
Feature-Oriented Development of Software
Product Lines:

Mapping Feature Models to the Architecture

Periklis Sochos, Ilka Philippow, and Matthias Riebisch

Technical University Ilmenau, Process Informatics, Postfach 10 00 565
98684 Ilmenau, Germany

{Periklis.Sochos, Ilka.Philippow, Matthias.Riebisch}@tu-ilmenau.de
http://www.theoinf.tu-ilmenau.de/∼pld

Abstract. Software product lines (PLs) present a solid approach in
large scale reuse. Due to the PLs’ inherit complexity, many PL methods
use the notion of ”features” to support requirements analysis and domain
modelling (e.g. FODA, FORM, FeatuRSEB). Nevertheless, the link be-
tween features and architecture remains weak in all methodologies, with
a large impact on the traceability of high-level concerns in respect to
lower-lever architectural structures. This paper provides an analysis on
the state of the art of feature-oriented PL methodologies from the point
of view of the linkage between feature models and architecture. Based on
the identified shortcomings it introduces an approach to allow a strong
mapping between features and architecture. The approach makes use of
extensions in the feature modelling techniques and adopts plug-in archi-
tectures as a means of mapping feature structures and at the same time
satisfying the demanded PL variability and flexibility.

Keywords: Software product lines, product line methods, feature mod-
elling, separation of concerns, feature-architecture mapping, generative
programming, plug-in architectures.

1 Introduction

Software product lines (PLs) replace the various separately-developed systems
of a domain. Thus PLs embed at least the additive complexity present in each
of these systems, posing a challenge in their development and demanding exten-
sive variability. Additionally, PLs must follow all principles of modern software,
being flexible, extendible and maintainable. In order to keep a balance between
these requirements and virtues, PLs must adhere to a high level of abstraction:
alone the variability and size of PLs impose the use of explicit domain modelling
techniques and the development of a solid architecture. Many PL development
methodologies have established ”features” and ”feature modelling” for this pur-
pose e.g. FODA, FORM, FeatuRSEB.

In the current PL methods, the high level of abstraction obtained by feature
domain analysis is constrained to the simplification and representation of the
PL requirements or as a vague guide for design.

This paper aims to clarify the state of the art feature-oriented PL methods’
insufficiencies in respect to the linkage between feature models and architecture
and to present an approach to ”bridge” the gap between these two artifacts. The
proposed methodology involves the adoption of a modular plug-in architectural
structure in synergy with feature modelling techniques. The method bears the
name ”Feature-Architecture Mapping” (FArM-reads farm).

Section 2 provides a rational for the selection of features as the main abstrac-
tion construct and the importance of a strong mapping between feature mod-
els and architecture. Section 3 illustrates the development of the main feature-
oriented PL methods up to this point. Sections 4 until 7 analyze the previously
identified methodologies from the point of view of the linkage between feature
model and architecture. In section 8 an overview of the development process of
FArM is presented. Finally, sections 9 and 10 provide the conclusions and further
work.

2 Feature Models & Architecture in Software Product
Lines

Software product lines centralize upon the idea of designing and implementing
a family of systems to produce qualitative applications in a domain, promote
large scale reuse and reduce development costs.

2.1 The Role of Features

Achieving these goals in the space of a domain makes the need of preserving a
high level of abstraction even more evident. Based on this rational, the concept
of a feature is introduced.

A formalized definition of a feature in the software field is given in [7]: ”a
logical unit of behavior that is specified by a set of functional and quality require-
ments”. Adding to this, comes the definition of features from [18]: ”A feature
represents an aspect valuable to the customer. . . ”.

Furthermore, features may be structured in feature models. These are hi-
erarchical tree illustrations of features. There exist many variants of feature
modelling conventions (see [7], [11], [21], [22], [24]). A sample feature model of
an IDE (Integrated Development Environment) PL showing the previously men-
tioned conventions, with the multiplicity extension (see [18] and [19]), is given
in figure 1.

