
The Hyper/UML Approach for Feature Based Software
Design

Ilka Philippow
Technical University of

Ilmenau
PSF 100565

98684 Ilmenau, Germany

Ilka.Philippow@tu-
ilmenau.de

Matthias Riebisch
Technical University of

Ilmenau
PSF 100565

98684 Ilmenau, Germany

Matthias.
Riebisch@tu-imenau.de

Kai Boellert
Bonndata (Zurich Group)

Riehler Str. 90
50668 Koeln Germany

Kai.Boellert@zurich.com

ABSTRACT
The market requests complex but adaptable software sys-
tems. There are different concepts to meet this demand,
for example software reusability, component-based develop-
ment, agile processes, generative programming and domain
analysis. For similar products within a domain product lines
are a very promising approach for shortening development
time and cost and for improving quality. Software prod-
uct lines combine some of the mentioned concepts. In a
software product line there is a common core for all tar-
get products and variable components for building differ-
ent products. Using product lines new products are created
based on customer-ordered features. The feature driven de-
velopment of software systems becomes more and more im-
portant not only for product lines but also for the better
maintainability of software systems. Implementing variabil-
ity by composition enables a partly automated development
process of products. Extending composition techniques from
source code to models and design support large systems and
their evolution. In this paper the concept of Hyper/UML as
UML extension is introduced for supporting the feature ori-
ented separation of concerns, the feature driven design and
the feature based automated generation of software prod-
ucts. The concept is based on the Hyperspace approach.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided
software engineering (CASE)—Object-oriented design meth-
ods; D.2.13 [Reusable Software]: Domain engineering

General Terms
Design, Languages

Keywords
Hyperspace, Software Product Lines, Feature Model

1. INTRODUCTION
The market requests software systems that are changeable
faster and in a more complex way than ever before. For soft-
ware development, aspects of the reuse of proven former de-
velopment models, decisions and components become more
and more important for cost reduction, lowering of develop-
ment time and increasing software quality. Reuse can be ap-
plied at different levels. It is possible to reuse source code as
modules, functions, classes and components, or on a higher
abstraction level by reusing of former developed artifacts of
analysis, design, and architecture. Frameworks and product
lines allow the reuse of both source code and models of anal-
ysis and design. Software product lines can be considered as
a fundamental approach that is connected with expectations
for enhancements in reusability, adaptability, flexibility, and
control of complexity and performance of software and soft-
ware development processes.

By software product lines a ”group of similar products” out
of a specific problem domain is described that are based
on a system family architecture offering a ”common set of
core assets” [2] and variable parts. Variable parts can be
changed or adapted to satisfy the special needs of an appli-
cation. The customer orders a particular product within the
family based on a set of offered product features. Each fea-
ture represents a set of requirements. The production can
be carried out automatically by applying generative tech-
niques and product generators. In figure 1 the relations
between the development process of product lines and prod-
uct line based application development is shown, represented
by a so-called six pack model [7] of activities of the itera-
tive processes. The development of product lines (see the
upper three blocks) and the development of an application
(see the lower three blocks) are connected by the families
requirements model, the families reference architecture and
the implemented components. The left block of activities
consists of domain engineering activities that lead to feature
models based on old and new occurring requirements. The
requirements serve for the definition of the core and variable
parts. The activities of the middle block are focused on the
modeling of core and variable elements and the architecture
design. The left activity block implements and tests in the
necessary system components.

In product line’s commonality and variability can be repre-

• Scoping

• Feature Modeling

• UML Family

Modeling

· Feature Selection

· Scoping

· Configuration

• Hyper/ UML models

with Variability

• Component

Composition

• Composition of

Design Elements

• Configuration

• Configurable

Components

• Automated Test

Cases

• Composition of

Modules (Hyper/J)

