
Abstract
System families are a form of high level reuse of de-

velopment assets in a specific problem domain, by mak-
ing use of commonalities and variabilities. To represent
assets belonging to the core of the family and assets be-
longing to variable parts, feature modeling is a widely
used concept. Consistency checking in feature models is
not yet addressed appropriately by current methods. This
paper gives a brief overview of feature modeling and
elaborates the problems of current approaches. Based on
the applications of these approaches within an ongoing
research project this paper proposes a formalized defini-
tion for feature modeling using the Object Constraint
Language (OCL) and a set of associations and con-
straints to be used in the feature model. The relations be-
tween features in the feature model and features to exter-
nal assets are examined and a way to formally handle
these relations is presented as a result of a research proj-
ect.

Keywords: Feature modeling, feature constraints, OCL,
variability

1 Introduction
Software engineers are trying to fulfill a steady desire

of the market for high quality software and short develop-
ment cycles by reuse efforts, component technologies, and
new programming paradigms. These solution ideas are
used to satisfy the customer needs as fast as possible. Re-
use is a very promising idea adapted out of many other
engineering disciplines. The idea is easy, but many prob-
lems arise when software engineers try to apply the idea
of reuse to software development.

The family approach bridges the gap between a fully
custom-built single product and the mass production of
software. By using a flexible system architecture, built out
of a core used by all members of the family and several
variable components, the application engineer can de-
velop new applications within a short time period and

with less resources compared to conventional software de-
velopment. System families ensure a planned form of re-
use within a specific problem domain.

Many systems are based and dependent on the flexible
family architecture, which was itself developed based on
the overall requirements for the family. Thus, require-
ments engineering activities have a high impact on all ap-
plications based on the family. Many of the current sys-
tem family development methods are making use of fea-
ture modeling, initially described by Kyo Kang in FODA
(Feature Oriented Domain Analysis) [1], to capture all the
mandatory and optional 'parts' of the system. The feature
model is a high level description of the system and under-
standable by customers. As depicted in Figure 1 the fea-
ture model located between the requirements model and
the system design model.

����������	

����

���	���

����

��
���

����

�������������	���
�������	��	

Within an ongoing research project we used feature
modeling to capture system family related information
and experienced problems using current feature modeling
methods while keeping the model consistent. In section 2
a short introduction to the research project is given, to un-
derstand the examples in the next sections. Section 3
gives an overview of current feature modeling methods to-
gether with usage examples taken out of the project. The
section closes with a summary of the problems with cur-
rent feature modeling. Section 4 starts with a formal view
onto feature modeling and introduces new associations
and constraints, to enable constraint checking. Section 5
closes with an overall summary and an outlook containing
open questions and future research directions for a lively
discussion.

Details of Formalized Relations in Feature Models Using OCL

Detlef Streitferdt Matthias Riebisch Ilka Philippow

Technische Universität Ilmenau
{detlef.streitferdt | matthias.riebisch | ilka.philippow}@.tu-ilmenau.de

2 System Family Example:
 Digital Video Research Project

Within a group of students a digital video system was
built making use of existing hardware and software com-
ponents. The project goal is to develop a system family
making use of adapted methods and thus, evaluating these
methods. The students are taught to use the system family
paradigm for the development of a software system within
the context of a real-life example. The system is meant to
capture and process digital TV shows. Since all of the sys-
tem features including their internals need to be extracted,
to form a system family, Linux, and thus, open source as
the basic platform was chosen. In addition we are making
use of the vdr project [2], the video-streaming project [3]
and the dvb driver [4] for Linux. In Figure 2 a brief sys-
tem overview is sketched, as a Unified Modeling Lan-
guage (UML) [5] component diagram.

���������

���������

���������������

��

!���"�	�#��$

����������

!���"�	�#��$

����

%��&��

'�

��	���		�

��
&

(�)��*�

���

�����	���������

��

!���"�	�#��$

�����	�������

!���"�	�#��$

�����	�������

!���"�	�#��$

+��,

!���"�	�#��$

(�)��*�

���

��������������	���������-
	���. ������)

Within the requirements elicitation phase we evaluated
commercial digital video systems, using brochures, web
sites and interviews in local electronic stores. Together
with a future product analysis we elaborated a list of more
than 70 high level requirements. In this stage, features de-
ducted out of requirements and elaborated in discussions
were recorded within a simple list, forming the first step
towards feature modeling.

