
ABSTRACT
This paper shows a way to derive test cases for system level
black-box-testing from the specification models already elabo-
rated in the requirements analysis phase.

The basis for this process is the UML (Unified Modelling Lan-
guage) use case model. It provides a good way to describe both
the interaction with the user and the system behavior. 

The concept of a text template driven structure editor is pre-
sented. Such an editor can be used to construct a formalised use
case description in a user-friendly way.

According to the principles of the – already known – statistical
usage testing, which aims at a statement about the fitness of the
system for the intended purpose, the most likely usage scenarios
are chosen as test cases.

It is shown how the Marcov property of the system description
can be preserved in the case of data dependent system behav-
iour.

Keywords: statistical usage testing, usage based testing, be-
haviour specification,  use case, UML, Marcov chain

INTRODUCTION
Extensive and efficient testing is very important to ensure soft-
ware quality. In many projects the costs for testing represent
25-50% of the overall project costs. It can be said that testing is
not a very favoured task. The first step to reduce the effort for
testing is to use testing tools that execute tests automatically.
But the necessary test cases are usually created manually re-
quiring the tester to think about the usage and the behaviour of
the system, a task he or another person has already done in the
requirements analysis phase of the software development.

This doubled work can be avoided when the test cases for
black-box-testing are derive from the use case models and the
class models. These models are available as products of the re-
quirements analysis phase of the software development1 [1] 

During the development of a software system there are other
kinds of testing that have to be carried out. Usually, these tests
examine just parts of the system and take internal details into
account or they are intended to find the location of errors.
These tests are outside the scope of this paper because the test
cases for these tests can not be derived from specification mod-
els alone. 

Taking the specification models as the basis for tests has the
positive side effect that more attention is paid to keep the
models complete and up-to-date. Another advantage is that
testing can start in very early phases of the development process
which is important for incremental development and allows to

1We choose UML (Unified Modelling Language) for (object-
oriented) system modelling because UML is widely used.

shorten the time to delivery. Furthermore the software quality is
raised because the system is tested with respect to the explicitly
stated user requirements.

Statistical Usage Testing

The basis for creating test cases in statistical usage testing is a
usage model. A usage model is like a state machine, i.e. it is a
directed usage graph consisting of states and transitions, with
the extension that every state transition is attributed with the
probability that this transition will be traversed when the system
is in the state from which the transition arc starts. Hence for
every state the probabilities of outgoing transitions sum up to
one. Every transition can be related to an event (possibly with
parameters) which triggers that transition. 

A transition with an associated event may also be related to a
guard condition. This means that the transition is only per-
formed if the condition is fulfilled by the event parameter
value(s).  

There are three approaches to assign transition probabilities. In
the uninformed approach all exit arcs of a state have the same
probability. The informed approach uses sample user event se-
quences captured from a prototype or a prior version of the sys-
tem to calculate suitable probabilities. The intended approach
allows to model hypothetic users or to shift the test focus to
certain states or transitions.

The Marcov property states that all transition probabilities de-
pend only on the actual state and are independent of the history.
This means that they must be fixed numbers. A system with this
property is called a Marcov chain, for which some valuable
analytical descriptions can be concluded.[2]

One such description is the usage distribution stating the
steady-state probability for every state, i.e. the expected appear-
ance rate of that state. Since each state is associated with some
part of the actual software, the usage distribution shows which
parts of the software get the most attention from the test cases. 

Other important descriptions are the expected test case length
and the number of test cases that are necessary to verify the re-
quired reliability of the system. [2] [3] 

The idea of generating usage models for statistical testing from
use cases is outlined in [4]. We extend this approach by allow-
ing non-deterministic system behaviour and by handling guards
that depend on system data state. This enables to apply statisti-
cal usage based testing to a wider range of systems.