• Composition of

Test Case

Family Requirements

Model

Reference Architecture Components

Domain Analysis Domain Design Domain Implementation

Application Analysis Application Design Application Implementation

Figure 1: Relations between the Development of Product Lines and Product Line Based Application Devel-
opment

sented by feature models [4]. A feature represents a prop-
erty of a product that is valuable for a customer to distinct
between products of the product line. A feature model con-
tains all features covered by a product line with their de-
pendencies and their variability. Based on feature models
costumers configure their wanted system and order it. For
the feature based automated product generation the com-
ponents of a product line have to be developed in a special
way. Variable components must be able to match a variety
of interfaces. The prefabricated components can be com-
bined to build new products quickly. This is an advantage
compared to adaptation techniques of other product line
approaches. The Hyperspace approach is suitable for de-
composing and composing of software not only by classes
and objects, but simultaneously by features. By now its
implementation is carried out for Java (Hyper/J). In this
paper the Hyperspace approach is integrated into the Uni-
fied Modeling Language (UML). The defined and introduced
so called Hyper/UML enables composing and decomposing
of components on model level to support the development
and evolution of larger product lines and their architectures.
It enables the automated generation of software products.

2. THE HYPER SPACE APPROACH
The Hyperspace Approach [6] is a generic technique focussed
on the decomposition and composing of software systems
according to concerns. The Hyperspace separates and de-
scribes system properties using a multidimensional matrix
(figure 2). Relevant concerns of a concern type that are iden-
tified during system decomposition have to be represented
using a particular dimension. For object oriented software
systems, especially for feature For object oriented software
systems, especially for feature driven software development
typically two dimensions are relevant: for classes and for fea-
tures. Features are relevant for concerns because the later

composition is driven by features.

Classes

Features

Feature 1

Feature 2

Feature 3

Feature 4

Class A Class B Class C Class D

d

e

f

g

Hyperslice

Figure 2: Hyperspace matrix with two relevant di-
mensions, classes and features

Simultaneously, the system decomposition leads to different
elements: classes, use cases, activities, actors, etc. There are
primitive atomic and compound elements. All elements are
mapped onto exactly one point in the Hyperspace matrix
according to which concern a unit belongs to.

The Hyperspace is used for representing relevant concerns
in dimensions and for the assignment of system elements to
concerns. Elements from one or more concerns can be encap-
sulated in the so called Hyperslice. One Hyperslice contains
all elements relevant for one concern, even if they are scat-
tered over a system. In Hyper/J the implementation of Hy-
perslices is done by using packages. A very important prop-
erty of Hyperslices is their declarative completeness. This is
a prerequisite for the mutual independence of Hyperslices by

avoiding of overlapping elements. Independence of Hyper-
slices is necessary to carry out composition automatically.
To compose a particular system by concerns - in fact fea-
tures - all Hyperslices related to the relevant concerns are
composed. The composing process leads to a Hypermodule
as a simple union of the Hyperslices. For an automated
composition integration relationships and rules for a partic-
ular Hypermodule have to be determined by the developer.
For the simplest case that all elements are orthogonal spe-
cial integration relations are not needed. To get executable
Hypermodules all declarations have to be implemented.

3. HYPER/UML FOR FEATURE ORIENTED
AND MODEL-BASED SYSTEM DEVEL-
OPMENT

In the past, the Hyperspace approach was implemented for
the configuration Hypermodules on code level in Java by
Hyper/J [6]. For designing and modelling commonality and
variability on model level, for instance using the UML the
Hyper/UML was developed in [1] and is introduced in this
paper.

Hyper/UML was designed as part of a methodology for
model-based development of product lines called Alexan-
dria [12]. In this methodology, feature models are applied
for structuring user requirements and for designating com-
mon and variable features of a product line. Common fea-
tures will be implemented in the product line’s common
core, whereas variable features will become variable com-
ponents. By applying the Hyperspace approach here, these
components are built as Hyperslices by applying features
as concerns. This way, 1-to-1 relationship of features and
components are facilitated and fine-grained components are
built. A component is modelled using Hyper/UML and is
implemented in Hyper/J.

For developing a family of software systems, a product line
provides a feature model, a set of design model components
- in fact Hyperslices built using Hyper/UML - and imple-
mentation components based on these design components
- in fact Hyper/J Hyperslices. A new software system is
derived

• by selecting a valid set of variable features

• by composing the relevant Hyper/UML Hyperslices to
a design model of the system

• by composing the relevant Hyper/J Hyperslices to the
system’s code

Any additions of design model and code are put into an
additional Hyperslice that is composed with the other Hy-
perslices. As a consequence, the additions are separated and
therefore they are usable for later systems as well.

