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Abstract: The available evidence in a legacy software 
system, which can help in its understanding and recovery 
of its architecture are not always sufficient. Very often 
the system’s documentation is poor and outdated. One 
may argue that the most reliable resource of information 
is the system’s source code. Nevertheless a significant 
knowledge about the problem domain is required in 
order to facilitate the extraction of the system’s useful 
architectural information.  

In this approach feature modeling is introduced as an 
additional step in a system’s architectural recovery 
process. Feature modeling structures the system’s 
functionality and supports reverse engineering by 
detecting the relations between source code elements and 
requirements. Tracing these relations may lead to a 
better understanding of the program’s behavior and the 
recovery of various architectural elements. In this way, 
by providing a mapping between source code and 
features, the system’s feature model supports program 
comprehension and architectural recovery.  

The approach is developed as first part of a migration 
methodology towards a component-based architecture of 
legacy systems. Recovered information about features 
and architecture is collected in a repository to enable a 
refactoring as next step. The approach is currently 
applied in a large project for reengineering of an 
industrial Image Processing System.  

Keywords: Feature modeling, software refactoring, 
architectural recovery, program comprehension, design 
recovery, legacy systems, reengineering, reverse 
engineering, traceability 

1 Introduction 
Due to the rapid development of the software technology 
during the last decades and the increased demand for 
software products, a large number of software systems 
has been developed. Many of them have a long life cycle 
and contain a lot of company “know-how”. On the other 
hand, the continuously changing needs of the business 
environment require those systems to be always up to 
date with the latest technologies and to evolve during 

their life cycle. Evolving often means refactoring or 
migrating to a new approach, for example component 
based systems or product lines. However, to succeed in 
such a step, a full understanding of the software system 
is required leading to the need for its architecture and 
design decisions to be recovered. 

Due to the long life cycle of these systems, in most of 
the cases it is impossible to keep the same development 
team. A lot of knowledge about the system is lost along 
with the developers. Often the system’s documentation is 
out of date and insufficient. This means that additional 
help is required for the architectural recovery of the 
system from the reverse engineers and the reverse 
engineering methods. Their task is to extract and  
reconstruct the system’s design, based solely on the 
available information.  

It is true that the most reliable information resource for 
the reverse engineer is the system’s source code, 
although this proves most of the times to be insufficient. 
In order to succeed, the reverse engineer needs to 
combine the information gained from the source code 
with knowledge about the problem and programming 
domain. In the case of large systems a well-defined 
recovery process is needed so as to minimize the risk of 
the whole process. 

This paper presents an approach to program 
comprehension and software architecture recovery of 
legacy systems based on the use of feature diagrams and 
feature modeling.  

In general, the approach elaborates the idea of 
combining system domain knowledge and program 
understanding. It uses feature modeling as a way of 
expressing domain knowledge when at the same time 
bridges between system experts, users and reverse 
engineers. Finally, it serves as a means of generation and 
verification of hypotheses. 

This approach defines an architecture recovery process 
initiated at the Feature Modeling level. In this respect, 
Feature Diagrams provide an orientation for the 
establishment of architectural element hypotheses. A 
mechanism for the verification of those hypotheses 



based on cross-references is presented, along with 
different types of feature models, respectively 
corresponding to design and decisions objectives.  

A case study taken from an ongoing industrial project 
illustrates the applicability of this new technique.  

2 State of the art 
The presented approach is based on several software 
engineering methodologies, both in the field of forward 
and reverse engineering.  

2.1 Program comprehension 
Most of program comprehension methodologies are 
based on source code analysis. Program understanding 
and problem domain knowledge are connected for the 
first time in [Brooks et al. 1983]. More precisely, this 
paper presents the establishment of a top-down 
hypothesis, according to which, program comprehension 
leads to the construction of a mental model for 
successive knowledge domains. Each of these domains 
consists of objects, properties, relations and operations. 
The succession of domains may include the problem 
domain, the domain of a mathematical model of the 
problem, the algorithm domain, the programming 
language domain, and so on. One must also achieve 
comprehension of the relationships that exist between 
adjacent domains.  

