
Using Feature Modeling for Program Comprehension and Software
Architecture Recovery
Ilian Pashov, Matthias Riebisch

Technical University Ilmenau, Max-Planck-Ring 14, P.O. Box 100565

98684 Ilmenau, Germany

{idpashov|matthias.riebisch}@tu-ilmenau.de

Abstract: The available evidence in a legacy software
system, which can help in its understanding and recovery
of its architecture are not always sufficient. Very often
the system’s documentation is poor and outdated. One
may argue that the most reliable resource of information
is the system’s source code. Nevertheless a significant
knowledge about the problem domain is required in
order to facilitate the extraction of the system’s useful
architectural information.

In this approach feature modeling is introduced as an
additional step in a system’s architectural recovery
process. Feature modeling structures the system’s
functionality and supports reverse engineering by
detecting the relations between source code elements and
requirements. Tracing these relations may lead to a
better understanding of the program’s behavior and the
recovery of various architectural elements. In this way,
by providing a mapping between source code and
features, the system’s feature model supports program
comprehension and architectural recovery.

The approach is developed as first part of a migration
methodology towards a component-based architecture of
legacy systems. Recovered information about features
and architecture is collected in a repository to enable a
refactoring as next step. The approach is currently
applied in a large project for reengineering of an
industrial Image Processing System.

Keywords: Feature modeling, software refactoring,
architectural recovery, program comprehension, design
recovery, legacy systems, reengineering, reverse
engineering, traceability

1 Introduction
Due to the rapid development of the software technology
during the last decades and the increased demand for
software products, a large number of software systems
has been developed. Many of them have a long life cycle
and contain a lot of company “know-how”. On the other
hand, the continuously changing needs of the business
environment require those systems to be always up to
date with the latest technologies and to evolve during

their life cycle. Evolving often means refactoring or
migrating to a new approach, for example component
based systems or product lines. However, to succeed in
such a step, a full understanding of the software system
is required leading to the need for its architecture and
design decisions to be recovered.

Due to the long life cycle of these systems, in most of
the cases it is impossible to keep the same development
team. A lot of knowledge about the system is lost along
with the developers. Often the system’s documentation is
out of date and insufficient. This means that additional
help is required for the architectural recovery of the
system from the reverse engineers and the reverse
engineering methods. Their task is to extract and
reconstruct the system’s design, based solely on the
available information.

It is true that the most reliable information resource for
the reverse engineer is the system’s source code,
although this proves most of the times to be insufficient.
In order to succeed, the reverse engineer needs to
combine the information gained from the source code
with knowledge about the problem and programming
domain. In the case of large systems a well-defined
recovery process is needed so as to minimize the risk of
the whole process.

This paper presents an approach to program
comprehension and software architecture recovery of
legacy systems based on the use of feature diagrams and
feature modeling.

In general, the approach elaborates the idea of
combining system domain knowledge and program
understanding. It uses feature modeling as a way of
expressing domain knowledge when at the same time
bridges between system experts, users and reverse
engineers. Finally, it serves as a means of generation and
verification of hypotheses.

This approach defines an architecture recovery process
initiated at the Feature Modeling level. In this respect,
Feature Diagrams provide an orientation for the
establishment of architectural element hypotheses. A
mechanism for the verification of those hypotheses

based on cross-references is presented, along with
different types of feature models, respectively
corresponding to design and decisions objectives.

A case study taken from an ongoing industrial project
illustrates the applicability of this new technique.

2 State of the art
The presented approach is based on several software
engineering methodologies, both in the field of forward
and reverse engineering.

2.1 Program comprehension
Most of program comprehension methodologies are
based on source code analysis. Program understanding
and problem domain knowledge are connected for the
first time in [Brooks et al. 1983]. More precisely, this
paper presents the establishment of a top-down
hypothesis, according to which, program comprehension
leads to the construction of a mental model for
successive knowledge domains. Each of these domains
consists of objects, properties, relations and operations.
The succession of domains may include the problem
domain, the domain of a mathematical model of the
problem, the algorithm domain, the programming
language domain, and so on. One must also achieve
comprehension of the relationships that exist between
adjacent domains.

In [Letovsky et al. 1986] the ideas of Brooks are
elaborated. According to this paper, the task of
understanding a program is one of uncovering the
intention “behind” the code. Intentions are described as
goals. Techniques for realizing goals in a particular
implementation are called plans. Plans are similar to
algorithms, but they may involve non-contiguous
elements and may be combined in ways not usually
considered for algorithms. For example, two plans
involving loops may be combined into a solution using a
single loop implementing two distinctive goals.

The authors in [Rajlich et al. 1994] take the development
of top-down program understanding techniques one step
further. According to their approach, the programmer
creates a chain of hypotheses along with subsidiary
hypotheses. These are consequently verified in the code.
Similar hypotheses are used here.

These three approaches apply only a top-down
procedure, thus missing low level dependencies, which
usually are visible only within source code.