3 State-of-the-Art
Feature modeling was first described in the FODA pa-

per [1]. The goal of feature models is to describe a system
according to its features, where a feature is defined as:

“, /�������	 �� �
	��"	��� �
�����
�#�� �
/�"	0

�����	-0�� "&���"	���
	�" �1�
�1)���
-
	�� ��

-
	��
”

This general definition was refined by later publica-
tions of Kang to address the needs of different stakehold-
ers.

“���	���
 ��� ��- /�������	 �� �
	��"	��� �
�

/�"	
 �� "&���"	���
	�"
 	&�	 ��� ��
�#�� 	� �����

��

	�*�&����
 ��2�20 ����
��
0 ����� ���

/��	
0������/��
0��	"2 2”

There are still many possible interpretations of this
definition. A first little example is presented to explain
the definition and to give a brief introduction to FODA.

����	��

������-
	��

'���/&���

���	���

����	�

(�	

3 �# 4�������

3 ,�

���	�������
��/	�����, � ���	�������
��/	�����

���	�������
�����	��-, �

���"�/	�(��

(�)��*�%3

4	&����	

����

�������

�������5�����/������	�����������

As depicted in Figure 3, a feature diagram has a root
node called concept, referring to the complete system. Hi-
erarchically located below the concept node are all the
features of the system. Features are marked either manda-
tory or optional. All mandatory features are part of all sys-
tems to be generated within this family. Thus, the set of
mandatory features is forming the core of the system fam-
ily.

In Figure 3 we have taken a subset out of all the fea-
tures of the digital video project. At the top, the concept
node refers to the system itself. Below the concept node
the “Control” feature is modeled mandatory, since we
need to control the video system in some way. At the level
below the “Control” feature there is the mandatory “Re-
mote” feature. The system will be equipped with a simple
infrared remote control in any case. Thus, these two man-
datory features belong to the core of the system family –
they are present in every system. Optionally we can
choose to control the system via the internet. By the time
we choose the “Net” feature we automatically will have to
choose the “Email” feature, which means, we are able to
send an email to the video system to control the recording
of a TV-show. All features of the system are arranged hi-
erarchically and will be marked optional or mandatory to
model the core and all variable parts of the system.

To build an application, based on the system family, a
selection of features has to be made. The user can choose
out of all optional features of the family. FODA defines
two relations between features to support the consistency
of the overall model and the correctness of a choice of fea-
tures in particular. First, a relation called “requires” can
be established to state the need for the selection of a spe-

cific feature in case another feature should have been cho-
sen. In the above described example a user might want to
choose the “Net” feature to control his system via emails.
This features would definitely require the installation of
network hardware in the system. Thus, the “Net” feature
requires another hardware feature. Second, the opposite
relation can be used to state the vital exclusion of a spe-
cific feature. Assume we have the choice between two
graphics cards, but we only have a single graphics port. In
case a user chooses to include one graphics card the other
one has to be excluded. This is modeled with the “ex-
cludes” relationship.

Featured Reuse-driven Software Engineering Business
(FeatuRSEB) [6] is a use-case based process for company
wide system development, as a combination of RSEB [7]
and FODA for addressing the system family specific is-
sues. FeatuRSEB defined enhanced use-cases in the re-
quirements engineering phase. With a variation point in
use-cases FeatuRSEB models choices of different behav-
ior. After the modeling phase the developer has to select
the behavior needed to get to a valid instance of the
model. Furthermore FeatuRSEB formulates first ideas to
combine requirements with features. A «trace» associa-
tion is used to address the requirements-feature relation-
ship. Although, for a complete and consistent model a
more precise definition of how to relate requirements to
features is needed.