3.1 Hyper/UML Description
Hyper/UML is an application of the Hyperspace approach
for the UML 1.4. It is an extension of the UML. At the
beginning there is an empty package (figure 3, part (a))
that has to be filled step by step. Therefore it is necessary
to answer the following questions:

<<profile>>

Hyper/UML

UMLUML_OCL

<<import>> <<import>>

a) b)
HyperspaceUnit

PrimitiveUnit CompoundUni

ActionState* Actor*…

Class* Model*…
*from UML

Meta Model

Figure 3: Hyper/UML Profile and Elements

• Elements: Which are the relevant elements? Are the
elements primitive (atomic) or compound ones?

• Hyperspace: How is a hyperspace to be described?
Which is the way to assign elements to the identified
concerns and dimensions?

• Hyperslice: How is a Hyperslice to be encapsulated
and described? Which is the way to declare elements
that occur in different slices?

• Hypermodule: How is a Hypermodule to be described?
Which are the necessary integration relations?

• Integration relations: What integration relations are
expected? Are there pre and post conditions?

• Tools: Which are the requirements for the automated
application of integration rules during hypermodule
configuration?

The assignment of UML elements as subclasses of the ab-
stract Hyper/UML meta model class HyperspaceUnit is shown
in figure 3 Teil b. The concepts of the Hyperspace are
mapped onto nearly all model elements of the UML accord-
ing to [5] with the exception of special elements for com-
ponent and deployment diagrams. A distinction between
atomic (PrimitveUnit) and composed (CompoundUnit) ele-
ments is necessary for a later composition. Atomic elements
are actors, associations, attributes, operations, signals, and
states. The other elements like activity graph, class, inter-
face, state machine and use case, are composed and contain
different elements.

The integration and description of Hyperspace and Hyper-
slice is presented in Figure 4. A Hyperspace is associated
with dimensions that are separated into concerns. Addition-
ally a meta class NoneConcern belongs to each dimension.
Hyper/UML elements are indirect instances of Hyperspace-
Units and assigned to Hyperspace concerns. If there is no
assignment for an element in accordance to the Hyperspace
approach it is by default assigned to NoneConcern.

Hyperslices can be defined as a subtype of UML package (fig-
ure 4) for encapsulation of model elements assigned to one
concern. There is no part-of relation between Hyperslices
because they must be independent from each other. Hyper-
slices can be composed to a particular software system by
using a Hypermodule.

noneConcern *

dimension

1

1 hyperspace

dimension *

HyperspaceUnit

ModelElement

(from UML)

HyperSpace Dimension AbstractConcern

Concern NoneConcern

concern *

Package

(from UML)

Hyperslice

Figure 4: Hyperspace and Hyperslice within the Hy-
per/UML

A Hypermodule is considered as a special Hyperslice with
associated integration relationships for the composition (fig-
ure 5). Integration relationships determine the steps and
conditions for the composition of Hypermodules. The here
explained integration relationships are based on those that
exist in Hyper/J and the experience and recognized necessi-
ties achieved during a case study project. The case study (80
use cases, 300 classes) and the integration relationships are
described in detail in [1]. The case study covers the most
frequent integration situations. For the future, additional
integration relationships are planned, e.g. for runtime vari-
ability. For the here introduced Hyper/UML defined four
relationships were defined:

• Merge: This is the main integration relationship. It
serves for the composing of all semantic identical el-
ements. The very simple basic principle is to bring
together different elements and to merge identical ele-
ments.

• Summary : This relationship is applied for determining
of the return parameter in case of operation merging.

• Order : This relationship serves for the determination
of sequences for active elements like operations or use
cases in order to merge these elements of the same
type.

• Override: This relationship enables the complete re-
placement of one element by another element of the
same type.

Like all complex modelling processes Hyper/UML modelling
has to be supported by a tool that is expected to offer the
following services and functions:

• Hyperspace Management : Based on the user definition
the Hyperspace with its dimension and the mapping of
elements to Hyperspace points has to be established.