A recent discussion about the role of domain knowledge
in program understanding can be found in [Rugaber et al.
2000]. The author shows how a model of an application's
domain is able to serve as a supplement to programming-
language-based analysis methods and tools. A domain

model contains knowledge of domain boundaries,
terminology and possible architectures. This knowledge
can help an analyst set expectations for program content.
Moreover, a domain model can provide information on
how domain concepts are related. The author has
described a number of ways for presenting the domain
knowledge. In this paper, they are extended by feature
modeling to build a bridge to later architectural
development.

2.2 Architecture recovery
The software architecture represents the problem
solution on a higher abstraction level than the source
code, thus reducing the complexity of software systems.
This makes architecture recovery the most important
task in reverse engineering. Additionally, a well defined
process definition, as well as appropriate tool support is
required.

The workbench Dali ([Kazman et al. 1997]) helps the
reverse engineer in extracting, manipulating, and
interpreting architectural information. Dali defines a
framework for architecture recovery, a process and the
needed tool support. The Architecture Tradeoff Analysis
Method (ATAM) [Kazman et al. 1998b] developed by
the Software Engineering Institute (SEI) focuses into
analyzing software systems with respect to specific
quality attributes. ATAM also provides techniques to
reconstruct an architecture from a system’s
implementation. Even if contributing to architecture
recovery techniques, Dali and ATAM do not exploit
domain knowledge.

The authors in [Finnigan et al. 1997] introduce the
concepts of a reverse engineering environment called
“software bookshelf” as a means to capture, organize
and manage information in legacy software systems.
They distinguish three roles directly involved in the
construction, population and use of such a bookshelf: the
builder, the librarian and the patron. From these
perspectives they describe requirements for the
bookshelf as well as a generic architecture and a
prototype implementation. This approach supports re-
documentation of the legacy systems very well, however
no overview over domain knowledge is provided. This
has to be added to enable architecture recovery and later
refactoring.

Storey in [Storey et al. 1997] presents the reverse
engineering tool, Rigi. The Rigi system provides two
contrasting approaches for presenting software structures
in its graph editor. The first approach displays the
structures through multiple, individual windows. while
the second one (Simple Hierarchical Multi-Perspective
(SHriMP) views) employs fisheye views of nested
graphs. Rigi is an open environment and could be

extended in order to further support architecture
recovery. Extensions of Rigi for a tool-based feature
oriented architectural recovery could support the
approach presented here.

Riva in [Riva et al. 2002] presents an extension of Rigi
with support for Message Sequence Charts (MSC). This
paper discusses also the idea of feature oriented reverse
engineering. However there is no concept for
presentation of features and for analyzing dependencies
between relations among features and architectural
elements.

2.3 Features and feature modeling
Feature modeling was introduced originally by the
Feature-Oriented Domain Analysis (FODA)
methodology [Kang et al. 1990] for structuring domain
properties from the customers’ point of view. In
addition, feature models show relations between
capabilities and consists of a hierarchy of “contains” and
“requires” relations between features. Each feature can
be optional or mandatory for a set of systems within a
domain. Additional relations between features across the
hierarchy can be described, i.e. alternatives or mutual
exclusion. Figure 1 shows an example of a simple
feature model.

CAR

TRANSMISSION HORSEPOWER AIR CONDITIONING

MANUAL AUTOMATIC

Mandatory
features

Optional
feature

Alternative
features

Figure 1. Car feature model [Kang et al. 1990]

In their work [Czarnecki et al. 2000] features are used
for modeling the commonality and the variability in a
domain model. Feature diagrams are extended by
assigning constraints and grouping relations to features.
In [Riebisch et al. 2002] these relations are extended and
some ambiguities are removed.

The ideas of modeling and expressing relations
presented in FODA are further developed in the Feature-
Oriented Reuse Method (FORM) [Kang et al. 1998].
FORM extends FODA to the software design and
implementation phases and describes how the feature
model is used to develop domain architectures and
components for reuse. In FORM the feature space is split
into different views, depending on the interest one might
have in system development. However, it is difficult to
use the FORM feature views because their separation is
not defined precisely enough. Furthermore, reverse
engineering needs a more general separation of the
feature spaces.

2.4 Architectural modeling
Architectural modeling represents the framework for
constructing an application. An architectural model is the
high-level design of the application. It defines the
application’s basic building blocks. It also defines the
basic partitioning and interconnections necessary for
constructing the application. The architectural model
serves as a frame for organizing architectural element
hypotheses during an architecture recovery process.

Two of the fundamental works on architectural modeling
are the “4+1 view” model proposed by Kruchten
[Kruchten et al. 1995] and the “4 views” architectural
model proposed by Hofmeister, Nord & Soni
[Hofmeister et al. 2000].