Summarizing, features may serve as a means of:

– modelling large domains
– managing the variability of PL products
– encapsulating system requirements
– guiding the PL development
– driving marketing decisions
– future planning
– communication between system stakeholders

Jplug

MVC

Interface

Jav ac

UMLSdi
Guibuilder

11

Mdi

DiagramBuilder

Jav a

PetriNet

Qt

Feature B is mandatory

Feature B is optional

At least a and max imum b features
may be selected from B11 to Bnn

BBAA

BBAA

AA

BB11

a..b
BBnn

Feature A requires feature BBBAA

Feature A excludes feature BBBAA

requires

excludes

Model−Code
Sy ncronization

requires

excludes

Compiler

1..*

Fig. 1. A sample feature model

2.2 The Role of Feature Model & Architecture Mapping

During the design phase of a PL, one needs to identify all important aspects of
the system and based on the imposed quality requirements, to device the main
architectural abstractions and the connections between them.

In order to achieve a long-life, maintainable system, one must adhere to the
rule of separation of concerns i.e. achieve such an architectural structure, where
ideally each architectural component encapsulates exactly one concern. In PLs,
that would ideally be one feature1.

Nowadays, software technologies (e.g. Object-Orientation) make it extremely
difficult to achieve a pure one to one relation between feature models and archi-
tectures [28]. Therefore, it is vital for the PL system to achieve, if not a pure
one to one relation, at least a strong mapping between features and architectural
components.

3 Feature-Oriented Product Line Methods

With the term Feature-Oriented product lines we stress the fact that this paper
is concerned with the PL methods making intensive use of the notion of features
and feature modelling. Looking at the evolution of PL methods in relation to
each other, one could extract the picture shown in figure 2.

Rather than providing a complete reference to all possible variations of the
feature-oriented methodologies, this paper concentrates on those methods using
features as a main artifact in their processes, having a wide industrial acceptance
and providing sufficient documentation.
1 Experience from real life [14] shows that high maintainability may be achieved,

when at least a one-to-many relation between features and architectural components
is present.

RSEB FeatuRSEB HyperFeatuRSEB

FODA FORM

GenVoca

Fig. 2. Development of Feature-Oriented Product Line Methods

The identified methods are FODA (Feature-Oriented Domain Analysis), Fea-
tuRSEB (Featured RSEB), HyperFeatuRSEB (Hyper Featured RSEB), Gen-
Voca and FORM (Feature-Oriented Reuse Method). Note that the RSEB (Reuse-
Driven Software-Engineering Business) [15] method is provided only for com-
pleteness. It is based mainly on use-cases and therefore it is not explicitly ana-
lyzed in this paper.

4 FODA and FORM

FODA is a domain analysis method. It focuses on providing a complete de-
scription of the domain features, paying less attention on the phases of design
and implementation [1]. The feature modelling notation used in FODA does not
include the representation of basic processes in a system’s architecture, e.g. inter-
actions between architectural components implementing features. Furthermore,
FODA lacks a concrete description of the transition from a feature model to an
architecture.

FORM comes as a concretization of the FODA processes. It provides guide-
lines for the creation of the feature model, design and implementation phases. In
[27] FORM’s authors provide a description of these phases. As presented in this
source, FORM performs an analysis of a domain’s features and attempts to pro-
vide a mapping between features and architectural components: ”By designing
each selectable feature as a separate component, applications can be derived eas-
ily from product-line software. If there is difficulty in establishing this relation,
the feature must be refined into specific features so that features can be easily
mapped into architectural components.”

FORM provides no concrete description of the above mentioned process. Fur-
thermore, feature interactions are superficially addressed by FORM. No explicit
support is provided by the method for the construction of an architecture to
conform to the structure of a feature model. FORM’s main focus, as given in
[23], is not providing a clear mapping between the feature model and the archi-
tecture, rather concretizing the FODA processes of design and analysis from a
marketing perspective.

FODA and FORM remain vague on the matter of mapping feature models
to architectural elements. FODA concentrates on the modelling of the domain
concepts and FORM does not place enough focus on describing such a process.

5 FeatuRSEB

FeatuRSEB merges the RSEB and the FODA methods. Its main goal is to
provide a central model for the synchronization of the RSEB processes and at
the same time model the commonality and variability within the RSEB. This is
achieved through the introduction of the feature model.

FeatuRSEB is divided, as most PL methods, into two main processes, namely,
Product Line Engineering and Product Engineering, where the former develops
the PL assets and the latter makes use of them to build PL products.

