
64

Towards a More Precise Definition of Feature
Models

Matthias Riebisch

Technical University Ilmenau, Germany
matthias.riebisch@tu-ilmenau.de

Abstract. Feature models are a well accepted means for expressing
requirements in a domain on an abstract level. They are applied to describe
variable and common properties of products in a product line, and to derive
and validate configurations of software systems. Their industrial importance
is increasing rapidly. However, methodical usage and tool support demands
for a more precise definition of features, their properties and their relations
within a feature model. This position paper summarizes the state of the
discussion and proposes issues for future development. Categories of
features and types of their attributes and relations are presented. The
represented information is limited to a customer point of view onto the
feature models without excluding technically detailed features. Connections
of features to other models i.e. design, and to implementation elements are
given by traceability links. Approaches for graphical representations and
data models for feature models are shown. Proposals of attaching additional
information for related tasks like product line evolution, scoping, effort
estimation, definition of product configurations and documenting are
discussed.

Introduction

The idea of developing software once and using it for a variety of different
requirements has been a driving force of software engineering methods for a long
time. Software product line methods strive for prefabricating software for multiple
applications by providing a reusable platform with variable extensions, i.e. by
adaptable parts or by configurable components. However, the future requirements
of such applications are unknown, therefore the risk of developing inappropriate
software is high.

One way to reduce this risk is provided by Domain Analysis. Concepts,
properties and solutions of a domain are analyzed. Based on this information
decisions about software development for future applications within such a
domain are made. As part of Domain Analysis methods, feature models are used
for describing common and different requirements for software systems as
instances of a product line.

65

Feature models describe properties distinguishing between common and
variable requirements. They structure requirements by generalizing them by
concepts. They provide a very flexible means of description. Meanwhile, they are
applied in some industrial projects for describing software for multiple use, like
component-based systems, reusable libraries, e.g.

While applying feature models in large industrial projects the need for more
methodical and tool support became obvious. There is a deficiency of clear
definitions of the feature model elements, their syntax and semantics. As a
consequence, ambiguities and inconsistencies occurred. Exploitation of the feature
models by tools are impossible unless more formal descriptions are introduced.

In this position paper a more strict definition of feature models is proposed. Its
intention is to inspire the discussions at the ECOOP2003 workshop, and to receive
feedback for further development. The main goal is to establish a new, more
precise but well accepted definition.

Feature Model Basics

As introduced by the FODA method [Kang et al.1990] and by [Czarnecki et al.
2000], a feature model represents a hierarchy of properties of domain concepts.
The properties are used to discriminate between concept instances, i.e. systems or
applications within that domain. The properties are relevant to end users. At the
root of the hierarchy there is a so-called concept feature, representing a whole
class of solutions. Below of this concept feature there are hierarchically structured
sub-features showing refined properties. Each of the features is common to all
instances unless marked as being optional, thus not necessarily being part of all
instances. Fig. 1 shows an example for an ATM product line with a feature ATM as
concept feature. The feature debit card reader is a so-called mandatory
feature, stating that it is common to all instances of the domain, because every
ATM has a reader for debit cards. The feature receipt printer is marked as
optional by an empty bullet, because there are ATMs in this product line example
without a printing device.

Such a feature model represents an abstract view onto properties of all
instances of a domain. Every feature covers a set of requirements. By selecting a
set of optional features an instance of that domain can be defined. All mandatory
features are part of the instance by definition.

Feature models are used for development and application of software product
lines, i.e. for defining products and configurations, for describing possibilities of a
product line, and for establishing new products and adding new properties to a
product line. Several methods for product line development make use of feature
models, i.e. FeatuRSEB [Griss et al. 1998], Generative Programming [Czarnecki
et al. 2000] or our methodology ALEXANDRIA [Riebisch et al. 2002].

66

ATM

authentification
unit

mechanical
protection

PIN check

debit card
reader

money slot receipt
printer

biometric
check

shielding
window

wall
installation

iris check fingerprint
check

alternative
features

optional
feature

mandatory
feature

Legend:

Fig. 1. Feature Model Example

Grouping variable Features

For controlling the selection of optional features FODA introduces alternatives as
a relation between two or more features neighboring in the hierarchy. In Fig. 1 the
features PIN check and biometric check are alternative ones; either a
PIN check or a biometric check is provided by a product of this product
line.