In [Letovsky et al. 1986] the ideas of Brooks are 
elaborated. According to this paper, the task of 
understanding a program is one of uncovering the 
intention “behind” the code. Intentions are described as 
goals. Techniques for realizing goals in a particular 
implementation are called plans. Plans are similar to 
algorithms, but they may involve non-contiguous 
elements and may be combined in ways not usually 
considered for algorithms. For example, two plans 
involving loops may be combined into a solution using a 
single loop implementing two distinctive goals. 

The authors in [Rajlich et al. 1994] take the development 
of top-down program understanding techniques one step 
further. According to their approach, the programmer 
creates a chain of hypotheses along with subsidiary 
hypotheses. These are consequently verified in the code. 
Similar hypotheses are used here. 

These three approaches apply only a top-down 
procedure, thus missing low level dependencies, which 
usually are visible only within source code.  

A recent discussion about the role of domain knowledge 
in program understanding can be found in [Rugaber et al. 
2000]. The author shows how a model of an application's 
domain is able to serve as a supplement to programming-
language-based analysis methods and tools. A domain 

model contains knowledge of domain boundaries, 
terminology and possible architectures. This knowledge 
can help an analyst set expectations for program content. 
Moreover, a domain model can provide information on 
how domain concepts are related. The author has 
described a number of ways for presenting the domain 
knowledge. In this paper, they are extended by feature 
modeling to build a bridge to later architectural 
development. 

2.2 Architecture recovery 
The software architecture represents the problem 
solution on a higher abstraction level than the source 
code, thus reducing the complexity of software systems. 
This makes architecture recovery the most important 
task in reverse engineering. Additionally, a well defined 
process definition, as well as appropriate tool support is 
required.  

The workbench Dali ([Kazman et al. 1997]) helps the 
reverse engineer in extracting, manipulating, and 
interpreting architectural information. Dali defines a 
framework for architecture recovery, a process and the 
needed tool support. The Architecture Tradeoff Analysis 
Method (ATAM) [Kazman et al. 1998b] developed by 
the Software Engineering Institute (SEI) focuses into 
analyzing software systems with respect to specific 
quality attributes. ATAM also provides techniques to 
reconstruct an architecture from a system’s 
implementation. Even if contributing to architecture 
recovery techniques, Dali and ATAM do not exploit 
domain knowledge. 

The authors in [Finnigan et al. 1997] introduce the 
concepts of a reverse engineering environment called 
“software bookshelf” as a means to capture, organize 
and manage information in legacy software systems. 
They distinguish three roles directly involved in the 
construction, population and use of such a bookshelf: the 
builder, the librarian and the patron. From these 
perspectives they describe requirements for the 
bookshelf as well as a generic architecture and a 
prototype implementation. This approach supports re-
documentation of the legacy systems very well, however 
no overview over domain knowledge is provided. This 
has to be added to enable architecture recovery and later 
refactoring. 

Storey in [Storey et al. 1997] presents the reverse 
engineering tool, Rigi. The Rigi system provides two 
contrasting approaches for presenting software structures 
in its graph editor. The first approach displays the 
structures through multiple, individual windows. while 
the second one (Simple Hierarchical Multi-Perspective 
(SHriMP) views) employs fisheye views of nested 
graphs. Rigi is an open environment and could be 



extended in order to further support architecture 
recovery. Extensions of Rigi for a tool-based feature 
oriented architectural recovery could support the 
approach presented here. 

Riva in [Riva et al. 2002] presents an extension of Rigi 
with support for Message Sequence Charts (MSC). This 
paper discusses also the idea of feature oriented reverse 
engineering. However there is no concept for 
presentation of features and for analyzing dependencies 
between relations among features and architectural 
elements. 