The “4+1 View” model suggests organizing the
architectural descriptions in five different categories
called views: logical view, process view, physical view
and development view. The fifth view, namely user’s
view, contains scenarios and use cases and is used for
defining requirements and for validating the previous
four. The model separates static and dynamic aspects of
a software architecture. The solutions to functional
requirements are concerned mainly in the logical view.
The process view focuses on dynamic aspects of the
model and also describing runtime behavior. The
physical view shows the solutions primarily to non-
functional requirements and maps software to hardware.
The development view focuses on the actual software
module organization and on the software development
environment. It also focuses on requirements related to
the ease of development, software management, reuse or
commonality, and to the constraints imposed by the
toolset or the programming language. The “4+1 views”
architectural model has become very popular during the
last decade, especially for new development.

The “4 views” architectural model also proposes
separate descriptions of the different architectural parts.
The four views presented are: conceptual view, module
view, execution view and code view. The conceptual
view describes the system in terms of its major design
elements and the relations between them. The module
view presents the decomposition of the system and the
partitioning of modules into layers. The code view is the
organization of the source code into object code,
libraries and binaries, then in turn into versions files and
directories. The mapping from software to hardware and
distribution of the software components is the task of the
execution view.

Both models have their advantages and disadvantages
with the “4 views” architectural model addressing the
case of “mixed” software systems: build on both object
and non-object oriented technology, in a more efficient

way. ”Mixed” software systems are the common case in
software legacy systems. For this reason further in this
paper, the “4 views” model is used as the basic
architectural model in the architecture recovery process.

3 New approach
The new approach presented in this paper elaborates on
the idea of applying problem domain knowledge to
program comprehension. It combines top-down and
bottom-up activities for architectural reconstruction.

Architectural element hypotheses are generated based on
domain knowledge, which is presented in a top-down
view by feature models. The verification of these
hypotheses is based on bottom-up tracing procedures.

Finally, feature models are introduced as central modules
for bridging the gap between requirements and
architecture.

The architecture recovery process consists of 4 major
activities (Figure 2): requirements and domain analysis,
legacy architecture analysis, architecture recovery by a
hypotheses-verification procedure, and scenario driven
dynamic analysis. The hypotheses- verification
procedure consists of hypotheses establishment and their
verification. Section 3.3 explains these major activities
in more detail. Figure 3 will show the whole process at a
detailed level.

Requirements and domain analysis

Scenario driven dynamic analysis

Legacy architecture analysis

Architecture recovery

Figure 2. - Feature oriented recovery process – major
activities

The architecture recovery process provides information
for a later architectural refactoring. Therefore both an
architectural description with different views and test
cases are elaborated here.

3.1 Design Objectives and Design Decisions
feature models

According to [Kuusela et al. 2000] two types of
requirements are involved in the life cycle of software
systems: design objectives and design decisions. Both of
these should be taken into consideration for the
architecture recovery process. This approach achieves
this through splitting the features of the system in two

spaces and through establishing the corresponding
feature models.

All properties of the system related to the functional
requirements are called Design Objectives features. They
are presented within a Design Objectives feature model
(Figure 6), similar to the one described by FODA and
Czarnecki and Eisenecker. The features are presented in
a tree structure with “decomposed-to” and “requires”
relations. Additional relations across the hierarchy could
be of the type “excludes”. As a result of the domain
analysis each feature can be mandatory or optional. A
concrete software system in that domain corresponds to a
set of the model’s features.

The design decisions reflect the solution domain of the
requirements analysis and capture the intension “behind”
the designers’ decisions. They may be presented with a
Design Decisions feature model (Figure 7). The nodes in
the hierarchy represent solutions. They may be
structures, design patterns, third party components or
architectural decisions.

While the Design Objectives feature model describes the
problem space, its Decisions counterpart describes the
solution space.

3.2 Architectural model
Architecture recovery requires an appropriate
architectural model as a bases for the resulting work. As
already mentioned, this approach uses the “4 views”
architectural model as a base model for the recovered
software architecture. Focus is placed mainly upon the
conceptual, module and code views. The execution view
is not yet considered and will be part of future work. The
conceptual and the module views could be split into
several layers to conform to the complexity of the
software systems.

Separating a system into views embodies a significant
and crucial part of the work. However this activity
follows the principles of conventional architectural
design as described for example together with the “4
views” model [Hofmeister et al. 2000].

3.3 Feature oriented architecture recovery
process

Figure 3 shows the whole recovery process as an UML
activity diagram with a distinction between three levels
of development: requirements, architecture, and
implementation. It shows the sequence of activities for
collecting architectural information in an iterative
manner. The major activities contributing to the
architectural description are “Static architectural
description” and “Dynamic architectural description”.

ImplementationArchitectureRequirements

Domain Analysis

Feature model definition

Architecture Analysis

Legacy design document

Requirements recovery

Feature model definition

Scenario description

Recovered scenario

Architecture hypothesis establishment

Source code analysisHypothesis

Hypothesis verification

Static architecture description

[Hypothesis OK]

Behavior analysis

Coverage analysis
Dynamic architecture description

Test case generation
Test case

Design objectives

Design decisions

Feature model

Cross reference
Feature <> Architecture

Refined Scenario

Figure 3. - Feature oriented architecture recovery process - activity diagram

3.3.1 Requirements and domain analysis
In this step both the requirements of the domain and the
requirements of the legacy system are analyzed. The
usual activities of domain analysis and requirements
analysis are applied:

- study of documents, forms, and guidelines

- interviews with users

- interviews with experts for user support and the
system’s maintenance.