System Specification with UML

The requirements analysis phase yields at least two models to
describe the planned system from the user perspective:

1. the use case model to describe the system behaviour [5]

2. the domain class model to describe which kind of real-life
objects are represented in the system and what of their at-
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tributes, operations and relations (i.e. links) to other objects
are relevant for the intended purpose of the system.[1]

This distinction between dynamic and static aspects in the sys-
tem description is carried over to the notion of state. The overall
state of a system is made up of the execution state which tells
what step of a use case is currently being executed and of the
data state which tells what data are stored in the system. The
data state is made up of the system data state which is persistent
between use case executions and the use case data state which
is local to the executed use case and hence transient.

The UML standard defines only a very top-level structure to de-
scribe use cases which allows only to define use cases as named
entities with a textual description. It's common to write use case
descriptions in a slightly more structured form, e.g. in tabular or
tree form.[6] Because the leave entries in these structures are
still plain text they are textual use case descriptions.

EXAMPLE: Parking ticket vendor machine
In this chapter a small example is introduced that will be used
to demonstrate the application of our method. It describes a
vending machine situated on a parking place. A person who
wants to park his car there must buy a parking ticket for the
planned parking time from this machine. We give UML specifi-
cation models for this machine as the starting point of the proc-
ess.

Figure 1: Use case overview

USE CASE Buy Parking Ticket

Brief
Description

This use case allows a customer to buy a
parking ticket. Payment is done by inserting
coins.

Precondition System is ready. The coin buffer is empty.

Postcondition The customer has received a parking ticket.
The inserted coins are moved to the safe.
System is ready. The coin buffer is empty.

Exception The transaction is cancelled by the
customer.

Exception
Postcondition

The inserted coins are returned to the
customer.
System is ready. The coin buffer is empty.

Actors Customer

Trigger First coin inserted

Table 1: Tabular use case Description example (part 1)

Main success scenario

1 The Customer inserts coins. After every coin insertion,
the system displays the updated parking end time
according to the amount of inserted money.

2 When the Customer is pleased with the parking end time,
he requests the ticket by pressing the OK-Button. The
System prints the ticket showing start time and end time.
The inserted coins are moved to the safe.

Table 2: Tabular use case description example (part 2)

In Figure 1 there are two user roles with their possible use
cases. The tabular description of the use case “Buy Ticket” is
provided in Table 1 and Table 2. 

Figure 2: Simplified domain class model example

The domain class model shown in Figure 2 contains elements
which are explicitly or implicitly referenced in the textual use
case description.

APPROACH
Figure 3 shows the artefacts (i.e. models, documents, data) that
are used or created in the presented process. It shows the
activities leading from the specification models to the test
protocol. This protocol is the basis for estimating the reliability.
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Figure 3: Process overview
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The presented process consists of the following activities:

1. Refine all use cases – by using the object model - into a
structured form

2. Use the refined use case to
• Derive the usage model

1. Transform structured use cases automatically into
state diagrams

2. Transform state diagrams into a usage graph for
each test range

3. Enhance the usage graph by a set of probability
assignments to get a usage model

• Map descriptive elements in the structured use case to
particular real elements in the system implementation

3. Generate test cases based on the usage model – using the
specified behaviour of (data changing) operations
performed by the system

4. Run the test and evaluate the results

Textual use case descriptions (as used in Table 1 and Table 2)
are well suited for communication with a customer, but they are
not formal enough to be amenable for automatic processing to
generate test cases. Hence they have to be refined. This first
step is further explained in the next chapter.

In these refined use case descriptions, we make use of the UML
domain class model, i.e. elements of the class model may be
referenced in use case descriptions. 

For describing the effect of system actions with respect to the
data state we use pre-conditions and post-conditions. These
conditions may contain constraints about the existence of ob-
jects, about the values of attributes and about the existence of
links between objects. 

An instrumented version of the implemented system is used to
map the descriptive elements (e.g. events, parameters, response)
contained in the use case models to the concrete elements of the
real system (e.g. button clicks, data entry fields, displayed in-
formation). This mapping is the key to automate the test execu-
tion.

