeling

• UML with Variability
• Component Composition

• Variable Components
• Automated Test Cases

Reference Architecture Components

• Feature Selection
• Scoping
• Configuration
• Composition

• Composition of Design
Elements

• Configuration

• Composition of Modules
 (Hyper J)
• Composition of Test

Cases

Application Analysis Application Design Application

Family Requirements

Fig. 2 Relations between Product Line and Application Development

3 An approach for the Automated Detection of Patterns

3.1. State-of-the-Art

There are various methods for automated pattern identification. They are

evaluated according to the achieved results of their search algorithms that can lead
to three relevant results:

45

1. Positive true: a pattern has been recognized and the pattern is really imple-
mented within the software system (case is desired).

2. Positive false: a pattern has been recognized but the pattern is not really im-
plemented within the system. (Case has to be avoided).

3. Negative true: a really existing pattern has not been recognized (case has to be
avoided).

The achieved results can be used for evaluation of searching tools by two met-

rics Both metrics are known for evaluating search results, e.g. in Information Re-
trieval [9].
- Recall is the number of all existing patterns in a software system divided by

the number of recognized patterns. A recall of 100% means that all existing
patterns were found (negative true cases has been avoided).

- Precision is the number of really existing and recognized patterns divided by
the number of found patterns (sum of the results positive true and positive
false). A precision of 50% means, that half of the recognized patterns are not
really implemented in the software system.

Both values have to taken into consideration for a tool evaluation. A precision

value of 100% does not exclude negative true cases. Several existing approaches
for automated pattern search have been evaluated, together with available infor-
mation about the above-explained metric values. There are different approaches
for an automated pattern search that can be categorized by four different search
algorithms:

Searching for minimal key structures: The properties of a defined key structure
that is assigned to a particular pattern are used as search criteria. There are three
approaches: DP++ [9] for C++, KT [10] for Smalltalk and SPOOL [11] realized
for C++, applicable for Java and Smalltalk.
Searching for class structures: The search is based on the pattern class structures
described in [1]. There are three approaches for automated search based on com-
plete accordance of the classes are known: Pat [12] for C++, IDEA [13] for UML
diagrams and the multi step search tool in [14].
Searching based on fuzzy logic: This approach considers structural differences
between patterns out of [1] and real life software systems. The proposed idea [15]
uses fuzzy logic search algorithms to examine different pattern implementations.
The researchers are working on the development and implementation of their idea.
Searching based on metrics: In this approach [17] each pattern is characterized
by metrics: There are three categories of metrics with examples for each category:

(a) Object oriented Metrics
- weighted methods per class
- depth of inheritance tree
- number of children (subclasses)
- coupling between objects

(b) Structural Metrics
- Fan-in, number of modules sending information to the observed module

46

- Fan-out, number of modules receiving information of the observed
module

- information flow, structural complexity
(c) Procedural Metrics

- pure lines of code
- McCabe's cyclomatic complexity
- lines of comments

These metrics are calculated tool-based for the system in question and for every of
the desired patterns.

In [17] a manual search method is described. This method proposes six steps
for the finding of patterns:
1. Read and try to understand the specification documents.
2. Setup a brief class model with the class declarations in the code.
3. Refine the class model based on the implementation.
4. Try to find patterns in the model using inheritance and associations between

the classes of the system.
5. Analyze the potential pattern of step 4.
6. Try to consult the original programmers and developers for a better under-

standing of the system.
Within a student test this approach has proven to be very intuitive. The struc-

tural strategy is embedded in the steps of the manual method, due to its close rela-
tion to the human way of thinking and searching for patterns.

For a more detailed description of the mentioned approaches see the given

references. A comprehensive discussion and comparison of the various approaches
is carried out in [18]. The evaluation of existing approaches is based on the infor-
mation from the papers describing the individual methods. Table 1 summarizes the
results of current pattern searching research efforts. Just one of the tool supported
approaches has the potential to find all of the 23 patterns described in [1], al-
though with a not satisfying precision value of about 44%. The other approaches
are only usable for a subset of the patterns. Search algorithms for minimal key
structures are considered to be closest to the human way of thinking. To follow the
way of human thinking is very important during the evaluation of search results by
software developer for the elimination of e.g. negative true cases. But, in accor-
dance to [10] and [11] it was not possible to find reliable search criteria for all
patterns. In the next section an approach is introduced that is focussed on the ex-
tension of algorithms for minimal key structure based search described in [9], [10]
and [11].