The step results in a Design Objectives feature model
and a refined requirements description. In the feature
model, at this stage a distinction between mandatory and

optional features is not yet considered. While the
requirements are not yet verified by a code analysis, this
model serves as a stock for later hypotheses. If possible,
the feature hierarchy is established similar to a well-
structured functional decomposition of the system’s
architecture, thus easing the hypotheses definition.

The requirements are refined by the use of case
descriptions and scenarios. These are later used during
the hypothesis assessment for verification. Finally, the
assessed results are used for further refinement both of
behavioral description and test cases. Requirements and
Design Objectives feature model are contained in a
repository with references between them.

3.3.2 Legacy architecture analysis
The architecture analysis begins with the studying of
existing documents describing the legacy system’s
architecture. The documents are studied with comparison
to requirements derived from the previous step.
Knowledge about the domain’s reference architectures of
the and design patterns is included in the analysis
process as a later source of hypotheses. During later
hypothesis’ verification possibly outdated information is
identified.

The results of this step are collected in a Design
Decisions feature model. Similar to Design Objectives
this feature model serves as a hypothesis stock for
architectural and design elements. It is stored in the
repository, together with links to the referenced
documents.

Both Design Objectives and Design Decisions feature
models are created iteratively over several steps. After
each step the feature models are refined according to the
remarks of the system experts (users, developers and
problem domain experts). According to the progress of
refinement both feature models become complete more
and more.

3.3.3 Hypothesis-Verification Procedure
This step performs an incremental recovery of the
system’s architecture through establishment and
verification hypotheses. A hypothesis describes a
supposed relationship among a feature and an
architectural element. At this stage architectural elements
can be of different types, for example component,
interface, class, method, subsystem or communication
protocol element. The hypotheses are collected in cross-
reference tables (Tables 2 and 3) with references to
elements in the architectural description and to source
code. The legacy source code is analyzed in a
conventional way: data structures, functional structures
and the control flow between modules serve as a source
of information. The results of the analysis refine a

hypothesis through architectural diagrams. If possible
the scenarios are also refined.

The assessment of a hypothesis may lead to new
hypotheses, which in turn are added to the cross-
reference tables and which are adding elements to the
architectural description. A hypothesis verification can
fail due to an invalid feature-architectural element
relationship or because of a non-present feature. In the
latter case the feature is marked as “not implemented in
the particular system”, the architectural element is
unlinked.

After completing this step all verified hypotheses are
marked inside the cross-reference tables. The description
of the architectural elements is refined and composed to
a more complete architectural description. The
description is built in the 4 architectural views.

3.3.4 Scenario driven dynamic analysis
In order to complete the architectural description, the
scenarios from the first step are applied to analyze the
dynamic aspects of the system and to complete the code
analysis. In this stage, existing tools and methods are
used: coverage analyzers and profilers. The analysis is
used to refine or to correct the conceptual, module or
code view of the architecture. Furthermore, concurrency
aspects may be described and execution scenarios may
be further refined.

The gathered system’s behavioral information may be
used for the construction of test cases, needed for later
refactoring. Test cases usually contain behavioral
information at a higher level of detail than a
requirements specification.

3.3.5 “Features to Architectural Elements” cross
referencing

The verification of the established architectural elements
hypotheses is performed though tracing their relations to
features (Figures 4 and 5). The verification is performed
using two cross reference tables: „Features to
Architectural Elements“ (Table 2) and „Architectural
Elements to Features“ (Table 3). The rows of the first
table are assigned to features while its columns carry
architectural hypotheses. The crossed cells list the
architectural elements related to the feature in the row.
The second table lists all features in columns and
architectural elements hypotheses in rows. A
confirmation mark is given in each crossed cell where
the feature in the column corresponds to the architectural
element in the row.

Architecture
elements

Corresponding architecture
hypotheses

Features

Figure 4 – Tracing the relations features to architectural
elements

Features

Confirmation of concerns

Architecture
hypotheses

Figure 5 – Tracing the relations architectural hypotheses
to features

The results of cross-referencing represents the
verification of architectural elements hypotheses. If there
is no feature corresponding to a hypothesis then the
hypothesis is considered to be false. A feature without
any corresponding architectural element could be
obsolete, invalid or optional. If none of these is true, then
this feature should enforce the establishment of a new,
apparently missing hypothesis.

The cross-reference tables also show the relations
between features and code. From a more abstract view,
they serve bridging the semantic gap between the
system’s requirements and implementation. In this way
they give support for navigation during source code
analysis. References from features to source code or
configuration is shown by cell entries of the “Feature to
Architectural Elements” table.

For cases where a more detailed source code analysis is
required, features are traced to source code in the code
map.