(4)

(1)

A

B C D

A

B C D

(3) optional A

B C D

(2) A

B C D

(5) A

B C D

Identical situations with different representations using OR

Identical situations with different representations using alternatives

alternative
features

optional
feature

mandatory
feature

Legend:

OR
features

Fig. 2. Examples for ambiguities with OR and alternatives

FeatuRSEB extends this by distinguishing between OR and XOR alternatives,
where XOR shows mutual exclusion and OR enables more than one feature.

67

Generative Programming combines OR, XOR and alternatives with designating
the member features as mandatory or optional. Fig. 2 shows examples using the
graphical representations of [Czarnecki et al. 2000] with filled bullets for
mandatory features. Unfortunately, these combinations of mandatory and optional
features with alternatives, OR and XOR relations could lead to ambiguities.

To prevent these ambiguities and to enable a more expressive and powerful
notation for relations between neighboring features, multiplicities have been
introduced by [Riebisch et al. 2002]. These multiplicities are similar to those of
Entity Relationship Models ERM and of the Unified Modeling Language UML. In
addition to joining some features to a group, all of them are designated as optional
to express the possibility of choice.

A

B C

1

E

F G

0..1

D H

Alternative
of B, C and D

I

K L

1..*

M

Fig. 3. Grouping neighboring features using multiplicities

Different variants of multiplicities of the groups are possible:
0..1 at most one feature has to be chosen from the set of the sub-features,
1 exactly one feature has to be chosen from the set,
0..* an arbitrary number of features (or none at all) have to be chosen from

the set,
1..* at least one feature has to be chosen from the set,
Certainly, this list of possible multiplicities in feature diagrams covers the most

common cases. In practice, however, we often encounter situations in which a set
of features has a multiplicity like “0..3”, “1..3”, or simply “3”. Such multiplicities
cannot be expressed using the previous notations.

Feature Categories and Views

When establishing feature models questions about structuring useful
characteristics of features arise. A definition of features should answer such
questions. According to FODA, a feature is “a prominent or distinctive and user-
visible aspect, quality, or characteristic of a software system or systems” [Kang et
al.1990]. Features are categorized into Capabilities (functional, operational,

68

presentation features), Operating Environments, and Domain Technology
Implementation Techniques.

Czarnecki and Eisenecker extend this to a more general definition. In
[Czarnecki et al. 2000] a feature is a "property of a domain concept, which is
relevant to some domain stakeholder and is used to discriminate between concept
instances". A stakeholder could be any person important for a product line, not
only the end-user.

The method FORM [Kang et al. 1998] and its successor FOPLE [Kang et al.
2002] introduce four different views with features classified to the according
types:
1. Capability features:

Service, Operation, Nonfunctional characteristics.
2. Domain technology features:

Domain method, Standard, Law.
3. Operating environment features:

Hardware, Software.
4. Implementation technique features:

Design decision, Communication, ADT.
Unfortunately there is no clear definition for making a distinction between

these views. User-visible properties should be covered by the Capabilities view,
however some of the properties of this category like graphical user interface
components could even be assigned to the Operating Environment view. A service
could be designed according to an existing act and therefore assigned to the
Domain Technology or to the Capability view. Furthermore, the aims and
advantages of these views on FORM and FOPLE are not clear.

Goals and Application

Views and feature categories should correspond to the intended purpose of the
feature models. In our opinion, feature models should fill the gap between
requirements and the solution. They provide an extra model between requirements
specifications (i.e. structured text with glossaries, concept graphs, use case
models, decision models etc.) and design models and architectures (UML models,
ERM models). In our opinion it is not desirable to extend feature models, with the
goal to replace some parts of these well-established descriptions for requirements
and design.