• Hyperslice Modelling : This function is similar to UML
modelling and easy to realize. A new notation is not
necessary, only some extensions for validating the Hy-
perslice correctness.

hypermodule 1

* relationship {ordered}

Hyperslice Hypermodul

e

AbstractConcernconcern

1….*

IntegrationRelationship

Merge

Relationship

Summary

Relationship

Order

Relationship

Override

Relationship

Figure 5: Hyperspace and Hyperslice within the Hy-
per/UML

• Hypermodule Management : For the management of
Hypermodules system developers have to provide a spec-
ification. The specification must include the concerns
that have to be integrated and the concrete integration
relations. The specification can be carried out textual.
A special graphical notation is not really relevant. But
for maintenance reasons it is necessary that the tool
presents the integration results graphical by UML dia-
grams. The problem is the realization of an algorithm
for the automated re-ordering of elements in diagrams.

3.2 Integration Relations
Integration Relations enable the automated composition of
Hypermoduls in accordance to the desired concerns. All el-
ements assigned directly or indirectly to one of the relevant
concerns have to be included in the composition. The com-
position process leads to aHypermodel package in two steps:

• Relevant Hyperslices and their elements are copied into
the Hypermodul

• Integration relations are processed.

In [1] a complete semantic description for Hyper/UML and
the four integration relationships is specified for all appli-
cable UML diagram elements. They are described by rules
and rule related operations using UML’s Object Constraint
Language OCL. The OCL description is necessary for an
automated check of various pre and post conditions. For
staying in the limited scope for this paper it is possible to
introduce only the general ideas and results.

The main integration relation merge is focussed on partic-
ular elements that have to be combined. Elements have to
be distinguished between target elements (targetUnit) that
contain the merging result and source elements (figure 6).
Copies of source elements have to be removed from the Hy-
permodule after merging. For the merging of elements there
are determined basic rules:

• target elements must not be source elements at the
same time

• only elements from the same type can be merged

• the Hyper/UML element types that can be merged are:
actor, attribute, class, Hyperslice, interface, model,
operation, package, use case, stateMachine, simpleState,
compositeState, signal, activityGraph, actionState, sub-
activityState

IntegrationRelation-

ship

Merge

Relationship

HyperspaceUnit

sourceUnit 1…*

targetUnit

1

Figure 6: Integration Relation Merge

The fundamental principle of merging is that corresponding
equal elements have to be merged to one collecting element.
For special elements this basic rule can be replaced by a
concrete override relationship. Hyper/UML defines for all
admitted elements rules, pre and post conditions for their
merging. As an example in this paper the pre and post
conditions for the merging of classes are given in Table 1.
Attributes, Associations and Operations have to be handled
connected with the particular classes because they are ref-
erenced by other model elements indirectly through their
class. The very interesting aspect is how to merge attribute
values, associations and other dependencies and constraints.
The relevant pre and post conditions are summarized in Ta-
ble 2. During the merging process several exceptions can
arise that lead to an interrupt of the automated merging
process.

The merging of operations can be combined and extended
with an integration relation order and/or summary. Tar-
get operations contain implementations if they exist. The
sequence of the implementation execution is undefined or
has to be determined by a Hypermodule order integration
relation. The sequence of implementations influences the
parameter. The first implementation gets the parameter
from the operation call. Every next implementation gets
parameter left from the previous implementation. The last
implementation returns values to the initiator of an opera-
tion call. To modify this management of return parameters
a Hypermodule summary integration relation can be used.

The integration relation order is associated with the ele-
ments that have to be ordered (figure 7). By the order rela-
tion the merging sequence for elements can be determined.

HyperspaceUnit
IntegrationRelationshi

p

Order

Relationship

{ordered} Unit

2...*

Figure 7: Integration Relation Order

The Hyper/UML element types that can be ordered usefully
and semantically relevant are operations, use cases, activi-
tyGraphs, activiStates and subactivityStates. The semantic
of the integration relation order differs depending on the
element type:

• If operations have been merged than the target op-
eration processed the implemented operations in the
order given by the relation order rule.

Table 1: Merging of Classes

Pre Condition:

• all Classes have to be either abstract or
concrete

• the target class inherits from parents of
source classes, sub classes of source classes
inherit from the target class

Post Condition:

• the target class has received in addition to
their own all attributes, associations and
operations of the involved source elements

• redundant inheritance relations must be
removed

• the target class receives in addition state
machines of source classes, state machines
have to be merged, too

• instances of classes in UML can be found
in interaction and activity diagrams; after
merging these instances belong to the par-
ent class

Exceptions:

• in UML cycles in inheritance relations are
not allowed

• using attributes and associations in sub-
classes with the same name like in the par-
ent class is not allowed in UML

• interface classes do not contain implemen-
tations of all needed operations

• If use cases have been merged than the target use case
description contains sequence related order in accor-
dance with the relation order rule. The use case order
has to be transferred to involved activity graphs.