3. 2. Extended Approach for Pattern Search based on minimal Key Struc-
tures

For improving the existing search procedures the minimal key structure search
basis has been enlarged by the definition of further positive search criteria and, in
addition negative search criteria for all patterns in [1]:

47

- Positive search criteria will occur with very high probability during the appli-

cation of a particular pattern (for commonly used pattern implementations)
- Negative search criteria mustn’t occur in context of a particular pattern; this

leads to the reducing of positive false cases

The typical search criteria can be derivated from the common and accepted

pattern description in [1]. Examples for search criteria are
- abstract and concrete classes, inheritance relations,
- attributes (visibility, type, name),
- methods (visibility, polymorphisms, return type, name, parameter,

abstraction),
- constructors (visibility, name, parameter),
- relations like association, composition, aggregation, delegation, object

generation, method calls, variable usage and template usage.

Considering the very high acceptance of the UML (Unified Modeling Lan-
guage) in practice in this paper we have described patterns by UML diagrams
instead of the OMT used form Gamma. For this purpose the UML class diagram
has been enlarged for the description of uncertain or forbidden criteria (Fig. 3).

48

Table 1: Overview of Current Pattern Search

Minimal key structures:
DP++ [9] for C++: tool available

- Covers the following patterns: Composite, Decorator, Adapter, Façade, Bridge,
Flyweight, Template, Chain of responsibility

- Applied to the following system: Drawing Toolkit (44 classes)
- Recall: n.a. Precision: n.a.

KT [10] for Smalltalk: tool available
- Covers the following patterns: Composite, Decorator, Adapter, Template,

Chain of responsibility, Strategy, State, Command
- Applied to four different systems (62, 264, 46, 40 classes)
- Recall: n.a. Precision: n.a.

Spool [11] for C++: tool available
- Covers the following patterns: Template, Factory, Bridge
- Applied to two different systems (3103, 1420 classes) and to ET++ (722

classes)
- Recall: n.a. Precision: n.a.

Class Structure:
PAT[12] for C++: tool available

- Covers the following patterns: Adapter, Bridge, Proxy, Composite, Decorator
- Applied to the following systems NME (9 classes), LEDA (150 classes), zApp

(240 classes), ACD (343 classes)
- Recall: 100% Precision: 37%

IDEA [13] for UML: tool available
- Covers the following patterns: Template, Adapter, Bridge, Proxy, Composite,

Decorator, Factory, Abstract Factory, Iterator, Observer, Prototype
- Applied systems: n.a.
- Recall: n.a. Precision: n.a.

Multi level search [14] for C++/OMT: tool available
- Covers the following patterns: Adapter, Bridge, Proxy, Composite, Decorator,
- Applied for different systems: LEDA, libg++, galib, groff, mec, socket (no fur-

ther information)
- Recall: 100% Precision: 35%

Fuzzy logic based search:
for Java [15]: tool not available

- Covers the following patterns: all
- Applied systems: n.a.
- Recall: n.a. Precision: n.a.

Metric oriented pattern search:
wizzard [16] for C++: tool available

- Covers the following patterns: all
- Applied systems: three systems without further inform.
- Recall: n.a. Precision: 44%

Manual pattern search:
Backdoor [18]: tool not available

- Covers the following patterns: all
- Applied systems: n.a.
- Recall: n.a. Precision: 44%

49

Presentation of Presentation of Presentation of
expected uncertain forbidden
elements (OMT) elements elements

 subclass

class

subclass

class class

subclass

Fig. 3. Description Elements for Search Criteria (Example: Inheritance)

The full description and discussion of the necessary search criteria for all pat-

terns from [1] is given in [18]. The description contains the arguments and reasons
for chosen criteria, the extended class diagrams for patterns (graphical presenta-
tion), and the description of the criteria based search algorithms.

In this paper the BRIDGE pattern is chosen as an example for the demonstra-
tion of the proposed pattern description and search approach. Depending on the
particular application using the Bridge pattern the tree structure can be very differ-
ent in depth and width. In practice (reported in [11]) it is possible that abstractions
exist without specialization abstractions and implementations without super
classes. The proposed minimal key structure (Fig. 4) consists of one abstraction
class and one implementation class as positive search criterion. Usually, an im-
plementation class contains primitive operations. The methods of abstraction
classes are defined using these primitive operations [1].