According to our experiences from industrial application of feature models,
they can successfully support some product line development activities of two
groups of stakeholders. The first group, handling software more as a black box,
consists of customers, sellers, product managers and company managers. For
them, a feature model
• provides an overview over requirements
• distinguishes between common and variable properties
• shows dependencies between features
• enables feature selection for defining new products

69

• supports decisions about evolution of a product line
The second group of stakeholders is working on the development of a product

line, i.e. architects, software developers for reusable components of the product
line and developers for single products. They are supported by feature models
during
• defining reusable components and separating them according to the Separation

of Concerns principle
• assigning reusable components to variable features
• describing dependencies and constraints between components and features
• controlling the configuration of products out of the reusable components

By linking features to elements of design and implementation, additional
information about details of the solution domain are provided. By linking features
to requirements, detailed information from the problem domain is reachable.
These links are built using traceability links [Sametinger Riebisch 2002]. Fig. 4
shows the linkage by an ERM diagram.

Requirement

Feature

Design
Element

Implementation
Item

1

1..*

1..*

1..*1..*

1..*1..*
Fig. 4. References between features, requirements, design and implementation

Based on these goals and on the linkage to other models, a customer view is
sufficient for the feature model. All other information should be captured in the
available descriptions, i.e. requirements specification, design models and
implementation documents. A feature model provides an overview over the
requirements, and it models the variability of a product line. It is used for the
derivation of the costumer's desired product and provides a hierarchical structure
of features according to the decisions associated to them. The proposed definition
reflects this conclusion.

Proposed Definition - Part 1
A feature represents an aspect valuable to the customer. It is represented by a
single term. There are three categories of features:
• Functional features express the behavior or the way users may interact with

a product.
• Interface features express the product's conformance to a standard or a

subsystem
• Parameter features express enumerable, listable environmental or non-

functional properties.
A feature model gives a hierarchical structure to the features. In addition to

the mentioned categories, within the hierarchy there could be abstract features
to encapsulate Concept features. The root of the hierarchy always represents a
concept Feature.

70

According to this definition, not only features describing capabilities of a
system are possible. Even very technical concepts - i.e. “common rail fuel
injection” for a car engine - can occur as features, if there is the chance that
customers will use these concepts for distinguishing between products. In our
experience, the decision about including a concept as a feature becomes very clear
by asking if a customer is willing to pay for it.

The four categories were defined aiming at a small number of categories and at
an unambiguous distinction between them. Functional features describe both
static and dynamic aspects of functionality. They cover i.e. use cases, scenarios
and structure. To give some examples for the automotive domain, features like
Electric seat heating and Extra daytrip mileage counter
belong to that category.

Interface features describe connectivity and conformance aspects as well as
contained components. From the customers point of view the possibility of
connecting a product to other devices and of extending it are valuable categories.
Examples for features from this category are Firewire connection for an
electronic camera and DDR133 RAM for memory sockets of a PC. Conformity to
standards and certificates are in this category as well, i.e. USB 2.0
compatible and ISO 9000 certified for a PC. Complete components or
subsystems of special quality or by special vendors were added to the same
category, because the handling of such features is very similar to interfaces. An
example is the feature Bosch ABS device for a car, if this is valuable for a
customer.

Parameter features cover all features with properties demanding for
quantification by values or for assignment to qualities. Examples from the
automotive domain are fuel consumption, top acceleration or
wheel size.

Concept features represent an additional category for structuring a feature
model. Features of this category have no concrete implementation, but their sub-
features provide one. The feature mechanical protection in fig. 1
represents an example for such a feature.

Relations in a Feature Model

Within a feature model the features are structured by relations. Common to all
methods mentioned above are hierarchical relations between a feature and its sub-
features. They control the inclusion of features to instances. If an optional feature
is selected for an instance, then all mandatory sub-features have to be included as
well, and optional sub-features can be included. Additionally, FODA introduces
so-called composition rules using “requires” and “mutex-with”. These
rules control the selection of variable features in addition to the hierarchical
relations. If a feature A is selected for an instance, and there is a relation “A
requires B” then feature B has to be selected as well. Opposite to this, if a

71

feature A is selected for an instance, and there is a relation “A mutex-with B”
then feature B has to be unselected. In Generative Programming the latter relation
is called “excludes” instead of “mutex-with”.