• If activity graphs have been merged the sequences of
graphs within the target activity graph corresponds
with the relation order rule.

• If activity states have been merged the single states
are connected in the given order.

In case of operation merging the integration relation sum-
mary describes the way how to determine the parameter
value that have to be returned to the initiator of an opera-
tion call (figure 8). SummarizedUnit contains the operation
with the merged implementations. SummaryFunction real-
izes the return value. The merged operations and summa-
ryFunction are concrete operations with return parameter
of same type. SummaryFunction is a class function. It pos-
sesses an in- parameter of identical type with the relevant
return parameter. Type identity has to be proved consid-
ering all integration relations of the Hypermodule by using

Table 2: Merging of Attributes, Associations and
Operations

Pre Condition:

• an attribute of the same name must not
possess different values

• attributes must be of the same type

• all attributes have to be either class at-
tributes or instance attributes with the
same changeability, initial value, and mul-
tiplicity

• all operations must be either abstract or
concrete and of the same concurrency

• all operations have to be either class opera-
tions or instance operations with the same
structure and default values of their pa-
rameter list

• associations must refer to identically types

• all associations have to be general, or they
define an aggregation or a composition

• for merging of associations navigate abil-
ity changeability, multiplicity must be the
same

Post Condition:

• target elements keep names if there are
given names

• element related constrains from source el-
ements are assigned to the target element

• target elements depend on model elements
that contain source elements, source ele-
ments are associated to target elements;
all redundant dependencies and associa-
tion have to be removed

• target attributes get either the given initial
values from the source or none value

• parameters of target operations get either
given default values or none values

• the complete result of operation merging
depends on predefined and processed order
and summary relationship

• operation calls are directed to target oper-
ations; in a running system on model level
an operation call takes place as message
interaction between objects or as entry-,
exit-action, state- or transition activity in
state machines within the target state ma-
chines

Exceptions:

• constraint related inconsistencies lead to
an interrupt, for an automated inconsis-
tency check

• constrains have to be formulated using a
formal language like OCL

OCL description. The summarizedUnit collects the return
values of the merged implementations and calls the summa-
ryFunction. SummaryFunction generates the return value
that is returned to the operation initiator by the summa-
rizedUnit.

The merging of operations can be combined and extended
with an integration relation order and/or summary. Tar-
get operations contain implementations if they exist. The
sequence of the implementation execution is undefined or
has to be determined by a Hypermodule order integration
relation. The sequence of implementations influences the
parameter. The first implementation gets the parameter
from the operation call. Every next implementation gets
parameter left from the previous implementation. The last
implementation returns values to the initiator of an opera-
tion call. To modify this management of return parameters
a Hypermodule summary integration relation can be used.

IntegrationRelationship

Summary

Relationship

HyperspaceUnitsummarizedUnit

1

summaryFunction 1

Figure 8: Summary Relationship

The integration relation override (Fig. 9) is used for the
complete replacement of one element by another element
of the same type. The integration relation override is as-
sociated with the element that has to be replaced (over-
riddenUnit) and the substituting element (overridingUnit).
Substituted elements are removed from the Hypermodul. A
later reference by another integration relation leads to an
exception interrupt.Replacement requires the keeping of in-
terface behaviour. Hyper/UML provides OCL constrains for
checking the consistency within the Hypermodule for the fol-
lowing elements: operation, actionState, subactivity state.
Table 3 shows the pre and post conditions for operations
and activity states.