2.3 Features and feature modeling 
Feature modeling was introduced originally by the 
Feature-Oriented Domain Analysis (FODA) 
methodology [Kang et al. 1990] for structuring domain 
properties from the customers’ point of view. In 
addition, feature models show relations between 
capabilities and consists of a hierarchy of “contains” and 
“requires” relations between features. Each feature can 
be optional or mandatory for a set of systems within a 
domain. Additional relations between features across the 
hierarchy can be described, i.e. alternatives or mutual 
exclusion. Figure 1 shows an example of a simple 
feature model.  
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Figure 1. Car feature model [Kang et al. 1990] 

In their work [Czarnecki et al. 2000] features are used 
for modeling the commonality and the variability in a 
domain model. Feature diagrams are extended by 
assigning constraints and grouping relations to features. 
In [Riebisch et al. 2002] these relations are extended and 
some ambiguities are removed.  

The ideas of modeling and expressing relations 
presented in FODA are further developed in the Feature-
Oriented Reuse Method (FORM) [Kang et al. 1998]. 
FORM extends FODA to the software design and 
implementation phases and describes how the feature 
model is used to develop domain architectures and 
components for reuse. In FORM the feature space is split 
into different views, depending on the interest one might 
have in system development. However, it is difficult to 
use the FORM feature views because their separation is 
not defined precisely enough. Furthermore, reverse 
engineering needs a more general separation of the 
feature spaces. 

2.4 Architectural modeling 
Architectural modeling represents the framework for 
constructing an application. An architectural model is the 
high-level design of the application. It defines the 
application’s basic building blocks. It also defines the 
basic partitioning and interconnections necessary for 
constructing the application. The architectural model 
serves as a frame for organizing architectural element 
hypotheses during an architecture recovery process.  

Two of the fundamental works on architectural modeling 
are the “4+1 view” model proposed by Kruchten 
[Kruchten et al. 1995] and the “4 views” architectural 
model proposed by Hofmeister, Nord & Soni 
[Hofmeister et al. 2000].  

The “4+1 View” model suggests organizing the 
architectural descriptions in five different categories 
called views: logical view, process view, physical view 
and development view. The fifth view, namely user’s 
view, contains scenarios and use cases and is used for 
defining requirements and for validating the previous 
four. The model separates static and dynamic aspects of 
a software architecture. The solutions to functional 
requirements are concerned mainly in the logical view. 
The process view focuses on dynamic aspects of the 
model and also describing runtime behavior. The 
physical view shows the solutions primarily to non-
functional requirements and maps software to hardware. 
The development view focuses on the actual software 
module organization and on the software development 
environment. It also focuses on requirements related to 
the ease of development, software management, reuse or 
commonality, and to the constraints imposed by the 
toolset or the programming language. The “4+1 views” 
architectural model has become very popular during the 
last decade, especially for new development. 

The “4 views” architectural model also proposes 
separate descriptions of the different architectural parts. 
The four views presented are: conceptual view, module 
view, execution view and code view. The conceptual 
view describes the system in terms of its major design 
elements and the relations between them. The module 
view presents the decomposition of the system and the 
partitioning of modules into layers. The code view is the 
organization of the source code into object code, 
libraries and binaries, then in turn into versions files and 
directories. The mapping from software to hardware and 
distribution of the software components is the task of the 
execution view.  

Both models have their advantages and disadvantages 
with the “4 views” architectural model addressing the 
case of “mixed” software systems: build on both object 
and non-object oriented technology, in a more efficient 



way. ”Mixed” software systems are the common case in 
software legacy systems. For this reason further in this 
paper, the “4 views” model is used as the basic 
architectural model in the architecture recovery process. 

3 New approach 
The new approach presented in this paper elaborates on 
the idea of applying problem domain knowledge to 
program comprehension. It combines top-down and 
bottom-up activities for architectural reconstruction. 

Architectural element hypotheses are generated based on 
domain knowledge, which is presented in a top-down 
view by feature models. The verification of these 
hypotheses is based on bottom-up tracing procedures.  

Finally, feature models are introduced as central modules 
for bridging the gap between requirements and 
architecture. 