'���/&���

���	���

(�	

����������	
����������	
����������	
����������	

'&��
-
	���
&����#��"��	������

�������������

���2

'&��
-
	���
&����#��"��	������

	&����&�	&��)�#2

'&��
-
	���
&����#��"��	������

#-���3 ,��"���/&���2

'&��
-
	���
&����#��"��	������

)�	&������������

���2

3 �#

4����

3 ,�

���

�������6������	��������������	
�	�����	���

In Figure 4 four requirements of the video project and
the corresponding feature subtree are given. Is a simple
one-to-one mapping with traces appropriate, or do we
need more to express the relation of requirements to fea-
tures? FeatuRSEB did not address these questions and did
not define the «trace» relation formally.

The original FODA approach was refined by the Fea-
ture Oriented Reuse Method (FORM) [8] and was recently
extended by Feature Oriented Product Line Software En-
gineering (FOPLE) [9]. Because of the general definition
of the term feature, as stated at the beginning of the sec-
tion, FOPLE separates features into four different feature
categories.

� Capability features are distinct services, operations, or
non-functional aspects. Features of this category are
end-user visible and are selected by the customer to
specify the desired system. (Examples: email control,
on-demand videos, flicker-free view)

� System environment features address the hard- and
software components used by the family. All the com-
ponents of a system with their interfaces and protocols
are part of this category. (Examples: DVB card, TV,
handheld, MPEG-decoder)

� Domain technology features are domain specific tech-
nologies and problem solutions, used by domain ex-
perts. (Examples: DivX de-/encoder, slide show as
Video-CD)

� Implementation technique features are general prob-
lem solutions, which may be used in different do-
mains. (Examples: data compression, network proto-
cols)

The categories are used to support different views of
different stakeholders. There is still one single feature
model holding all features, but FOPLE proposes layers
corresponding to the categories to separate the features.
All features are arranged into these four categories but
still have relations to each other, crossing the layer
boundaries. There is still some ambiguity when to use
which of the different views and the the benefit of the
views is not yet clear.

The “requires” and “excludes” relations of FODA are
not mentioned in FOPLE. Instead, there are three new re-
lations described. The “composition” relationship is used
to hierarchically arrange all features. The
“generalization” relation connects very general features
with concrete ones. Finally, the “implementation” relation
represents a connection between user-visible features and
their implementation strategy, used in the specific do-
main. These relations are used in a yard inventory system,
described in the FOPLE paper. This system is used to
store and manage intermediate iron parts between two
plants.

7���+����	��-��-
	��

��&�"��

'�������

���	�������
��/	�����, � ���	�������
��/	�����

���/�
�	���, �

8�������9�	���, �

:�1	����4���/���	

��/�"�	-

�����

�������;���. �:4����	����4���/��

Given the example of the FOPLE paper in Figure 5,
“Car” and “Train” are optional features of “Vehicle”.
“Crane” is a generalization of “Lifting Equipment”. What
is the difference between a crane and a car in terms of the
feature definition given at the beginning of the section.
When do we need to choose the generalization and when
the composition relationship? What happens to the con-
sistency of the model if we choose to leave out both, the
“Car” and “Train” feature? The described uncertainties
within the model lead towards inconsistencies which in
effect prevent the successful evaluation of the model.

Features of the Digital Video Project have been catego-
rized into a user-visible part and a developer part, where
the user-visible part would correspond to Kang's capabil-
ity features and the developer part corresponds to the sys-
tem environment features. We propose to use only the two
described views. The views in mind, modeling of the sys-
tem becomes clearer, since the software engineer knows
who is going to use the model in the future and what the
purpose of the model will be. The user-view addresses the
needs of all stakeholders using the feature model to con-
figure a system meeting their specific requirements. The
developer-view is used to represent the details of the fam-
ily required to further develop the system design. In addi-
tion, the features in this view are important to check the
consistency of the feature model in the context of the sys-
tem environment. To enable a customer to make a valid
feature choice, the hierarchy of the model is the first im-
portant mechanism and associations between features are
the second mechanism to uncover unwanted choices lead-
ing to unusable configurations.