When applying these relations in practical projects, some deficiencies become
visible. When building a hierarchy of features it is not clear how to arrange the
features. Frequently it was not obvious whether to express a particular relation
between two features by assigning one as a sub-feature of the other or by
establishing a “requires” relation between them. Semantically, there are only
small differences between a feature – sub-feature relation in a hierarchy and a
“requires” relation. The same is to be observed with alternatives and
“mutex-with” (see fig. 5). There is only little support for decisions between
these possibilities for a relation. The description of more complex dependencies,
with more than two participating features or more conditions is impossible.

A

B C

alternative
features

optional
feature

mandatory
feature

Legend:
B

Cmutex-with

E

F

E

F
requires

similar relation B - C

similar relation E - F
Fig. 5. Similar relations in FODA models

While analyzing feature models of practitioners a triple use of the hierarchical

relation was discovered. First, the hierarchical relation is used for refinement,

Proposed Definition - Part 2
The features are structured by relations of the following categories:
• Feature - sub-feature - relations construct a hierarchy, designed to guide the

customer’s selection process. The position of a feature within the hierarchy
shows its influence on the product line architecture. A hierarchy relation could
carry the semantics either of the requires relationship or of the refinement one.
The hierarchy relations distinguish between mandatory and optional features.

• Constraints between features are expressed either by multiplicity-grouping
relations for features with the same parent or by requires or excludes relations
for arbitrary features.

• Refinement relations lead towards more detailed sub features. They express is-
a or part-of semantics.

• Suggestions for additional selections can be expressed by the hint relation.
Requires, excludes, refinement and hint relations bridge arbitrary features

within the hierarchy.

72

second for decomposition, and third as a “requires” relation as a construction
rule.

The hierarchy of features should be established according to the most important
usage of the feature model. In our opinion, the selection of features for defining
new product line instances represents the purpose of highest importance.
Therefore, the hierarchy is built by the composition rules – requires e.g. – at
first order. other relations between features like refinement are regarded as
less important. In this way the features with more influence on other decisions are
arranged nearer to the top of the hierarchy. In the case of a conflict, other relations
like refinement have to be expressed as external dependencies and
composition rules like requires relations are forming the hierarchy.

onDemand
Video

Control Function

Function

Editing Library

<<refines>>

Editing Library

EPG
Management

Auto Storage
Management

Function

Library

Auto Storage
Management

Case 1: Refinement relation and Flow of Decision correspond

Case 2: Refinement relation and Flow of Decision differ

Function

Library

onDemandVideo

Digital
Video Recorder

Digital
Video Recorder

....

....

Fig. 6. Corresponding and conflicting relations in a feature model example

Fig. 6 shows two cases in an example with a package structure showing the
refinement on the left and the corresponding feature model on the right. In case 1
there is no difference between refinement and requires relation. The latter relation
is expressing the sequence of decisions in defining product instances. In this case,
the hierarchy relations express both, refinement and sequence of decisions. In case
2 there is a conflict, because the decision about whether a Digital Video System
should work as an On Demand video server for clients influences many other
decisions, therefore this feature has to be chosen first. However, looking at the

73

refinement structure, the feature OnDemand video is a sub-feature of the
Library feature. There is a conflict between the refinement and the requires
relation. In such a case, the hierarchy is arranged according to the requires relation
showing the sequence of decisions, and the refinement is expressed by an external
relation.

Related Work

As already mentioned, feature models have been introduced as part of the method
Feature Oriented Domain Analysis FODA [Kang et al.1990]. It was extended by
Generative Programming [Czarnecki et al. 2000]. Slightly different notations are
introduced by Bosch as part of his Software Product Line Methodology [Bosch
2000]. The product line method FeatuRSEB [Griss et al. 1998] uses the FODA
notation as well. This notation was extended by feature categories and views by
the methods FORM [Kang et al. 1998] and FOPLE [Kang et al. 2002]. As
discussed above, these extensions lack of clear definitions, thus leading to
ambiguous models.

There are some different proposals for graphical representation of feature
models [Robak 2003]. Most of them are similar to the FODA notation as shown in
Fig. 1. Another approach is using UML class diagram symbols for features and
their relations [Clauß 2001]. However, this approach leads to communication
problems for software developers using UML in their work. Currently, there is no
graphical notation for feature models established as a standard.