3.3.6 „Features to Source Code“ cross referencing
The „Features to Source Code“ cross-reference table,
called code map, describes the relations between features
and concerned source code elements (such as global
variables, constants, procedures, functions or classes) as
well as the locations of these elements in the source
code. The table rows list the features of interest while the
columns list the concerned source code elements. The
crossed cells contain pointers to source code locations.
Table 1 presents an example code map with file names
and line numbers as locations. A tool can provide these
references as hyperlinks to ease navigation.

By references at this level a more detailed tracing is
possible. In more complex systems a global code map
would become very large. Therefore, the code maps are
built only for those parts, where results of former
references are not satisfying, and where a more detailed
analysis is required. For a reverse engineer, code maps

enable navigation and in-depth exploration of critical
source code portions. Depending on the source code’s
quality this is necessary only for 5 .. 10 % of a system.

4 Tools
The information gathered during reverse engineering
shall later be used for refactoring an analyzed system
towards a component-based architecture. Therefore,
recovered architectural facts are collected in a repository
together with requirements and feature models. While
performing the described hypothesize and verification
activities in an iterative manner, the information in the
repository has to completed step by step. Tools have to
support developers in merging and unifying the puzzle of
discovered facts and in getting an overview. For the
activities of the described approach, tools have to fulfill
the following requirements:

• To provide a graphical representation for
architectural models using UML

• To offer reverse engineering facilities,
producing UML models out of source code

• To be capable of handling incomplete and
inconsistent information

• To analyze models for completeness and
consistency

• To manage references (i.e. hyperlinks) between
model elements

• To maintain hypotheses in cross-reference
tables, with hyperlinks to model elements and
with attributes for the verification status

• Possibility of notes for every item

• To offer manipulating functions for models
similar to those of refactoring tools, i.e. [Boger
et al. 2002]

• To support fuzzy search for comparison and
navigation, for example by a keyword search

Currently, there are no tools available fulfilling these
requirements. However, there are some CASE tools in
the market with rich configuration possibilities like
MetaCASE tools, or with an open plug-in interface, i.e.
the ArgoUML successor Poseidon [Poseidon].

Currently, the approach is supported by a configuration
of several tools and products. Relational databases are
used for maintaining cross-reference lists. They are
connected to drawing tools and editors via tool interfaces
and XML. For feature modeling the tool AmiEddi
[AmiEddi] is used, which was extended by an XML
interface.

Table 1. Code map, the „Features to Source Code“ cross reference table
Source code element

Feature
Variable A Procedure B Class M Type Z

Feature 1 Impl_1.cpp / L15/ impl_5.h/ L120/ Impl_3.cpp /L15,L36/
Feature 2 impl_3.cpp /L55/ impl_1.h/L10,L70/ Impl_1.h/L45/
Feature N Impl_2.cpp / L70/ Impl_1.h/L15,L25/

Table 2. Code map, the „Features to Source Code“ cross reference table
Source code element

Feature
Variable A Procedure B Class M Type Z

Feature 1 Impl_1.cpp / L15/ impl_5.h/ L120/ Impl_3.cpp /L15,L36/
Feature 2 impl_3.cpp /L55/ impl_1.h/L10,L70/ Impl_1.h/L45/
Feature N Impl_2.cpp / L70/ Impl_1.h/L15,L25/

5 Case study
The feature based architecture recovery method
presented in this approach was applied for an industrial
image processing system. The system was built in C and
C++; newer parts have an object-oriented structure. It
has evolved to its current state over decades. The paper
examines a part of the system. Two main subsystems,
were selected from the original system, called Image
Provider (IP) and Image Store (IS). The Image Provider
acts as a gateway between image producing hardware
and image processing software. The Image Store stores
images and provides them on request for further
processing. Due to the development history the
functionality of both subsystems is partly overlapping.

5.1 Feature model of the studied system
Initially, a system’s feature model was constructed
following the described approach. The Design
Objectives feature model (see Fig 6) was built using
various requirements documents and with support of
product managers of earlier versions. The establishment
of the Design Decisions feature model (Fig 7) was
performed with support of the development team using
various documents about architecture. At this stage, this
feature model is very similar to the existing structure of
the source code.

5.2 Establishment of architectural element
hypotheses

This step results in a set of diagrams, which present the
established architectural elements hypotheses. The

diagrams are grouped according to the architectural
model structure.

In our case, the selected parts of the system do not cover
architectural elements for all architectural layers.
Elements concerning the architectural views code view,
external interfaces view and internal structure view were
recovered. Explanations and example diagrams are to be
found in the following subsections.

5.2.1 Code view
As defined in the “4 views” model, the code view
describes the structure and the relations of the source
code modules. The example (Figure 8) shows an
assumption about the relations of the packages building
the Image Store subsystem. It is referenced by the 5th and
6th row of the cross reference table (Table 2).

container
util

ctr_util.h

is.h

iscls.h
imgcls.h

hw.h
IS

IS Statistics container check

Figure 6. Architectural element hypotheses from Image
Store Code view – “IS Modules”

According to the verification result this detail could
become a part of the architectural model or it could be
abandoned.