Hyper/UML elements and integration relationships are de-
fined for all UML diagram elements except those of imple-
mentation and deployment diagrams. According to the Hy-
perspace approach

3.3 Feature-driven Software Composition Us-
ing Hyper/UML

Feature driven software development is provided for the de-
velopment of reusable and adaptable software systems, e.g.
product lines. For modeling variability, feature models can
be used that are proposed for the method FeatuRSEB in
[3]. Feature models represent common and variable parts
by using mandatory (full circle), optional (empty circle) and
alternative features. There are slightly modified in [8] to
overcome some ambiguities. Fig. 10 shows partly an easy
understandable feature model for a library product line. In
addition to the common alternatives it is allowed to select

Table 3: Overriding of Operations and Activity
Graphs

Operations

Pre Condition:
Both, the substituting and the substituted oper-
ation are defined in an identical class. They pos-
sess same names and parameter lists with type
identical parameters and equal default values,
if given. Both operations are either abstract or
concrete.
Post Condition:
The particular element is completely replaced.
Operation calls are directed to the replaced op-
eration

Activity Graphs

Pre Condition:
Both, the substituting and the substituted ac-
tivity state belong to an identical activity graph.
This condition has to be proved considering all
integration relations of the Hypermodule by us-
ing OCL description.
Post Condition:
The activity state is replaced completely includ-
ing of its entry action, constrains and prop-
erty values. Object flows and transitions are
not changed. Redundant transitions have to be
removed. Transition related monitoring condi-
tions are AND connected. If there are inconsis-
tencies between conditions the replacing process
is interrupted. This has to be proved and carried
out using OCL notations.

one or more features of a feature set, described by the given
multiplicities similar to UML. That way a better accordance
to an architecture description using UML class diagrams and
the improvement of traceability can be achieved. The usual
exclude and/or require relationships enable the expression
of further dependencies very similar to UML-stereotypes.
Inheritance relations like in UML class diagrams are visi-
ble. Simultaneously the feature derived classes have to be
determined. During the next step the two dimensional Hy-
perspace for features and classes and the Hyperslices have
to be established. In Fig. 11 a part of the Hyperspace is
shown for the feature combination: library core and over-
due notification. Each Hyperslice has to be fully declared
and encapsulated within a package For notification by both,
email and mail, the three Hypersclices Core, Notification by
mail and e mail must be merged in a Hypermodule (see Fig.
12.).

If applying the FeatuRSB method, variation points like over-
due notification are demonstrated by additionally use case
models. As shown in the Fig. 13, overdue books can be
modeled with two use-cases bound to a variation point. De-

IntegrationRelationship

Override

Relationship HyperspaceUnit
overriddenUnit

1
overridingUnit 1

Figure 9: Integration Relation Override

Audio

Book

Library

Overdue NotificationManage ReadersManage Books Loan Books

Free

Overdu

e

Item

Journal Book

Identification e-mail

Chipcard Biometric

Sensor

Reader Data

Employer

BirthdayAddress

Name

1
1..

*

2..*

mail

<<requires>>

<<requires>>

Figure 10: Feature Model of a Library Product Line

pending on the selected features, the use-cases will be part
of the derived application or will be left out. Use Cases are
often refined by activity and state models.

Class

Feature

Library_Core Notification

by mail
Notification

by email

mail

E_mail

Free

overdue

Figure 11: Library Product Line Hyperspace
(partly)

In case there are readers e.g. the teaching staff of an uni-
versity that do not have to pay at once a fee for overdoing
the feature Free Overdue have to be included. This case is
shown in Fig. 14 as example for the merging of state ma-
chines. Teaching staff members can keep books so long as
possible if there is no contradicting order by other readers.

The design of feature-oriented components supports the com-
position of similar software products. The Hyper/UML can
be integrated into the feature oriented method FetuRSEB
[3]. For this case the briefly described development process
is characterized by the following steps:

Library Overdue

Notification

sendLetter()

Person
address:String

town:String

getAddress()

mail

Library

checkReturnDates
()

Book_Loan

Overdue

Notification

Person

name:String

commonCore

universityLibrary

Library Overdue

Notification

sendEmail()

Person
email:String

getEmail()

email

Library

checkReturnDates()

Book_Loan

Overdue

Notification

sendLetter()

sendEmail()

Person

name:String
address:String

town:String
email:String
getAddress()

getEmail()

Figure 13: Merging of the Class Diagrams for Overdue Notification (partly)

check for

overdue books

notification of

overdue books

email

notification

mail

notification

<<uses>>

{notification type}

Figure 12: Use Case Modeling of Variability

• structuring and modeling commonality and variability
using feature models

• decomposing and describing of features by use cases

• derivation of classes, use case refinement by activity or
state models

• establishing of Hyperspace and Hypersclices

• defining the architecture and design of Hyperslices

• tracing and connecting of relationships and dependen-
cies, and determining of integration dependencies for
a later Hpermodule specification

• implementing in an object oriented programming lan-
guage

The architecture consists of Hyperslice packages; each Hy-
perslice contains exactly use cases, activity and state models
and classes of one feature. On model level the Hypermodule
specification in Hyper/UML syntax. If Java is used, Hy-
per/J can be applied for Hyperslice implementation and the
later composition of Hypermodules.