����	��

������-
	��

(��#�����

�,���;���� %��&��

(��#�����

������/������)

�������

���-

.�������

���������

�����	���

(�)��*

(�)��*

(��#�����

�,���;����

��<���8%9

�3 ���==���	

�3 ���==���	

+��,����	

��<���8%9

<
������)

�������>�����	������	������

In Figure 6, showing another subtree of the feature
model of the digital video project, two subsets of features
are shown. In the upper part, hardware components of the
system are included. In the lower part, the on-demand
server feature is shown. Without doubt the on-demand
system with three clients would have specific require-
ments on the bandwidth of the network hardware to be

functional. How can we express these technological con-
straints?

Czarnecki introduced the notion of sets of features
[10]. Using the optional, mandatory and alternative crite-
rion for features, it is possible to define subsets with con-
straints for the minimum and maximum number of fea-
tures to be taken out of this set. This notation was am-
biguous, what was fixed in an earlier paper [11] of our re-
search group, proposing a new notation.

,

���

�22?

,

���

,

���

�

�

.����	�	��� (�)���	�	���

,

���

�

�������@�����	�/��"�	��
�1������	���

For a brief explanation take a look at Figure 7. On the
left side we have the notation with the ambiguities. The
intended meaning of the feature tree marked with � is the
choice of feature B, C or D. All features are related to
each other by the logical OR-operator. What does the
mandatory C feature mean? Do we have to choose C in
any case? This would, without doubt, totally contradict to
the logical OR. Within the feature tree marked with � we
have a similar situation. In this case the features are con-
nected with the logical XOR. What does the mandatory D
mean? Is it just the feature D, that we can select?

The new notation, shown on the right side of Figure 7,
has absolutely clear semantics. Whenever we define a sub-
set of features, we declare all of them optional. To define
the possible selections of features out of the set, we use the
multiplicity notation. The first number tells us how many
of the features we have to choose at minimum, the second
number tells us the maximum number of features we can
choose. In addition, Czarnecki also introduced parameters
for features, which are used to represent simple values.
This concept was heavily used in the Digital Video Pro-
ject. The notation was slightly changed, since it is hard to
identify the parameter features in large models.

�������A��������	������	���

Figure 8 shows some of the hardware features. In any
case, the system has a server – the main computer system.

����	��

������-
	��

(��#�����

����������,���;����

��<���8%9 %��&��

�����	���

(��#�����

�,���;����

��<���8%9

(��#�����

This feature has parameters representing the amount of
RAM in the system and the CPU speed. The first parame-
ter of the 'Server-PC' feature refers to the number of such
server systems, which is set to one. The optional client
system comes with the same parameters. In the middle
there is an optional handheld device, which will be used
as an advanced remote control via the IrDA port of the
PC. In the above sketched example the complete system
would have two handheld devices, what is correct as long
as the customer has chosen to buy a client PC. There is an
interdependency between “ServerPCs”, “ClientPCs” and
“Handhelds”. For our system the number of handhelds is
required to be the sum of the number of server and client
PCs. The “Number” features in Figure 8 interrelate with
each other, what currently cannot be expressed.

As described in [12], the use of artificial intelligence
to describe feature interactions, as relations between fea-
tures, is proposed. Unfortunately no detailed information
about the exact notation is given. Other approaches as
[13] are using colored Petri nets to model and manage
feature interactions. This project is in an early stage and
currently the method is capable of addressing the user in-
terface of the system family.

3.1 Conclusion
The key idea of family development is the derivation of

many applications out of family model. The feature model
capturing commonalities and variabilities of the family is
used as a bridge between the requirements model and the
design model. Current research works in the feature mod-
eling domain don't have a clear definition of the relations
between features and don't supply the relations of the fea-
ture model to the other software engineering models of
the family. We are hardly able to check the consistency of
the feature model with the currently available modeling
technologies and methods.