IS

Receive images and
attributes

Retrieve images and
attributes

Store images and
attributes

Visualize images
and attributes

Provide
statistics

Via LAN
connection

Via direct optic link
to image hardware

Short time
store

Long time
store

Support different hardware
devices for storage

Overall
Statistics

Per image device
statistics

Figure 7. Design Objectives feature model diagram for the Image Store subsystem

IS

Portability
Resource

restrictions Stability Flexibility Compatibility

Use OS
abstraction library

Use attribute
abstraction library

Shares computer
with other SW

Recover images
from previous run

Use standard files
for containers

Use SG communication
interface

Figure 8. Design Decisions feature model diagram for the Image Store subsystem

5.2.2 External interfaces view
Figure 9 gives an example of an hypothesis about the
Image Store environment and the used communication
between interfaces. The connection is named “SG”; it is
referenced by the last row of Table 2. More details about
the data at this connection are represented by a class
diagram (Fig 13).

IS

HW IPC

IVD CG

SG

SG

SG

SG

SG

Figure 9. Architectural element hypotheses from
external interfaces view – “SG Connection”

5.2.3 Internal structure view
Figures 10-13 show example diagrams of the established
architectural hypotheses on modules and their
dependencies. This could vary from a simple class as a
more detailed piece of information (Fig 10, referenced
by Table 2, first row, and Table 3, 7th row) to a class
hierarchy Storable Items (Fig. 11) as detailed
information to row 3 of Table 2 and row 4 of Table 3.

+ok()
+read()
+write()
+reset()
+getstat()

ImgHard

Figure 10. - Architectural element hypotheses from
Internal structure view – “IMG hardware
communication”

+size()
+addsize()
+trimsize()
+store()
+restore()

-dbsize : signed int
ISStorable

+strore()
+restore()
+len()

Backattr

+strore()
+restore()
+imgdata()
+imglength()
+device()
+seconds()

Image

+device()
+idtag()
+seconds()
+restore()
+imglength()
+imgdata()

CtrImage

Figure 11. - Architectural element hypotheses from
Internal structure view – “Storable Items"

+source()
+srec()
+uistat()
+icache()
+rqueue()
+istore()
+astore()
+islock()
+isunlock()

-isInc : signed int
-is_assignment : signed int
-overwritten : signed int

SourceDesc

+entries()
+get()
+put()
+maxentries()

-cur_entries : signed int
-max_entries : signed int

RequestQueue

+contain()
+full()
+entries()
+kbytes()
+capacity()
+clear()
+resync()
+reset()
+iwrite()
+iread()
+irecover()
+idelete()

-num_entries : signed long
-num_kbytes : signed int
-is_capacity : signed int

ImageStore

+fileSize()
+read()
+write()
+getrecov()
+remove()
+chown()
+contains()
+full()
+ok()
+dcname()
+entries()
+kbytes()
+bytes()

-fs_free : signed int
-blocksize : signed int
-limit : signed int
-fs_size : signed int
-fs_used : signed int

DataContainer

1

0..1

1

1

1

0..1

1

0..1

Figure 12. - Architectural element hypotheses from
Internal structure view –“ Image Containers”

Fig 12 shows a hypothesis concerning static relations
between Image Container classes, in this case
aggregation and composition relationships. All “other”
information in this diagram like member variables and
methods are not part of the hypothesis but have been
added by a code analyzer.

Satus SG_ADDRESS

+good()
+bad()
+receive()
+send()
+monon()
+monoff()
+overload()
+msg()

-cycletime : unsigned int
SG

+simgid()
+cmd()
+address()
+data()
+para()

-rqdata : void*
-reqpara : signed int

RequestNode

CmdType

1

1

1

1

11

1
1

Figure 13. - Architectural element hypotheses from
Internal structure view – “SG Communication”

The “SG Communication library” feature from the IS
Design Decisions feature model (Figure 7) is directly
related to the architecture of the system. For example, all
components shown in the external interfaces diagram
(Figure 9) support the SG interface, which implements

this feature. Another example is visible on the class
diagram from the internal structure view (Figure 11).
The “ISStorable” class is a part of the implementation of
the “Stores Images and attributes” feature from the
Design Objectives feature model (Figure 6).

5.3 Cross referencing and hypotheses
verification

In this step the architectural elements hypotheses were
verified and refined. The verification is made using the
“feature to architectural elements” and “feature to source
code” cross-references - Tables 2 and 3.

The tables presented above illustrate some interesting
cases. The “Visualize images and attributes” feature
(Table 2, middle row) has no corresponding architectural
elements, but was established according to a
requirement.