The development of architecture and design is performed
in separate processes the Hyperspace and for each Hyper-
slice. The Hyperslice development processes are coordinated
by the Hyperspace process especially concerning visibility,
name space and interfaces.

4. RELATED WORKS
There are several works concerning Generative Program-
ming and Aspect Oriented Programming, that are very sim-
ilar to the Hyperspace approach used here. However, in
our assessments the Hyperspace approach has offered better
combination possibilities of components and less dependen-
cies between them. The GenVoca approach [16] has shown
stronger limitations for larger systems and for program com-
prehension. Most of the works in that area are based on pro-
gramming languages, without the use of model-based com-
position. We found only the works of Clarke [11] with sim-
ilar proposals, however without capabilities for composing
behavioral models. There are some methodologies for the
development of Software Product Lines, i.e. Bosch’s method
[20] and KobrA [15]. However, they implement variability
using code abstractions and design patterns. As a conse-
quence, the implementation of new software systems is to
be done manually. Feature models are used by newer ap-

Loan

universityLibrary

lent
init()

release()

returnBook()

lost()

commonCore

Loan

achi

ved

noticed1

noticed2

noticed3

returnBook()

return

Book()

warnOverdue1st()

warnOverdue2n

d()

warnOverdue3rd

lent noticed0

warnOverdue1st()

noticed1

order()

lent
init()

release(

)

returnBook

()

lost()

Loan

achived

noticed1

noticed2

noticed3

returnBook()

returnBook()

warnOverdue2n

d()

warnOverdue3

rd()

achived

returnBook()

noticed0

order() warnOverdue1st()

freeOverdueNotice

Figure 14: Merging of the state diagrams for including Free Overdue Notice concerning the class Loan

proaches than FODA, i.e. FORM [13] and FOPLE [14].
However, the definition of views and categories there is weak,
the distinction between the different views and categories is
not strong enough for an industrial application of the ap-
proach. Therefore, we developed a new definition of Feature
models and extended it by a formal language for feature de-
pendencies [19]. Mutual influences of features are subject of
works about Feature Interaction, e.g. [17]. These methods
have to be used to solve dependencies between features be-
fore Separation of Concerns is applicable. These methods
provide an important addition to the work described here.
Component architectures with pluggable components, e.g.
according to the Eclipse approach, provide promising ideas
for implementing variability for software product lines. Cur-
rently, there is a lack of methodical support for model-based
development of larger systems. However, for the future this
plug-in components constitute a very important issue, simi-
lar to the ideas of the Model-Driven Architecture MDA [18].

5. CONCLUSION
This paper has introduced the integration of the Hyper-
space approach to UML for the feature driven decomposition
and composition of similar software products. For apply-
ing the Hyperspace approach on model level, Hyper/UML
was developed and explained in this paper. By Hyper/UML
the Hyperspace concept is mapped onto UML and provides
an UML extension especially for the development of prod-
uct lines. By implementing variability using composition
a higher degree of automation of product development is
possible, compared to other implementation techniques. To
enable tool support and automation, models and relations
are partly defined by the Object Constraint Language OCL.

The approach has been applied in two case studies, described
in detail in [1] and [10]. In the results it has been shown that
the approach is very suitable for medium size product lines
(e.g. 18.000 ELOC for about 42 features). In the case stud-

ies for Hypermodule specification on model level a self made
tool has been used that passes the specification to the Hy-
per/J tool for composing Hyperslices to executable systems.
Improved tool support on model level remains future work
that can only be solved by or in cooperation with commer-
cial tool provider.

A further aspect of interest is the testing of composed sys-
tems. Founded by the German Research Foundation DFG
current research is focused on the automatic, model based
test case generation. Test cases are composed similar to
models and source code by using the Hyperspace approach.