Features are mentioned by UML as well. However, the notion is different to the
feature models discussed here, because a feature in UML is a property similar to
an operation or an attribute, and it is encapsulated, i.e. in an interface or a class
[UML 2001].

Frequently, some features interfere with each other leading to a so-called
feature interaction [Zave 1999]. In such a case a feature influences the properties
or the behavior of another feature in some way, if both features are present in one
instance of a product line as a combination. There are different approaches of
solving such interactions. These issues were subject of workshops i.e. [FICS
2001]. An overview and a bibliography is provided by [Calder et al. 2003].

Development processes support methods and model notations, and vice versa.
For establishing and utilizing feature models there are some descriptions by
product line development methods, i.e. by Bosch [Bosch 2000], [Atkinson et al.
2002] and our own methodology ALEXANDRIA [Riebisch Böllert 2003]. Processes
for applying feature models in product line development are issues of European
ITEA projects ESAPS [ESAPS] and CAFÉ [CAFE], however most of their
published process descriptions are fairly general.

74

Ongoing and Future Work

Tool support in using feature models requires notations based on a formal defined
syntax and semantics. Currently, we are developing a language for expressing
feature dependencies and constraints [Streitferdt et al. 2003]. For product line
configuration purposes, the Object Constraint Language OCL is adapted to
express valid configurations of features [Streitferdt 2003].

Most benefits of using feature models for product line development can be
obtained by linking features to requirements and solution elements, i.e.
architectural and design models and source code. For integrating feature models
with CASE tool repositories XML provides a technology. Current works are
implementing an XML notation and tool integration for software product lines
[Streitferdt 2003].

Feature models can be applied with great success for improving program
comprehension. In most reengineering activities source code is the only reliable
source of information. Documents of architecture, design and even requirements
are mostly outdated or incomplete. In reconstructing this information feature
models help to bridge the gap between the very concrete code and the fairly
abstract information of the documents mentioned. They are applied in methods for
supporting reverse engineering in a hypothesis - verification procedure [Pashov
Riebisch 2003].

Conclusion

In this position paper a definition of features and their relations in feature models
is proposed. This definition aims at avoiding ambiguities in establishing and
exploiting feature models. Categories of features and views in feature models are
limited to a customer point of view. Alternatives, OR and XOR groups of features
are replaced by multiplicities similar to those of UML and ERM in order to enable
more powerful and less ambiguous models. The characteristics of features within a
hierarchy and external to it are analyzed. Categories of feature relations are
defined. The selection of features for new product line instances was determined
as the most important usage of feature models. Therefore, construction rules like
requires and excludes relations are favored in the hierarchy in comparison to
refinement relations.

The proposed definition is part of the product line development methodology
ALEXANDRIA [Alexandria]. It is applied as base of exploiting feature models for
evolving product lines, for developing instances of them and for reverse
engineering existing components and legacy systems.

75

Acknowledgements

The definition of features and feature models was developed as part of the product
line methodology ALEXANDRIA. The definition was discussed and elaborated as a
joint work together with Kai Böllert, Detlef Streitferdt, Ilian Pashov, Perklis
Sochos and Michael Hübner. I would like to thank Detlef Streitferdt and Michael
Hübner for their hints on an earlier version of this paper.
This research was part of a project funded by the department of Process
Informatics chaired by Prof. Ilka Philippow. The definition was approved in co-
operation projects for software product lines together with Siemens Dematic AG
Constance, and Siemens AG, Corporate Research Munich, Germany.

References

[Alexandria] Software product line development methodology ALEXANDRIA. Project
website at http://www.theoinf.tu-ilmenau.de/~pld/

[Atkinson et al. 2002] Atkinson, C., et al.: Component-based product line engineering with
UML. Addison Wesley, 2002.

[Bosch 2000] Bosch, J.: Design and use of software architectures – Adopting and evolving
a product-line approach. Addison Wesley, 2000.