To create test cases, at any point in a test scenario the expected
data state of the tested system has to be known. This is done by
keeping the state in an external generic database which is up-
dated according to data changing system behaviour defined in
the structured use case description.

Normally, internal data variables of the implementation of the
system under test are not mapped to elements of the domain
class model, although in some cases this may be helpful to
check pre- and post-conditions on system data state.

In the case of non-deterministic system behaviour, the response
and the system state can not be pre-calculated. It can only be
described by a set of possible states and value constraints.
Hence, the sequence of all test cases can not be created in ad-
vance. Instead every event has to be determined in real-time.
This means that step 3 and 4 of the process are then performed
together.

USE CASE REFINEMENT
The most challenging step during this whole process is the first
one: the refinement of the use cases. The UML meta-model
(which describes the kind of model elements available in UML
models and diagrams) has only a few classes to describe use
case in a formal way. The behaviour of the use case , i.e. the in-

teraction of a system with its environment, can only be de-
scribed in an informal way as plain text.

Figure 4: State chart diagram for "Buy Ticket"

UML allows the behaviour of a use case to be described much
more formally by accompanying diagrams, like sequence dia-
grams, state chart diagrams (e.g. like in Figure 4) or activity
diagrams.  

The informal textual behaviour description cannot be processed
automatically to generate test cases. On the other hand, the
above mentioned more formal UML diagrams are not under-
standable by every domain expert. Thus a combination of both
forms is needed. The result of refining the behavioural informa-
tion of a use case is a semi-formal representation consisting of
the following: 

1. an internal model (usable for automatic processing) – repre-
sented as a set of connected description objects according to
a meta model – which reflects the intended behaviour of the
use case as close as possible and

2. a structured text (for communication with domain experts),
which is connected to the internal model by predefined text
templates.

The refinement is supported by a specialised editor which al-
lows putting together text blocks from the set of available text
templates, causing the internal model to be updated accord-
ingly.

Model elements

The available model elements define the kind of systems that
can be described in a manner, that is detailed enough to gener-
ate meaningful test cases.

We use model elements to describe:

• the pre- and post-conditions that guide the applicability of
the use case,

• the possible sequences of steps
• guard
• loop

• the details of every use case step which are relevant for the
generation of test cases:
• user caused events, e.g.
• data value entry
• selection
• button click

• system response, e.g.
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• display of data values
• display of a selection list
• display of a form

• data changing operations
• create/delete an object
• set/read a data value
• add/remove a link between two objects

• (local) use case variables

There are different kinds of pre- and post-conditions. One kind
describes execution states of the system, e.g. “The system is
ready”. Another kind describes data constraints, like “The coin
buffer is empty”. This form is expressed into OCL, the Object
Constraint Language of the UML. Both kinds of constraints can
be combined (as in the precondition of the example use case).

There is another kind of post-conditions which summarise the
overall effect of a use case by making statements about the sys-
tem reaction (possibly depending on the user stimuli), e.g. “The
inserted coins are returned to the customer”. Constraints of this
kind can be ignored because their information content is already
contained in the use case step descriptions.

Main success scenario

1 (“The customer”{costumer}
  ([id1:](“inserts” “coins” [coin>>insertedCoins])
  ){loop}.
) 
((“After every” “coin insertion”[->id1])
  “the system”{system} “displays”  
  ( (“the amount of inserted money”
       [depositedMoney=insertedCoins -> sum(value)]) 
   “and” 
    (“the updated” “parking end time”[ticket.end])
  ) .
)

2 ((“When the customer is pleased with the parking end
time,”{goal}) 
  “he”{costumer} 
    (“requests the ticket”{goal} ”by pressing” “the OK-
Button”).
)
(“The System”{system} “prints”
   (“the ticket”[ticket] “showing”
    (“start  time”[start] “and” “end time”[end])
  ).
) 
(“The inserted coins”[insertedCoins=buffer.content] 
  “are moved to” “the safe”[safe].) 