6. REFERENCES
[1] Boellert, K.: Object-Oriented Development of

Software Product Lines for Serial Production of
Software Systems (in German: Objektorientierte
Entwicklung von Software-Produktlinien zur
Serienfertigung von Software-Systemen). Doctoral
Thesis. Ilmenau Technical University, Ilmenau,
Germany. (2002)

[2] Clement, P.; Northrop, L.: A framework for software
product line practice, version 2.7. (1999)

[3] Griss, M., Favaro, J., d’Allesandro, M.: Integrating
Feature Modeling with RSEB. Hewlett-Packard.
(1998)

[4] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson,
A.: Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report
CMU/SEI-90-TR-021, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, USA. (1990)

[5] OMG: Object Management Group. Unified Modeling
Language Specification, Version 1.4. (2001)

[6] Ossher, H.; Tarr, P. Multi-Dimensional Separation of
Concern and the Hyperspace Approach. In Software

Architectures and Component Technology. Kap. 10.
Kluwer Academic Publishers (2001)

[7] Philippow, I.; Streitferdt, D.; Riebisch, M.:
Reengineering of Architectures for Product Lines.
European Conference on Object Oriented
Programming (ECOOP 2003) Workshop on Modelling
Variability of Object Oriented Product Line,
Darmstadt (2003)

[8] Riebisch, M., Bllert, K., Streitferdt, D., Philippow, I.:
Extending Feature Diagrams with UML Multiplicities.
6th World Conference on Integrated Design & Process
Technology (IDPT2002), Pasadena, CA, USA; June
23 - 28, 2002. Society for Design and Process Science,
Session 4, 1-7 (2002)

[9] Tarr, P., Ossher, H.: Hyper/J User and Installation
Manual. In: Multi-Dimensional separation of
Concerns: Software Engineering using Hyperspaces.
www.research.ibm.com/hyperspace/ (2001)

[10] Halle, M.: Case Study for Developing Reusable
Components in Software Product Lines (in German:
Fallstudie zur Entwicklung wiederverwendbarer
Komponenten im Rahmen von
Software-Produktlinien). Diploma Thesis. Ilmenau
Technical University, Ilmenau, Germany (2001)

[11] Clarke, Siobhan: Extending standard UML with
model composition semantics. in Science of Computer
Programming, Volume 44, Issue 1, pp. 71-100. Elsevier
Science, July 2002.

[12] Riebisch, Matthias: Evolution and Composition of
Software Systems - Software Product Lines as a
Contribution to Flexibility and Longevity (in German:
Evolution und Komposition von Softwaresystemen -
Software-Produktlinien als Beitrag zu Flexibilitt und
Langlebigkeit). Habilitation thesis. Ilmenau Technical
University, Ilmenau, Germany (2003). Submitted.

[13] Kang, K., Kim, S., Lee, J., Kim, K., Shin E. and Huh,
M.: FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures, Annals of
Software Engineering, 5, 1998, pp. 143-168.

[14] Kang, K.C.; Lee, K.; Lee, J.: FOPLE - Feature
Oriented Product Line Software Engineering:
Principles and Guidelines. Pohang University of
Science and Technology, 2002.

[15] Atkinson, C., et al.: Component-based product line
engineering with UML. Addison Wesley, 2002.

[16] Batory, Don und Bart J. Geraci, Bart J.: Composition
Validation and Subjectivity in GenVoca Generators.
IEEE Transactions on Software Engineering (23)(2),
Seiten 67-82 (February 1997).

[17] Calder, M.; Kolberg, M.; Magill, M.H.;
Reiff-Marganiec, S.: Feature Interaction A Critical
Review and Considered Forecast. Elsevier: Computer
Networks, Volume 41/1, 2003. S. 115-141

[18] OMG Model Driven Architecture. Object
Management Group. http://www.omg.org/mda/

[19] Riebisch, Matthias: Towards a More Precise
Definition of Feature Models. In: M. Riebisch, J. O.
Coplien, D, Streitferdt (Eds.): Modelling Variability
for Object-Oriented Product Lines. BookOnDemand
Publ. Co., Norderstedt, 2003. pp. 64-76.

[20] Bosch, Jan : Design and Use of software architectures
- adopting and evolving approach. Addison-Wesley,
2000.