The architecture recovery process consists of 4 major 
activities (Figure 2): requirements and domain analysis, 
legacy architecture analysis, architecture recovery by a 
hypotheses-verification procedure, and scenario driven 
dynamic analysis. The hypotheses- verification 
procedure consists of hypotheses establishment and their 
verification. Section 3.3 explains these major activities 
in more detail. Figure 3 will show the whole process at a 
detailed level. 

Requirements and domain analysis

Scenario driven dynamic analysis

Legacy architecture analysis

Architecture recovery

 
Figure 2. - Feature oriented recovery process – major 
activities 

The architecture recovery process provides information 
for a later architectural refactoring. Therefore both an 
architectural description with different views and test 
cases are elaborated here. 

3.1 Design Objectives and Design Decisions 
feature models 

According to [Kuusela et al. 2000] two types of 
requirements are involved in the life cycle of software 
systems: design objectives and design decisions. Both of 
these should be taken into consideration for the 
architecture recovery process. This approach achieves 
this through splitting the features of the system in two 

spaces and through establishing the corresponding 
feature models. 

All properties of the system related to the functional 
requirements are called Design Objectives features. They 
are presented within a Design Objectives feature model 
(Figure 6), similar to the one described by FODA and 
Czarnecki and Eisenecker. The features are presented in 
a tree structure with “decomposed-to” and “requires” 
relations. Additional relations across the hierarchy could 
be of the type “excludes”. As a result of the domain 
analysis each feature can be mandatory or optional. A 
concrete software system in that domain corresponds to a 
set of the model’s features. 

The design decisions reflect the solution domain of the 
requirements analysis and capture the intension “behind” 
the designers’ decisions. They may be presented with a 
Design Decisions feature model (Figure 7). The nodes in 
the hierarchy represent solutions. They may be 
structures, design patterns, third party components or 
architectural decisions.  

While the Design Objectives feature model describes the 
problem space, its Decisions counterpart describes the 
solution space. 

3.2 Architectural model 
Architecture recovery requires an appropriate 
architectural model as a bases for the resulting work. As 
already mentioned, this approach uses the “4 views” 
architectural model as a base model for the recovered 
software architecture. Focus is placed mainly upon the 
conceptual, module and code views. The execution view 
is not yet considered and will be part of future work. The 
conceptual and the module views could be split into 
several layers to conform to the complexity of the 
software systems.  

Separating a system into views embodies a significant 
and crucial part of the work. However this activity 
follows the principles of conventional architectural 
design as described for example together with the “4 
views” model [Hofmeister et al. 2000].  

3.3 Feature oriented architecture recovery 
process  

Figure 3 shows the whole recovery process as an UML 
activity diagram with a distinction between three levels 
of development: requirements, architecture, and 
implementation. It shows the sequence of activities for 
collecting architectural information in an iterative 
manner. The major activities contributing to the 
architectural description are “Static architectural 
description” and “Dynamic architectural description”. 
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Figure 3.  - Feature oriented architecture recovery process - activity diagram 

3.3.1 Requirements and domain analysis 
In this step both the requirements of the domain and the 
requirements of the legacy system are analyzed. The 
usual activities of domain analysis and requirements 
analysis are applied:  

- study of documents, forms, and guidelines 

- interviews with users 

- interviews with experts for user support and the 
system’s maintenance. 

The step results in a Design Objectives feature model 
and a refined requirements description. In the feature 
model, at this stage a distinction between mandatory and 



optional features is not yet considered. While the 
requirements are not yet verified by a code analysis, this 
model serves as a stock for later hypotheses. If possible, 
the feature hierarchy is established similar to a well-
structured functional decomposition of the system’s 
architecture, thus easing the hypotheses definition. 

The requirements are refined by the use of case 
descriptions and scenarios. These are later used during 
the hypothesis assessment for verification. Finally, the 
assessed results are used for further refinement both of 
behavioral description and test cases. Requirements and 
Design Objectives feature model are contained in a 
repository with references between them. 

3.3.2 Legacy architecture analysis 
The architecture analysis begins with the studying of 
existing documents describing the legacy system’s 
architecture. The documents are studied with comparison 
to requirements derived from the previous step. 
Knowledge about the domain’s reference architectures of 
the and design patterns is included in the analysis 
process as a later source of hypotheses. During later 
hypothesis’ verification possibly outdated information is 
identified. 