Table 3: Refined use case description example (part 2) – (in a
textual debug representation)

An impression of the structure resulting from the refinement is
given in Table 3. It is only one possible representation chosen
with the goal to be very concise while showing the underlying
structure. The used syntax has the following semantics:

• “automatically adapted textual representation for a
description element”

• [ID:](E) – label ID assigned to the following element E

• “R”[->id] – R is a reference to the element  labelled ID
• “T”[X] – name for a variable following its textual

representation T
• “T”[X>>S] – inside a loop: the values that variable x has

in the iterations are accumulated into set S
• [X=OCL_expression ] – derived data element X with value

expressed in OCL
• “T”{Kind} – Kind describes a predefined element following

its textual representation
• “explaining text with no effect on system behaviour” {goal}
• (S){loop} – element S can be executed multiple times

The full XML representation of this structure can be found (to-
gether with the used text templates) under  [7].

Levels of use cases

There are different abstraction levels for identifying and de-
scribing use cases [6]: 

• on the very low, technical interaction level, every button-
click made by a user is described

• on the more abstract semantic level, the events initiated by a
user are more problem-/ task-oriented. These logical events
summarise some related low-level events and hence abstract
away unnecessary details. 

For real-time systems, the interaction level seems quite appro-
priate. For complex data-processing applications the semantic
level is the better alternative.

The parking ticket vendor machine is described with interaction
level use cases.

A system that is better described by semantic level use cases is
the following:

Group date book example: A group date book sys-
tem is used to make appointments for some attendees. For this
reason it has the use case “makeAppointment” where events are
setAttendees(Set<Person>) and showAvailableTimeSlots(dura-
tion, latestDate).

Event parameters and data state

In semantic level use case descriptions of data-processing appli-
cations, events often carry parameters (e.g. input data). The sys-
tem responses may have parameters, too (e.g. the content of the
search result list).

The value of event parameters (e.g. a search parameter or a dis-
play options) can affect the response, i.e. the observable system
reaction. It could only influence the value of response parame-
ters or it could influence which transition is taken. Often a pa-
rameter can also be used to change the system data state. 

There are also parameters that are both data changing and tran-
sition determining. A common example is a parameter that is
used as the unique name for a newly created object (e.g. the
identification code for a new member of the working group).
The transition depends on whether the intended value for the
unique name is already used. 

Even the interaction level use cases for the example parking
ticket vendor machine makes use of parameters in events and
responses. Without parameters, separate event arcs for every
type of coin had to be used, which would make the model more
complex. Another problem is that the allowed coin values are
unspecified in the original use case text. 
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FROM REFINED USE CASES TO STATE
MACHINES

The model elements of a refined use case are transformed into
model elements in a state machine in the following way: 

• Every use case step becomes a state. 
• Every user caused event is transformed into an event in the

state machine with an associated a state transition. 
• Loops are represented by recurring transitions.

FROM STATE MACHINES TO USAGE GRAPHS
State machines and usage graphs are very similar. Hence most
model elements of a state machine can be transformed straight
forward into corresponding elements in the usage graph.

But transition guards depending on data state (i.e. on system
data state or on use case variables) which are valid elements of
UML state diagrams have no direct counter-part in usage graphs
and usage models. That's because data dependent guards would
violate the Marcov property which states that the transition
probability may only depend on the actual execution state and
not on the history of previous states. It's just this history that is
accumulated in the data state.

Handling data dependency by state expansion

Figure 5: data dependent transition guard

Figure 5 is a variation of the state machine in Figure 4. Here the
recursive transition coin(value) has a guard stating that the
amount of inserted money may not exceed a given maximal
amount. This means that the transition guard depends on the
data state, more precisely on the use case variable deposited-
Money.

If some aspects of the data state (i.e. some variables or thereof
derived values) in the state machine has an influence on the
transition probabilities, then the influencing aspects of the data
state are simply translated into execution states in the usage
model by expanding the original states of the state machine.
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Figure 6: Sub-states to model maximal amount

Figure 6 shows the expanding of state Money Inserted into sev-
eral sub-states to model the transition guard depending on the
use case variable depositedMoney. 