����������	

����

���	���

����

��
���

����

	��"�

��	������

B ���/�#���	-

B �4���������	

B ��������'�"&�2

B �+�/�����	�	���

����	���

B ��������

B ���"���

B ��
�

B ���/�����	��#-

B �"��/�
�	���

B ���������9�	���

�������C��. ������)��1�������	����	��������	���

The current situation is shown in Figure 9. There is a
simple trace from the requirements model to the feature
model and there are several relations within the feature
model. Different categories help to elaborate features, but

they cannot support the precise usage of relations for
modeling and checking the consistency of the model. In
addition, the more relation types we have, the more a de-
veloper gets confused, when to use which type.

The problems stated in the last section are boiling
down to the following problem statements:

� Feature relations are defined in many flavors, but have
no unified and formal background definition.

� Categories of relations are defined to help the devel-
oper elaborating features. A distinction between inter-
nal feature relations and relations to external develop-
ment assets has to be defined.

� The definition of the term feature is still very vaguely
defined.

In this paper we address the first two problem state-
ments and propose a new way to look at feature relations
and a way to describe feature relations, so they can be
automatically evaluated and checked for consistency.

4 Defined Relations in Feature Models
To get an overview, feature relations need to be put

into the software development context. As stated in the
first section, features are located between the require-
ments model and the design model. They are describing
the system family at a higher level than requirements and
are thus an abstraction. On the one hand we wanted to
simplify feature relations and on the other hand we would
like them to be described in a way we can automatically
check the feature model for consistency. As the result of
the video project we propose a single and simple general
relation described with a slightly adapted Object Con-
straint Language (OCL).

4.1 Feature Relations using OCL
OCL [14] is used to express constraints within UML

models to get to a complete specification, since not all re-
quirements can be described with UML models. OCL ex-
pressions are without any side effects since they cannot
make changes to the model. OCL describes pre- and post-
conditions as well as invariants, what is stated in the cor-
responding context variable of the OCL expression.

To describe a constraint we need to define an OCL-
construct with a fixed form, shown in CodeSection 1.
Within the “context” we include the element affected by
the constraint. The “inv” section contains an invariant,
which needs to be satisfied all the time, otherwise the con-
straint is broken and the developer needs to check the cor-
responding model element. The “pre” and “post” sections
contain pre- and postconditions for class methods.

context <elements>
inv: <OCL-Expr>
pre: <OCL-Expr>
post: <OCL-Expr>

�����"	���������
�"�. �:�"��
	��"	

Since features are not part of the UML yet, we adapted
the OCL to meet our needs for consistency checking in
feature models. For class diagrams the OCL defines ac-
cess functions to read the model elements. For feature
models we need the same functionality, what is only pos-
sible to obtain with an extended version of the OCL. In
the following paragraphs we call the adapted OCL, A-
OCL. The new constructs are described in Table 1. For
the simplicity of this paper we also use the info(<text>)
construct, to give the user some informational text. In the
following examples this construct is used as if it were part
of A-OCL. In a real implementation it would rather be
part of a scripting environment, which a developer can
use to manipulate the model. OCL itself won’t make any
changes to the model.

"��
	��"	"��
	��"	"��
	��"	"��
	��"	 ��/����	�����/����	�����/����	�����/����	���

���"	��D 1��	���E '���0��1�1��	�����
�
���"	�2

������D 1��	���E 0D 	-/�E ���	��� �
 � /�����	�� �� 	&� ���

	��� ����� �
 �1	&� ������� . �:�

	-/�2

'�#������,�/	��. �:��,�. �:

In addition to the new constructs we only use the “inv”
section. Invariants are checked whenever one of the at-
tached features is changed in any way. Invariant checking
is continued for further involved constraints until no more
features are reachable over constraint relations.

4.2 Feature Relations explained
One of the basic ideas of feature modeling is to supply

a view onto the system for the customer, who is willing to
buy a personalized system. The more features a customer
chooses, the higher will the price of system be. With a
higher price a company might even be able to rise their
profit. A tradeoff between the fully loaded and very ex-
pensive system and the minimal system suitable for the
customer has to be made. Within the video project we
used “hints” to capture information, that is needed to sup-
port the customer while he is in the decision making proc-
ess. As shown in Figure 10 the video system has several
options of media it can play. If a customer should choose
to have the option to watch slides with the system, a hint
to the audio feature below “Edit” is very useful, since a
slide show with background music or even a narrated
slide show is more impressive than a normal one. This in-
formation can be either directly displayed, if the user
should have an automatic product configurator or it will
be shown to the sales representative, so he could point the

customer to the additional feature. The corresponding A-
OCL construct is shown in CodeSection 2.