The results of this step are collected in a Design 
Decisions feature model. Similar to Design Objectives 
this feature model serves as a hypothesis stock for 
architectural and design elements. It is stored in the 
repository, together with links to the referenced 
documents. 

Both Design Objectives and Design Decisions feature 
models are created iteratively over several steps. After 
each step the feature models are refined according to the 
remarks of the system experts (users, developers and 
problem domain experts). According to the progress of 
refinement both feature models become complete more 
and more. 

3.3.3 Hypothesis-Verification Procedure 
This step performs an incremental recovery of the 
system’s architecture through establishment and 
verification hypotheses. A hypothesis describes a 
supposed relationship among a feature and an 
architectural element. At this stage architectural elements 
can be of different types, for example component, 
interface, class, method, subsystem or communication 
protocol element. The hypotheses are collected in cross-
reference tables (Tables 2 and 3) with references to 
elements in the architectural description and to source 
code. The legacy source code is analyzed in a 
conventional way: data structures, functional structures 
and the control flow between modules serve as a source 
of information. The results of the analysis refine a 

hypothesis through architectural diagrams. If possible 
the scenarios are also refined. 

The assessment of a hypothesis may lead to new 
hypotheses, which in turn are added to the cross-
reference tables and which are adding elements to the 
architectural description. A hypothesis verification can 
fail due to an invalid feature-architectural element 
relationship or because of a non-present feature. In the 
latter case the feature is marked as “not implemented in 
the particular system”, the architectural element is 
unlinked.  

After completing this step all verified hypotheses are 
marked inside the cross-reference tables. The description 
of the architectural elements is refined and composed to 
a more complete architectural description. The 
description is built in the 4 architectural views. 

3.3.4 Scenario driven dynamic analysis 
In order to complete the architectural description, the 
scenarios from the first step are applied to analyze the 
dynamic aspects of the system and to complete the code 
analysis. In this stage, existing tools and methods are 
used: coverage analyzers and profilers. The analysis is 
used to refine or to correct the conceptual, module or 
code view of the architecture. Furthermore, concurrency 
aspects may be described and execution scenarios may 
be further refined.  

The gathered system’s behavioral information may be 
used for the construction of test cases, needed for later 
refactoring. Test cases usually contain behavioral 
information at a higher level of detail than a 
requirements specification. 

3.3.5 “Features to Architectural Elements” cross 
referencing 

The verification of the established architectural elements 
hypotheses is performed though tracing their relations to 
features (Figures 4 and 5). The verification is performed 
using two cross reference tables: „Features to 
Architectural Elements“ (Table 2) and „Architectural 
Elements to Features“ (Table 3). The rows of the first 
table are assigned to features while its columns carry 
architectural hypotheses. The crossed cells list the 
architectural elements related to the feature in the row. 
The second table lists all features in columns and 
architectural elements hypotheses in rows. A 
confirmation mark is given in each crossed cell where 
the feature in the column corresponds to the architectural 
element in the row. 
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Figure 4 – Tracing the relations features to architectural 
elements  

Features

Confirmation of concerns
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Figure 5 – Tracing the relations architectural hypotheses 
to features 

The results of cross-referencing represents the 
verification of architectural elements hypotheses. If there 
is no feature corresponding to a hypothesis then the 
hypothesis is considered to be false. A feature without 
any corresponding architectural element could be 
obsolete, invalid or optional. If none of these is true, then 
this feature should enforce the establishment of a new, 
apparently missing hypothesis.  

The cross-reference tables also show the relations 
between features and code. From a more abstract view, 
they serve bridging the semantic gap between the 
system’s requirements and implementation. In this way 
they give support for navigation during source code 
analysis. References from features to source code or 
configuration is shown by cell entries of the “Feature to 
Architectural Elements” table.  

For cases where a more detailed source code analysis is 
required, features are traced to source code in the code 
map. 