In order to avoid a state explosion for the usage graph state ex-

pansion is only applicable for a small number of independent
aspects, each with a small number of possible values.

Handling data dependency by randomising

Figure 7

If we consider that the parking ticket vendor machine has a
money safe with a limited capacity, then the corresponding
variable fillingLevel may have a several thousand possible val-
ues. This means that state expansion is not useful.

One solution were to assign the probability 1/safeCapacity to
the transition that leads to state Safe Full. Because the determi-
nistic behaviour is described by a non-deterministic behaviour,
this approach is called randomising. 

The randomising of transitions is only needed to derive the ana-
lytical description from the resulting Marcov chain. But to gen-
erate the real test cases the original guards are used.

The problem with this approach is that the test cases generated
from this usage model are very long, i.e. they consist of a long
series of events to reach the capacity limit. Hence the test exe-
cution would be very resource intensive.

Handling data dependency by test space partitioning

Another approach is to think of state nodes as being parameter-
ized by the transition influencing aspects of the data state.
Every such independent data aspect constitutes a dimension in a
data state space.

Then every parameterized state represents a family of similar
states which are connected by a family of similar transitions –
with the exception of a few transitions which are different.

A way to evade state explosion is to divide the data state space
into different test regions to separate the many common states
from the few others. This technique is especially useful in the
case of system data state that reflect restricted resources with a
large capacity (as the money safe).

For every limited resource the test space is divided into two as-
pect ranges: 

1. not-full: here the case of reaching the capacity limit is ig-
nored in the usage model. Test cases are chosen so that the
state stays inside the test range

2. nearly-full: the usage model is aware of the capacity limit

The range nearly-full is modeled by a usage graph where the
original state is expanded into a few states below the limit. Test
cases are created from this model. But the test driver has to
bring the system to a state in the nearly-full test range by a se-
quence of use case executions. 

If there are multiple limited resources, combination of the as-
pect ranges have to be used to get the test region. If there are to
many combinations, probabilities for the ranges are used to de-
termine the most likely combinations. 
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Figure 8: Nearly-full range

The usage graph for range not-full is similar to Figure 4. The
usage graph for range nearly-full is shown in Figure 8.

GENERATING TEST CASES
Beginning in the start state the usage model is traversed by se-
lecting transitions according to the specified probabilities. If the
transition has no guard, then values for the associated event pa-
rameters are also chosen randomly.

If the transitions has a parameter dependent guard, the event
parameter values must be chosen so that they fulfill the transi-
tion guard condition. For the common case of comparison op-
erations combined with the application of reversible functions
this is a straightforward task. For more complicated cases,
search strategies could be used.

Interaction between event parameters and data state

Some guard conditions may depend both on event parameters
and on system data state. This transition can be assigned a fixed
probability if there's a way to compute for every data state a set
of event parameters to fulfil the guard.

Example:

In the group date book system one can always find a free time
slot if the event parameter latestDate is set to the far future or
the planned duration is very short. In this case a simple mono-
tone search strategy can be used to find appropriate parameter
values.

CONCLUSION AND FUTURE WORK
We developed and tested the approach based on a variety of ex-
amples.

Refined use cases plays two roles. They allow to communicate
with non-technical personal via the generated textual represen-
tation. On the other hand they are the base for system testing.
Refined use cases could even be used to build some kind of pro-
totype of the planned system. 

We integrated data dependent transition guards into usage based
testing with Marcov chains. This allows to use the analytical
descriptions for a wider range of systems.  

With the partitioning of the data state space into test regions the
efficiency of the test execution could be increased.

For supporting the described process an XML-based tool proto-
type has been developed which is being enhanced incremen-
tally.

In our ongoing research project we plan to make extension in
other relevant directions, like test cases for parallel execution of
use cases.
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