��������=�����	���
�) �	&���F&��	F�����	���

context Slides
inv hint:
 info("Check Add Music as well!")

�����"	�������G&��	H�. �:�"��
	��"	

For the parameter features we used a mathematical re-
lation holding the formula to calculate the corresponding
values. In Figure 11 the customer can choose to have
server and client PCs and he can choose to control the
system with handhelds. For our system we need to have as
many handheld remote controls as we have PCs. Thus,
the formula comes to: (number of handhelds) = (number
of server PCs) + (number of client PCs). Within the rela-
tion this formula will be stored and the formula can be
checked whenever the user changes the parameter fea-
tures. The corresponding A-OCL construct is shown in
CodeSection 3.

��������������	���
�) �	&���F��	&���	�"���F�����	���

context Server-PC:Number,
 Client-PC:Number,
 Handheld:Number
inv mathematical:
 Handheld:Number =
 Server-PC:Number + Server-PC:Number

�����"	����5��G��	&���	�"��H�. �:�"��
	��"	

The same mathematical relation was used to model re-
lation between parameter features and simple features in
different views, shown in Figure 12. We have a relation
between the number of client PCs and the network band-
width of the server PC. The more client PCs a system has,
the more bandwidth we need. Of course this can only be a

����

���-

����

,���
�"

4�	

,���

���	���

&��	

�������

����	��

������-
	��

(��#�����

����������,���;����

��<���8%9 %��&��

�����	���

(��#�����

�,���;����

��<���8%9

(��#�����

�

constraint if we want to have the “On-demand” feature for
our system. Here the relation is expressed using a condi-
tional expression to check whether the “On-Demand” fea-
ture is selected or not. The corresponding A-OCL con-
struct is shown in CodeSection 4.

����	��

������-
	��

(��#�����

�,���;���� %��&��

(��#�����

������/������)

�������

���-

.�������

���������

�����	���

(�)��*

(�)��*

(��#�����

�,���;����

��<���8%9

�3 ���==���	

�3 ���==���	

+��,����	

��<���8%9

�

<
������)

���������������	������)������	������

context Network:BW,
 Client-PC:Number,
 On-Demand
inv mathematical:
 if selected(On-Demand) then
 Network:BW = Client-PC:Number * 20
 endif

�����"	����6��G��	&���	�"��H�. �:�"��
	��"	

The “requires” relationship, already defined in FODA
is also expressed using A-OCL. Figure 13 shows the ex-
ample, who's A-OCL expression for the “requires” rela-
tionship is shown in CodeSection 5.

��������5�����	���
�) �	&���G�������
G�����	���

context 'Add Music',
 Audio
inv requires:
(if not(selected(Audio)
 implies selected('Add Music'))
 then
 info("Select 'Add Music'")
 endif)
and
(if not(selected('Add Music')
 implies selected(Audio)
 then
 info("Select Audio")
 endif)

�����"	����;��G�������
H�. �:�"��
	��"	

context F1, F2
inv excludes:
 (selected(F_1) implies not selected(F_2))
 and
 (selected(F_2) implies not selected(F_1))

�����"	����>��G��"���
H�. �:�"��
	��"	

In addition to the relations used in the video project we
are also able to formulate A-OCL constraints for the “ex-
cludes”, and “uses” relations in CodeSection 6 and
CodeSection 7.

context F_1, F_2
post uses:

(selected(F_1) implies selected(F_2))
implies

context F_1, F_2
post uses:

selected(F_2) implies selected(F_2)

�����"	����@��F�
�
F�. �:�"��
	��"	

4.3 Benefits of our approach
We propose only a single graphical notation for rela-

tions between features, which is easy to read and easy to
understand. Relations are further specified by an A-OCL
construct, which is a precise and formal way to describe
feature relations.