3.3.6 „Features to Source Code“ cross referencing 
The „Features to Source Code“ cross-reference table, 
called code map, describes the relations between features 
and concerned source code elements (such as global 
variables, constants, procedures, functions or classes) as 
well as the locations of these elements in the source 
code. The table rows list the features of interest while the 
columns list the concerned source code elements. The 
crossed cells contain pointers to source code locations. 
Table 1 presents an example code map with file names 
and line numbers as locations. A tool can provide these 
references as hyperlinks to ease navigation. 

By references at this level a more detailed tracing is 
possible. In more complex systems a global code map 
would become very large. Therefore, the code maps are 
built only for those parts, where results of former 
references are not satisfying, and where a more detailed 
analysis is required. For a reverse engineer, code maps 

enable navigation and in-depth exploration of critical 
source code portions. Depending on the source code’s 
quality this is necessary only for 5 .. 10 % of a system. 

4 Tools 
The information gathered during reverse engineering 
shall later be used for refactoring an analyzed system 
towards a component-based architecture. Therefore, 
recovered architectural facts are collected in a repository 
together with requirements and feature models. While 
performing the described hypothesize and verification 
activities in an iterative manner, the information in the 
repository has to completed step by step. Tools have to 
support developers in merging and unifying the puzzle of 
discovered facts and in getting an overview. For the 
activities of the described approach, tools have to fulfill 
the following requirements: 

• To provide a graphical representation for 
architectural models using UML 

• To offer reverse engineering facilities, 
producing UML models out of source code 

• To be capable of handling incomplete and 
inconsistent information 

• To analyze models for completeness and 
consistency 

• To manage references (i.e. hyperlinks) between 
model elements 

• To maintain hypotheses in cross-reference 
tables, with hyperlinks to model elements and 
with attributes for the verification status 

• Possibility of notes for every item 

• To offer manipulating functions for models 
similar to those of refactoring tools, i.e. [Boger 
et al. 2002] 

• To support fuzzy search for comparison and 
navigation, for example by a keyword search 

Currently, there are no tools available fulfilling these 
requirements. However, there are some CASE tools in 
the market with rich configuration possibilities like 
MetaCASE tools, or with an open plug-in interface, i.e. 
the ArgoUML successor Poseidon [Poseidon]. 

Currently, the approach is supported by a configuration 
of several tools and products. Relational databases are 
used for maintaining cross-reference lists. They are 
connected to drawing tools and editors via tool interfaces 
and XML. For feature modeling the tool AmiEddi 
[AmiEddi] is used, which was extended by an XML 
interface. 



Table 1. Code map, the „Features to Source Code“ cross reference table 
Source code element 

Feature 
Variable A Procedure B Class M Type Z 

Feature 1 Impl_1.cpp / L15/ impl_5.h/ L120/  Impl_3.cpp /L15,L36/ 
Feature 2  impl_3.cpp /L55/ impl_1.h/L10,L70/ Impl_1.h/L45/ 
Feature N Impl_2.cpp / L70/   Impl_1.h/L15,L25/ 

Table 2. Code map, the „Features to Source Code“ cross reference table 
Source code element 

Feature 
Variable A Procedure B Class M Type Z 

Feature 1 Impl_1.cpp / L15/ impl_5.h/ L120/  Impl_3.cpp /L15,L36/ 
Feature 2  impl_3.cpp /L55/ impl_1.h/L10,L70/ Impl_1.h/L45/ 
Feature N Impl_2.cpp / L70/   Impl_1.h/L15,L25/ 

5 Case study 
The feature based architecture recovery method 
presented in this approach was applied for an industrial 
image processing system. The system was built in C and 
C++; newer parts have an object-oriented structure. It 
has evolved to its current state over decades. The paper 
examines a part of the system. Two main subsystems, 
were selected from the original system, called Image 
Provider (IP) and Image Store (IS). The Image Provider 
acts as a gateway between image producing hardware 
and image processing software. The Image Store stores 
images and provides them on request for further 
processing. Due to the development history the 
functionality of both subsystems is partly overlapping.  