Abstraction::Operation();

Abstraction

Operation()

Implementation

Specialization Abstraction

ConcretImplementationA ConcretImplementationB

ConcreteImplementationC

OperationsImp()

Fig. 4 BRIDGE Pattern –Minimal Key Structure

The following set of search criteria should be enough to find a BRIDGE pattern:
positive criterion:
- there is a relationship from an abstraction class to an implementation class

50

negative criteria:
- there is no method call from an implementation class to an abstraction class
- there is no relationship from an implementation class to an abstraction class

In accordance to these criteria the graphical description is given in Fig. 4. Us-

ing the following algorithm a BRIDGE pattern can be identified:

x: List of classes
y,z: List of methods
i: List of abstraction classes in the model
j: List of implementation classes in the model

FOR_ALL i
DO

IF (current i have a reference to any j THEN

DO
STORE current i with all subclasses in x;
STORE all methods of every x in y;
STORE all methods of every j in z;
IF(no methods in z are also in y)THEN

DO
IF (none of j has a reference to any x)THEN
DO
� BRIDGE Pattern was found

OD
OD

OD
� BRIDGE Pattern was not found

In [18] for all patterns from [1] the concrete search algorithms are determined.

Table 2 contains the determined search criteria and comments concerning the
difference or advantage to the existing approaches mentioned in section 3.1.. To
understand the criteria it is necessary to be familiar with the pattern description in
[1].

A prototypical implementation has been carried out by using the Rational Rose

CASE tool. The application of the Rational Rose C++ Analyzer enables to extract
UML diagrams out of source code. The Rose Extensibility Interface [19] is used to
access single UML model elements. The search algorithms are implemented by
using the Rational Rose Script language The prototypical implementation has
shown that the Rational Rose C++ Analyzer is insufficient due to missing reengi-
neering abilities for finding object generation, delegation, aggregation- and
friend-relation, usage of variables, methods and templates. Therefore, a successful
implementation of search algorithms was only possible for patterns that are not
depending on these not identifiable search properties. The search algorithms for
COMPOSITE, SINGLETON and INTERPRETER had been implemented. For
SINGLETON and INTERPRETER the achieved values for precision and recall
are 100%. These values are based on the application in small student projects. To
achieve really comparable values to other approaches a unified reference architec-

51

ture would be necessary. Due to the limitations of the used case tool the further
effort will be put on the integration of a better case tool.

4 Conclusion

 The proposed pattern search is oriented to the human way of searching and
requires software developers that are familiar with pattern structures and able to
evaluate search results. The search approach is based on similar approaches for
minimal key structures. These approaches have been extended by additional posi-
tive and negative search criteria, leading to new and better search algorithms. This
approach improves the precision value by avoiding positive false results.

The success of search algorithms strongly depends on the quality of the source
code analyzing tool that should be able to extract all the necessary search criteria.

The introduced approach for pattern search is still the subject of ongoing re-
search and implementation effort. Currently we are in contact with a tool provider
for the integration of our algorithms into their case tool. To get comparable results
with other search approaches we are working on the possibility to establish a ref-
erence source code example.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of

Reusable Object-Oriented Software. Addison-Wesley (1995)
2. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse : Architecture, Process and

Organization for Business Success. Addison Wesley (1997)
3. Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.: Pattern-

Oriented Software Architecture: A System of Patterns. Wiley (1996)
4. Kotler, P., Bliemel, F.: Marketing-Management: Analyse, Planung, Umsetzung

und Steuerung. Schäffer-Poeschel, 9th edition (in german) (1999)
5. Clement, P., Northrop, L.: A framework for software product line practice,

version 2.7., (1999)
6. Philippow, I.; Riebisch M.: Systematic Definition of Reuseable Architectures.

Proceedings 8.th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems pp. 128-136 (2001)

7. Koskimes K., Moessenboeck H.: Designing a Framework by Stepwise
Generalization. 5th European Software Engineering Conference Barcelona,
Lecture Notes in Computer Science 989, Springer, (1995).

8. Riebisch, M.; Franczyk, B.: Evolutionary Development of Frameworks – from
Projects to System Families IDPT 1999, Kusadasi, Turkey, June 27th – July
2nd, 1999. In: Tanik, M.M., Ertas, A.: [eds.]: IDPT 1999. Society for Design
and Process Science, pp. 13. ISSN 1090-9389 (2000)

9. Bansiya, J.: Automatic Design-Pattern Identification. Dr. Dobb´s Journal,
(1998). Available online at http://www.ddj

52

10. Brown, K.: Design reverse-engineering and automated design pattern detection
in SmallTalk. Master´s thesis, Department of Computer Engineering, North
Carolina State University, (1996). Available online at http://www.ncsu.edu/

11. Keller, R. K., Schauer, R. Robitaille, S., Page, P.: Pattern-based reverse engi-
neering of design components. In Proc. Of the 21st International Conference
On Software Engineering, pages 226-235, IEEE Computer Society Press
(1999).