The new “hint” relation of use for the marketing of the
product. With this relation we are able to support the con-
figurations process of the customer and we can point to
useful and additional features. Thus, the customer is more
satisfied and the company is able to increase their profit.
The other new “mathematical” relation enables us to
make use of parameter features. Up to now, parameter
features could be defined, but their values or the selection
of values could not be verified with rules given in the re-
quirements model. Now it is possible to integrate these re-
quirements into the feature model to get to a more com-
plete and consistent model.

����

���-

����

,���
�"

4�	

,���

���	���

&��	

�������

Together with the extension for multiplicities the fea-
ture model is simpler and thus easier to understand. The
adapted OCL enables developers to define their own rela-
tions in case the predefined ones are not sufficient. Thus,
consistency checking is possible and easy to obtain.

5 Summary and Outlook
In this paper we proposed a new way to express feature

relations in feature models. We use an adapted form of
OCL to formally describe the relations. With a single no-
tation we can express all kinds of relations.

This position paper presented an ongoing research out
of the domain of system family development. Engineering
software artifacts with commonality and variability issues
in mind results in a flexible design out of which several
system variants can be generated. Based on existing ap-
proaches relations were presented to master the feature
modeling task. The goal is to get to a constraint feature
model as the interface between the requirements engineer-
ing and the design phase of system family development.

This research is embedded in a project, aiming towards
a complete development method for system families. The
work is currently validated within a university project.

Currently all data is represented as XML and con-
straints will also be integrated into this data model. For
this, the XML constraint description in [15] will be evalu-
ated and integrated into out model.

Future work will be put into the improvement of cur-
rent prototypes and the integration of the adapted OCL
into the prototypes for an automated consistency checking
of constraint feature models. Furthermore, a seamless in-
tegration of the prototypes with other CASE-tools is
needed.

References

[1] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William
E. Novak, A. Spencer Peterson, "Feature Oriented Design
Analysis (FODA) Feasibility Study",CMU/SEI-90-TR-21
ESD-90-TR-222, 1990.

[2] Klaus Schmidinger, "vdr Projekt Homepage",
http://www.cadsoft.de/people/kls/vdr, 2002.

[3] Simon Latapie et al., "Video Streaming Project",
http://www.videolan.org/, 2002.

[4] Ralph Metzler, Marcus Metzler, "linuxTV.org",
http://linuxtv.org/, 2002.

[5] OMG, "Unified Modeling Language Specification",OMG,
1999.

[6] Martin L. Griss, John Favaro, Massimo d' Alessandro,
"Integrating Feature Modeling with RSEB",Hewlett
Packard, 1998.

[7] Ivar Jacobson, Martin Griss, Patrik Jonsson, "Software
Reuse: Architecture, Process and Organization for
Business Success", Addison-Wesley, 1997

[8] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim,
Euiseob Shin, Moonhang Huh, "FORM: A Feature-
Oriented Reuse Method",Pohang University of Science and
Technology, 1998.

[9] Kyo C. Kang, Kwanwoo Lee, Jaejoon Lee, "Feature
Oriented Product Line Software Engineering: Principles
and Guidelines",Pohang University of Science and
Technology, 2002.

[10] Krzysztof Czarnecki, Ulrich Eisenecker, "Generative
Programming: Methods, Tools, and Applications",
Addison-Wesley, 2000

[11] Matthias Riebisch, Kai Böllert, Detlef Streitferdt,
"Extending Feature Diagrams with UML Multiplicities",
6th Conference on Integrated Design & Process Tech IDPT
2002, 2002.

[12] Andreas Hein, John MacGregor, Steffen Thiel,
"Configuring Software Product Line Features",Springer,
2001.

[13] Louise Lorentsen, Antti-Pekka Tuovinen, Jianli Xu,
"Modelling Feature Interactions in Mobile Phones",
Springer, 2001.

[14] Sinan Si Alhir, "UML in a Nutshell", O'Reilly, 1998

[15] Zisman A., Emmerich W., Finkelstein A., "Using XML to
Build Consistency Rules for Distributed Specifications",
International Workshop on Software Specification, 2000.