Table 3. „Features to Architectural Elements“ cross-reference for Image Server
 Architecture

Element
Feature

Internal Structure External Interfaces Code Configuration

Receive images and
attributes

IMG Hardware communication,
SG Communication

HW Connection IS Modules -IS Configuration modules

Retrieve images and
attributes

- - IS Modules –IS Configuration modules

Store images and attributes Storable Items, Image Containers - IS Modules –IS Configuration modules

Visualizes images and
attributes

- - - -

Provide Statistics IS Statistics - IS Modules –IS
Statistics

Per image device statistics IS Modules –IS
Statistics

Use SG Communication
interface

SG Communication SG Connection IS Modules –IS Configuration modules

Table 4. IS Internal Structure „Architectural Elements to Features“ cross-reference
 Feature

Architecture
Element

Receive
images and
attributes

Retrieve
images and
attributes

Store images
and

attributes

Provide
Statistics

Use SG
Communicat
ion interface

Visualizes
images and
attributes

Per image
device

statistics
IS Modules

Configuration Modules

SG Connection

Storable Items

Image Containers

SG Communication

IMG Hardware communication

Offline analyses

This feature led to a hypothesis which could be invalid
or could be an optional feature not implemented by the
particular system; in this case the third case is valid. The
“Per image device statistics” feature (Table 3, most right
column) has no corresponding architectural elements.
This implies, that a hypothesis might be missing or there
is a reference to that hypothesis in the concept view. The
“Offline analyses” hypothesis (Table 3, last row) has no
corresponding features, which makes it invalid; therefore
it is abandoned.

Verification steps are performed for all architectural
hypotheses. The tools provide analyses for completeness
and consistency of the established models as well as for
complete verification of the hypotheses. Every detected
inconsistency forces a further refinement or adjustment
of architectural models.

The final result consists of a set of structured UML
diagrams, presenting the recovered architecture.

6 Future work
Up to now the presented approach mainly deals with the
analysis and recovery of static software architectures.
The dynamic aspects of the architecture reconstruction
are considered as future work. Furthermore, research is
to be directed to the following areas:

• Elaboration and more strict representation of
the presented feature models.

• Scaling the process for large systems by
decision support by introducing metrics.

• Dealing with the cases of exiguous domain
knowledge.

• Recovery of the execution view of the
architecture.

• Development of a mechanism for the
maintenance of the collected information during
the architecture recovery process.

• Development of supporting tools for the
automation of cross-reference table
manipulation as a CASE tool extension .

7 Conclusions
The presented architecture recovery approach argues that
the problem domain knowledge plays a significant role
in the processes of program understanding and
architecture recovery. Feature models act as a bridge
between requirements and architecture. Feature
modeling is used as a way to express that knowledge in
an appropriate way. The application of the approach in
industrial projects showed that feature models provide a

base for program understanding, an important factor for
a successful architecture recovery.

To succeed, an architecture recovery process has to
consider design objectives as well as design decisions.
As shown both are expressed using feature models.

The introduction of the “design objectives” and “design
decisions” feature diagrams together with cross-
reference tables for collecting hypotheses, enables
capturing of more architectural information during the
recovery process, such as specific design decisions and
the related architectural elements. By describing it as
hypotheses, this information is prevented from being
lost.

However, the approach described is somewhat restricted
due to the required manually performed operations.
Tools support reverse engineers in stepwise verification
and by providing consistency checks.

To be successful, an architecture recovery has to
combine knowledge from different areas of software
engineering. It requires an integration of knowledge
derived by requirement engineering, program
comprehension and reverse engineering along with
architectural principles. As introduced in this paper,
feature modeling provides a communication mechanism
for the exchange of the implicit knowledge spread
throughout all mentioned areas.

8 Acknowledgements
This work is carried out in cooperation with the Postal
Automation division of the Siemens Dematic AG. We
would also like to give our appreciation to Detlef
Streitferdt for the constructive critique about the
approach. We wish to thank Periklis Sochos for his hints
for improving the paper.

9 References
[AmiEddi] AmiEddi 1.3 – Feature Model Editing tool.

Available online at http://www.generative-
programming.org

[Bengtsson et al. 1998] Bengtsson, P., Bosch, J.:
Scenario-Based Software Architecture Reengineering,
Proc. 5th International Conference on Software Reuse
(ICSR5), pp.308-317, IEEE Computer Society Press,
Victoria, B.C, Canada, June 1998.

[Boger et al. 2002] Boger, M.; Fragemann, P.; Sturm, T.:
Refactoring Browser for UML. In: Unland, R. et al.:
Proceedings Netobjectdays 2002, Erfurt, October 6-10,
2002. LNCS. Springer, 2002. available online at:
http://www.netobjectdays.org/pdf/02/papers/node/0376.pdf

[Brooks et al. 1978] Brooks, R.: Using a Behavioral
Theory of Program Comprehension in Software

Engineering, Proc. 3rd Int. Conf. on Software Eng. New
York: IEEE, 1978

[Brooks et al. 1982] Brooks, R.: A Theoretical
Analysis of the Role of Document. in the Comprehension
of Computer Programs. Proc. Conf. on Human Factors in
Computer Systems. New York: ACM, 1982

[Brooks et al. 1983] Brooks, R.: Towards a Theory of
the Comprehension of Computer Programs. Intl. J. Man-
Machine Studies 18, 6 (June 1983)

[Canfora et al. 1994] Canfora, G., De Lucia, A., di
Lucca, G. Fasolino, A.: Recovering the Architectural
Design for Software Comprehension, Proc. IEEE Third
Workshop on Program Comprehension, Washington, DC,
November 1994.