12. Kraemer, Ch., Prechelt, L.::Design recovery by automated search for structural
design patterns in object-oriented software", In Proc. of the Working Confer-
ence on Reverse Engineering, pp. 208-215 (1996)

13. Bergenti, F., Poggi, A.:. Improving UML design using automatic design pat-
tern detection. In Proc. 12th. International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE 2000), pp. 336-343 (2000).

14. Antoniol, G., Fiutem, R.; Cristoforetti, L.: Design pattern recovery in object-
oriented software. In 6th International Workshop on Program Comprehension,
pp. 153-160, June (1998).

15. Niere, J., Wadsack, J. P., Wendehals, L.: Design pattern recovery based on
source code analysis with fuzzy logic", Technical Report tr-ri-01-222, Univer-
sity of Paderborn, (2001). Available online.

16. Kim, H., Boldyreff, C.: A method to recover design patterns using software
product metrics. In Proc. of the 6th International Conference on Software Re-
use (ICSR6), (2000). on line at:
http://www.soi.city.ac.uk/~hkim69/publications/icsr6.pdf

17. Forrest Shull, Walcélio L., Melo, Victor, Basili, R.: An inductive method for
discovering design patterns from object-oriented software systems”, Technical
Report UMIACS-TR-96-10, University of Maryland (1996)

18. Naumann, S.: "Reverse Engineering of Design Patterns", Diploma Thesis,
Technical University of Ilmenau (2001). (in German)

19. Rational: Using the Rose Extensibility Interface Rational Rose 2001. Rational
Rose Software Corporation (2000)

53

Table 2: Search Criteria and Assessment of the extended approach

Search criteria Comments
 ABSTRACT FACTORY
- Search for a concrete factory.
- A concrete factory has at least two methods contained in the
 definition of the factory method pattern

Identifiable without
doubt, compared to [7]

 BUILDER
- Search for a concrete builder.
- The concrete builder has a method returning the complete
product.
- Builder has an aggregation relation to the product
- The concrete builder has at least one construction method
referring to

the reference variable of the product.

Also described in [7]

 FACTORY METHOD
- Search for a concrete generator containing a factory
 method. The factory method is virtual.
- The factory method generates an object of another class (con-

crete product);
- The return type is a class (abstract product) differing from the

generated object.
- As return type (abstract product), the super class of the created

object is used.

Comparable to [6],
identifiable without
doubt

 PROTOTYPE
- Search for a clone operation of a concrete prototype. The clone

operation generates an object of the own class using its copy
constructor.

- A copy constructor has to be available.
- The return type of the clone operation is the own class or a

super class.
- The clone operation is virtual.

More detailed
recognition
characteristics.

 SINGLETON
- Search for a singleton class. The class doesn't have a public

constructor, it has only a private or protected constructor.
- The class has a static exemplar operation; the return type is

the own class or a super class.
- There is a declaration of a static variable of the own class or a

super class type.

Identifiable without
doubt, compared to [7]

 (Class) ADAPTER
- Search for an adapter.
- The adapter inherits from two classes: from the first class

public (destination) and from second class private (adapted
class).

- Adapter overwrites at least one operation of the destination
class; this operation calls an operation of the adapted class
that is polymorphic and declared virtual.

Result comparable
with [6], [7]

 (Object) ADAPTER
- Search for adapter class. None.

54

- Adapter is a subclass of another class (destination).
- Adapter has a reference to the adapted class.
- Adapter overwrites at least one method from destination

(virtual declaration); this method calls a method from the
adapted class.

- Adapter is not a super or sub class from the adapted class.
Search criteria Comments
 BRIDGE
- was described above Additional negative

search criteria
 COMPOSITE
- Search for a composite class.
- A composite class has a 1 to n aggregation relation to one of

its super classes (component).
- Existing sub classes won't add functionality to the composite

class, which means, they don't call methods of the composite
class followed by an own method.

Additional negative
search criteria

 DECORATOR
- Search for decorator class.
- There is a 1-to-1 aggregation to a super class.
- Decorator has at least one sub class (concrete decorator).
- Concrete decorator has a method that calls decora-

tor::operation(); in this method a local operation is called.
- The method decorator::operation() calls a method of the

component class with the same name.

More detailed
recognition
characteristics.

 FACADE
- Search for Façade.
- A set A of classes has a reference to façade.
- Façade has a reference to a sub system (set B).
- The sub system classes don`t know the façade.
- The sub system classes don`t know classes of set A.