[CAFE] From Concepts to Application in System-Family Engineering (CAFÉ). Project
ITEA 00004 of the Eureka Sigma!2023 Program. Project Homepage
http://www.esi.es/cafe/

[Calder et al. 2003] Calder, M.; Kolberg, M.; Magill, M.H.; Reiff-Marganiec, S.: Feature
Interaction – A Critical Review and Considered Forecast. Elsevier: Computer Networks,
Volume 41/1, 2003. S. 115-141

[Clauß 2001] Clauß, M.: A proposal for uniform abstract modeling of feature interactions in
UML. Proceedings FICSworkshop, 15th European Conference on Object-Oriented
Programming (ECOOP’01), April 2001. S.. 21-25. Online available at
http://www.info.uni-
karlsruhe.de/~pulvermu/workshops/ecoop2001/proceedings/FICS2001.pdf

[Czarnecki et al. 2000] Czarnecki, K., Eisenecker, U.W.: Generative Programming.
Addison Wesley, 2000.

[ESAPS] Engineering Software Architectures, Processes and Platforms for System Families
(ESAPS). ITEA project 99005 of the Eureka Sigma!2023 Program. Project Website
http://www.esi.es/esaps/

[FICS 2001] Feature Interaction in Composed Systems. ECOOP 2001 Workshop. Material
available online at http://www.info.uni-karlsruhe.de/~pulvermu/workshops/ecoop2001/

[Griss et al. 1998] Griss, M.; Favaro, J.; d’Allesandro, M.: Integrating Feature Modeling
with RSEB. Hewlett-Packard Comp., 1998.

[Kang et al.1990] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A., Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, 1990.

[Kang et al. 1998] Kang, K., Kim, S., Lee, J., Kim, K., Shin E. and Huh, M.: FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference Architectures, Annals
of Software Engineering, 5, 1998, pp. 143-168.

76

[Kang et al. 2002] Kang, K.C.; Lee, K.; Lee, J.: FOPLE - Feature Oriented Product Line
Software Engineering: Principles and Guidelines. Pohang University of Science and
Technology, 2002

[Pashov Riebisch 2003] Pashov, I., Riebisch, M.: Using Feature Modeling for Program
Comprehension and Software Architecture Recovery. In: Amendment to Proceedings
10th IEEE Symposium and Workshops on Engineering of Computer-Based Systems
(ECBS'03), Huntsville Alabama, USA, April 7-11, 2003. IEEE Computer Society, 2003.

[Riebisch et al. 2002] Riebisch, M.; Böllert, K.; Streitferdt, D., Philippow, I.: Extending
Feature Diagrams with UML Multiplicities. 6th World Conference on Integrated Design
& Process Technology (IDPT2002), Pasadena, CA, USA; June 23 - 27, 2002.

[Riebisch Böllert 2003] Riebisch, M.; Böllert, K.: Feature-driven Composition of Software
Systems Using UML. Submitted for publication, 2003

[Robak 2003] Robak, S.: Feature Modeling Notations for System Families. ICSE'03
Workshop on Software Variability Management. Portland, Oregon 2003, pp. 58-62

[Sametinger Riebisch 2002] Sametinger, J.; Riebisch, M.: Evolution Support by
Homogeneously Documenting Patterns, Aspects and Traces. 6th European Conference
on Software Maintenance and Reengineering. Budapest, Hungary, March 11-13, 2002
(CSMR 2002) . Computer Society Press, 2002. S. 134-140.

[Streitferdt et al. 2003] Streitferdt, D., Riebisch, M., Philippow, I.: Formal Details of
Relations in Feature Models. In: Proceedings 10th IEEE Symposium and Workshops on
Engineering of Computer-Based Systems (ECBS'03), Huntsville Alabama, USA, April
7-11, 2003. IEEE Computer Society Press, 2003. S. 297-304

[Streitferdt 2003] Streitferdt, D.: Family Oriented Requirements Engineering. PhD thesis
(to be submitted), TU Ilmenau, Germany, 2003. (in German)

[UML 2001] Object Management Group: Unified Modeling Language Specification,
Version 1.4. http://www.omg.org, 2001

[Zave 1999] Zave, P.: FAQ Sheet on Feature Interaction. AT&T, 1999.
http://www.research.att.com/~pamela/faq.html