[Clayton et al. 1997] Clayton, R., Rugaber, S., Taylor,
L., & Wills, L.: A Case Study of Domain-based Program
Understanding. 5th Workshop on Program Comprehension,
Dearborn, Michigan, 1997

[Clayton et al. 1998] Clayton, R., Rugaber, S., &
Wills, L.: On the Knowledge Required to Understand a
Program. The Fifth IEEE Working Conference on Reverse
Engineering'98, Honolulu, Hawaii, October 1998

[Corbi et al. 1989] Corbi, T. A.: Program Understanding:
Challenge for the 1990's. IBM Systems J. 28, 1989

[Czarnecki et al. 2000] Czarnecki, K., Eisenecker, U.W.:
Generative Programming. Addison Wesley, Reading, MA,
2000.

[Finnigan et al. 1997] Finnigan, P., Holt, R., Kalas, I.,
Kerr, S., Kontogiannis, K., Müller, H., Mylopoulos, J.,
Perelgut, S., Stanley, M., Wong, K.,.: The Software
Bookshelf, IBM Systems Journal, Vol. 36, No. 4, pp. 564-
593, November 1997.

[Garlan et al. 2000] Garlan, D., Software
Architecture: a Roadmap, The Future of Software
Engineering, ACM Press, pp.91-101, 2000

[Hofmeister et al. 2000] Hofmeister, C., Nord, R., Soni,
D.: Applied Software Architecture. Addison Wesley, 2000.

[Kang et al. 1990] Kang, K., Cohen, S., Hess, J., Novak, W.,
Peterson, A.: Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-021,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, 1990.

[Kang et al. 1998] Kang, K. C., Kim, S., Lee, J., Kim, K.,
Shin, E., Huh. M.: FORM: A feature-oriented reuse method
with domain-specific reference architectures. Annals of
Software Engineering, 5:143--168, 1998

[Kazman et al. 1997] Kazman, R., Carrière, S.: Playing
Detective: Reconstructing Software Architecture from
Available Evidence. Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-97-TR-010/ESC-
TR-97-010

[Kazman et al. 1998a] Kazman, R., Carriere, S. J.: View
Extraction and View Fusion in Architectural

Understanding, Proc. 5th International Conference on
Software Reuse (ICSR5), pp.290-299, IEEE Computer
Society Press, Victoria, B.C, Canada, June 1998.

[Kazman et al. 1998b] Kazman, R., Klein, M., Barbacci,
M., Lipson, H., Longstaff, T., Carriere, S. J.: The
Architecture Tradeoff Analysis Method, Proc. Fourth IEEE
International Conference on Engineering of Complex
Computer Systems (ICECCS98), pp.68-78, Montery, USA,
August 1998.

[Kruchten 1995] Kruchten, P. B.: The 4+1 View Model of
Architecture. IEEE Software, 12(6): 42-50, 1995

[Kuusela et al. 2000] Kuusela, J., Savolainen, J.:
Requirements Engineering for Product Families. ICSE
2000, Proc. 22nd Int. Conf. on Software Eng., Limerick
Ireland. ACM, 2000

[Letovsky et al. 1986] Letovsky, S., Soloway E.:
Delocalized Plans and Program Comprehension. IEEE
Software 3, 3 (May 1986)

[Poseidon] Poseidon for UML - CASE Tool.
Gentleware AG. http://www.gentleware.de/products/

[Rajlich et al. 1994] Rajlich, V., J. Doran, Gudla R.:
Layered Explanations of Software: A Methodology for
Program Comprehension, Third Workshop on Program
Comprehension, WPC'93, Washington, D.C., pp. 46-52,
Nov. 1994

[Riebisch et al. 2002] Riebisch, M., Böllert, K.,
Streitferdt, D., Philippow, I.: Extending Feature Diagrams
with UML Multiplicities. 6th Conference on Integrated
Design & Process Technology, Pasadena, California, USA.
June 23 – 30, 2002

[Riva et al. 2002] Riva, C., Rodriguez, J. V.: Combining
Static and Dynamic Views for architecture reconstruction.
Proc. of the Sixth European Conference on Software
Maintenance and Reengineering, Budapest, March 2002

[Rugaber et al. 2000] Rugaber, S.: The use of domain
knowledge in program understanding. Annals of Software
Engineering, 2000

[Storey et al. 1997] Storey, M. D., Fracchia F.D., Müller H. A.:
Rigi: A Visualization Environment for Reverse
Engineering. Proceedings of the International Conference
on Software Engineering (ICSE'97), Boston, U.S.A., May
17-23, 1997.

[Tilley et al. 1998] Tilley, S. R.: A Reverse-Engineering
Environment Framework. Software Engineering Institute,
Carnegie Mellon University. (CMU/SEI-98-TR-005), 1998