5.1 Feature model of the studied system 
Initially, a system’s feature model was constructed 
following the described approach. The Design 
Objectives feature model (see Fig 6) was built using 
various requirements documents and with support of 
product managers of earlier versions. The establishment 
of the Design Decisions feature model (Fig 7) was 
performed with support of the development team using 
various documents about architecture. At this stage, this 
feature model is very similar to the existing structure of 
the source code. 

5.2 Establishment of architectural element 
hypotheses 

This step results in a set of diagrams, which present the 
established architectural elements hypotheses. The 

diagrams are grouped according to the architectural 
model structure.  

In our case, the selected parts of the system do not cover 
architectural elements for all architectural layers. 
Elements concerning the architectural views code view, 
external interfaces view and internal structure view were 
recovered. Explanations and example diagrams are to be 
found in the following subsections. 

5.2.1 Code view 
As defined in the “4 views” model, the code view 
describes the structure and the relations of the source 
code modules. The example (Figure 8) shows an 
assumption about the relations of the packages building 
the Image Store subsystem. It is referenced by the 5th and 
6th row of the cross reference table (Table 2). 

container
util

ctr_util.h

is.h

iscls.h
imgcls.h

hw.h
IS

IS Statistics container check

 
Figure 6. Architectural element hypotheses from Image 
Store Code view – “IS Modules” 

According to the verification result this detail could 
become a part of the architectural model or it could be 
abandoned. 
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Figure 7. Design Objectives feature model diagram for the Image Store subsystem 
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Figure 8. Design Decisions feature model diagram for the Image Store subsystem 

5.2.2 External interfaces view 
Figure 9 gives an example of an hypothesis about the 
Image Store environment and the used communication 
between interfaces. The connection is named “SG”; it is 
referenced by the last row of Table 2. More details about 
the data at this connection are represented by a class 
diagram (Fig 13). 
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HW IPC

IVD CG

SG

SG

SG
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Figure 9. Architectural element hypotheses  from 
external interfaces view – “SG Connection” 

5.2.3 Internal structure view 
Figures 10-13 show example diagrams of the established 
architectural hypotheses on modules and their 
dependencies. This could vary from a simple class as a 
more detailed piece of information (Fig 10, referenced 
by Table 2, first row, and Table 3, 7th row) to a class 
hierarchy Storable Items (Fig. 11) as detailed 
information to row 3 of Table 2 and row 4 of Table 3. 
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Figure 10.  - Architectural element hypotheses from 
Internal structure view – “IMG hardware 
communication” 
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+idtag()
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CtrImage

 
Figure 11. - Architectural element hypotheses from 
Internal structure view – “Storable Items" 
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Figure 12. - Architectural element hypotheses from 
Internal structure view –“ Image Containers” 

Fig 12 shows a hypothesis concerning static relations 
between Image Container classes, in this case 
aggregation and composition relationships. All “other” 
information in this diagram like member variables and 
methods are not part of the hypothesis but have been 
added by a code analyzer. 
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Figure 13. - Architectural element hypotheses from 
Internal structure view – “SG Communication” 

The “SG Communication library” feature from the IS 
Design Decisions feature model (Figure 7) is directly 
related to the architecture of the system. For example, all 
components shown in the external interfaces diagram 
(Figure 9) support the SG interface, which implements 

this feature. Another example is visible on the class 
diagram from the internal structure view (Figure 11). 
The “ISStorable” class is a part of the implementation of 
the “Stores Images and attributes” feature from the 
Design Objectives feature model (Figure 6).  

5.3 Cross referencing and hypotheses 
verification 

In this step the architectural elements hypotheses were 
verified and refined. The verification is made using the 
“feature to architectural elements” and “feature to source 
code” cross-references - Tables 2 and 3. 

The tables presented above illustrate some interesting 
cases. The “Visualize images and attributes” feature 
(Table 2, middle row) has no corresponding architectural 
elements, but was established according to a 
requirement.