Additional negative
search criteria

 FLYWEIGHT
- Search for three classes: flyweight factory, flyweight and

concrete flight weight.
- The factory uses methods returning exactly what they are

generating.
- The factory has a 1 to n reference to the flyweight class.
- All operations of the flyweight class always receive a par-

ticular parameter (extrinsic state). Methods can also receive
additional parameters.

- The concrete flyweight is a subclass of flyweight; it is gen-
erated by the factory.

None.

 PROXY
- Search for proxy.
- Proxy is a sub class.
- Proxy has a reference to a class of a real subject or only a

subject.
- All public methods of proxy are existent in the class that is

referenced by proxy.

More flexible search.

55

- In each of these proxy methods there is a call of the method
with the same name in the referenced class.

 ITERATOR
- Search for two templates: list and iterator.
- Iterator has a reference to the list.
- List generates the iterator within a method.

None.

56

Search criteria Comments
 CHAIN OF RESPONSIBILITY

- Search for a tree.
- The root class is a HelpHandler.
- HelpHandler implements the HandleHelp method.
- The HandleHelp method won't be overwritten in all sub

classes, but it is overwritten most within the tree structure.
- Classes can be divided in two categories, based on the Han-

dleHelp method. For this categorization only classes overwrit-
ing the HandleHelp method will be considered.

- The first category contains all classes forwarding the own
HandleHelp method to HandleHelp methods of other classes.

- The second category contains all classes without forwarding
mechanism within the HandleHelp method.

- At least 75% of the classes have to belong to the first category.

None.

 COMMAND
- Search for a structure out of several classes: the caller, the

abstract command, the concrete command, the client and the
receiver.

- The command class is abstract.
- The caller has a 1-to-1-aggregation relation to command.
- Concrete command is a sub class of command.
- Concrete command has a reference to his receiver. The receiver

will be passed as parameter of the constructor of the concrete
command.

- There is a client instantiating the concrete command.

Additional negative
search criteria

 INTERPRETER
- Search for a tree. The root class is abstract.
- Each sub class implements one of the methods always as a

new method.
- The ratio of simple aggregation relations to the root class

divided by the number of subclasses is at least 50%.
- Sub classes don't reference each other directly

Also described in [7]

 MEDIATOR
- Search for a concrete mediator.
- A concrete mediator has references to its concrete colleagues.
- Concrete colleagues don't have references between each other.
- If there is an abstract colleague, the object handles a reference

to the abstract mediator or directly to the concrete mediator,
in case there is no abstract mediator.

- If there is no abstract colleague, each concrete colleague is
handling a reference to the abstract mediator or direct to the
concrete mediator, in case there is no abstract mediator.

Also described in [7]

MEMENTO
- Search for memento.
- Memento doesn't have a public constructor.
- Memento is generated by an originator class.
- Memento has a method for setting its state and a method for

returning its state.

Also described in [7]

57

- The originator is allowed to access the private interface of
memento (friend class declaration).

- The generator doesn't have a reference to memento.
- A container is handling a reference to memento without gener-

ating it.
Search criteria Comments
 OBSERVER
- Search for subject, observer and concrete observer.
- Subject has a 1-to-n reference to observer.
- Subject has two methods receiving observer as parameter.
- Concrete observers are subclasses of observer.
- A concrete observer has a reference to subject or a sub class of

subject (concrete subject).

Also described in [7]

 STATE
- Search for a tree of state classes.
- The root class (state) is not abstract.
- All sub classes (concrete states) have the same public interface

as their super class.
- No concrete state holds a reference to the root class.
- No concrete state holds a reference to another concrete state.
- In context there is a reference to the root class but not to the

concrete states.

Additional negative
search criteria

 STRATEGY
- Search for a tree of strategy classes.
- The root class (abstract strategy) is abstract.
- All sub classes (concrete strategies) have the same public

interface as their abstract super class.
- No concrete strategy holds a reference to the abstract strategy.
- No concrete strategy holds reference to another concrete

strategy.
- The compositor holds a reference to the abstract strategy but

not to concrete strategies.

Additional negative
search criteria

 TEMPLATE METHOD
- Search for template method.
- The template method is not polymorph.
- The template method calls at least one local polymorph method

 VISITOR
- Search beginning with the visitor class.
- A visitor has operations receiving the elements of other classes

as parameter.
- Each of these element classes has a method for receiving the

visitor class as parameter.
- Within this method of the element class, a call of the corre-

sponding method of the visitor class is done; parameter is the
element itself.

- At least 75% of the classes have to belong to the first category.

Also described in [7]