Table 3. „Features to Architectural Elements“ cross-reference for Image Server 
                    Architecture 

Element 
Feature 

Internal Structure External Interfaces Code Configuration 

Receive images and 
attributes 

IMG Hardware communication, 
SG Communication 

HW Connection IS Modules -IS  Configuration modules 

Retrieve images and 
attributes 

- - IS Modules –IS Configuration modules 

Store images and attributes Storable Items, Image Containers - IS Modules –IS Configuration modules 

Visualizes images and 
attributes 

- - - - 

Provide Statistics IS Statistics - IS Modules –IS 
Statistics 

 

Per image device statistics   IS Modules –IS 
Statistics 

 

Use SG Communication 
interface 

SG Communication SG Connection IS Modules –IS Configuration modules 

Table 4. IS Internal Structure „Architectural Elements to Features“ cross-reference 
            Feature 

Architecture 
Element 

Receive 
images and 
attributes 

Retrieve 
images and 
attributes 

Store images 
and 

attributes 

Provide 
Statistics 

Use SG 
Communicat
ion interface 

Visualizes 
images and 
attributes 

Per image 
device 

statistics 
IS Modules        

Configuration Modules        

SG Connection        

Storable Items        

Image Containers        

SG Communication        

IMG Hardware communication        

Offline analyses        



This feature led to a hypothesis which could be invalid 
or could be an optional feature not implemented by the 
particular system; in this case the third case is valid. The 
“Per image device statistics” feature (Table 3, most right 
column) has no corresponding architectural elements. 
This implies, that a hypothesis might be missing or there 
is a reference to that hypothesis in the concept view. The 
“Offline analyses” hypothesis (Table 3, last row) has no 
corresponding features, which makes it invalid; therefore 
it is abandoned. 

Verification steps are performed for all architectural 
hypotheses. The tools provide analyses for completeness 
and consistency of the established models as well as for 
complete verification of the hypotheses. Every detected 
inconsistency forces a further refinement or adjustment 
of architectural models.  

The final result consists of a set of structured UML 
diagrams, presenting the recovered architecture.  

6 Future work 
Up to now the presented approach mainly deals with the 
analysis and recovery of static software architectures. 
The dynamic aspects of the architecture reconstruction 
are considered as future work. Furthermore, research is 
to be directed to the following areas: 

• Elaboration and more strict representation of 
the presented feature models. 

• Scaling the process for large systems by 
decision support by introducing metrics. 

• Dealing with the cases of exiguous domain 
knowledge. 

• Recovery of the execution view of the 
architecture. 

• Development of a mechanism for the 
maintenance of the collected information during 
the architecture recovery process. 

• Development of supporting tools for the 
automation of cross-reference table 
manipulation as a CASE tool extension . 

7 Conclusions 
The presented architecture recovery approach argues that 
the problem domain knowledge plays a significant role 
in the processes of program understanding and 
architecture recovery. Feature models act as a bridge 
between requirements and architecture. Feature 
modeling is used as a way to express that knowledge in 
an appropriate way. The application of the approach in 
industrial projects showed that feature models provide a 

base for program understanding, an important factor for 
a successful architecture recovery. 

To succeed, an architecture recovery process has to 
consider design objectives as well as design decisions. 
As shown both are expressed using feature models. 

The introduction of the “design objectives” and “design 
decisions” feature diagrams together with cross-
reference tables for collecting hypotheses, enables 
capturing  of more architectural information during the 
recovery process, such as specific design decisions and 
the related architectural elements. By describing it as 
hypotheses, this information is prevented from being 
lost. 

However, the approach described is somewhat restricted 
due to the required manually performed operations. 
Tools support reverse engineers in stepwise verification 
and by providing consistency checks. 

To be successful, an architecture recovery has to 
combine knowledge from different areas of software 
engineering. It requires an integration of knowledge  
derived by requirement engineering, program 
comprehension and reverse engineering along with 
architectural principles. As introduced in this paper, 
feature modeling provides a communication mechanism 
for the exchange of the implicit knowledge spread 
throughout all mentioned areas. 
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