The Product Line Engineering phase is initiated by storing all requirements
of the product line in a common repository in the form of use-cases. The PL
requirements are also ordered in features on a feature model. Features and use-
cases are linked with traceability links. The PL architecture is derived from
the use-cases following the ”Layers” architectural pattern [8], where each layer
consists of components containing object-oriented classes. Traceability links are
then assigned between the derived classes and their use-cases.

Thus FeatuRSEB performs the mapping between feature models and archi-
tectural elements exclusively through traceability links pointing to use-cases,
which in turn point to classes within the architectural elements.

This way of mapping a feature model to the architecture, although it does
present a step towards the right direction, has a number of disadvantages.
Namely, the number of traceability links in a PL very soon becomes extremely
large. The creation, management and maintenance of the traceability links, even
for a normal sized PL, is an overwhelming task and its resolution is not addressed
by FeatuRSEB.

6 HyperFeatuRSEB

HyperFeatuRSEB combines the Hyperspace and FeatuRSEB methods. It utilizes
Hyperspace techniques to map features to architectural component. Because
of this fact, this section will explore HyperFeatuRSEB in more detail. Before
considering specific aspects of HyperFeatuRSEB, section 6.1 will provide the
needed terminology for the Hyperspace Approach.

6.1 The Hyperspace Approach

The Hyperspace Approach [28] was developed by IBM to achieve a multiple-
separation of concerns. A concern can be anything that is of importance to the
system stakeholders, from requirements to features or implementation details.

The Hyperspace approach allows the definition of a multi-dimensional hyper-
space, where all concerns are included. A hyperslice may encapsulate one of these
concerns, and the combination of many hyperslices through integration relation-
ships yields a product containing all desired concerns, defined as a hypermodule.

These concepts can be easier understood by means of an example throughout
the description of the HyperFeatuRSEB method.

Features

Use−Case Elements
P1: Part 1 of Element A

P2: Part 2 of Element A

P3: Element B

P4: Element C

CC

BB

AA

DD EE FF GG

P1 P2

P3

P4

XX XX

XX

XX

Fig. 3. A two-dimensional hyperspace. A hyperslice is marked with a dashed line and
encapsulates exactly one feature.

6.2 The HyperFeatuRSEB Method

HyperFeatuRSEB [5] identifies the problem of separation of concerns in Fea-
tuRSEB and integrates FeatuRSEB with the Hyperspace approach after provid-
ing a UML extension of this method, the HyperUML [6].

HyperFeatuRSEB’s structure is similar to that of FeatuRSEB. This time Fea-
tuRSEB’s use-cases are broken down to actors, use-cases and activity diagrams.
Each of these use-case elements are assigned to their belonging features and are
ordered in a two-dimensional hyperspace, as shown in figure 3.

The product line engineering derives the PL’s common architecture from the
complete use-case model. Separate processes, coordinated by the PL engineers,
derive the object model for each hyperslice (i.e. feature) from the partial use-
cases within each hyperslice.

Thus, we have one hyperslice (i.e. feature) containing the object model el-
ements belonging to it, which assures a one to one relation between feature
model and architectural elements. The inadequacies of this method are illus-
trated through an example.

Figure 4 shows a partial feature model of a PL made with HyperFeatuRSEB
and the respective hyperslices encapsulating the parts of the architectural ele-
ments for each feature.

As shown in figure 4, if a customer chooses to have an IDE (Integrated De-
velopment Environment) with an Sdi (single document interface), the ”empty”
method GetSelectedText() in the Core hyperslice, marked by the Hyperspace
construct Unimplemented, will be replaced by the ”implemented” GetSelectedText()
method in the Sdi hyperslice. When the customer selects the Mdi (Multi docu-
ment interface) feature, the respective substitution will take place.

As a result, the end product will contain either the implementation of the
Sdi or the Mdi feature.

6.3 HyperFeatuRSEB and the Hyperspace Approach Open Issues

The shortcomings of the methods become evident when a ”non-additive” change
occurs. With the term non-additive, we mean, for example, a change that causes
a method to be removed and replaced by others. Such a change can be seen in
figure 5.

Jplug

Core

Sdi

Interface

Mdi

... 11

Core

GetSelectedText()

Unimplemented

View

<<trace>>

:View
1: Cut()

1.1:GetSelectedText()

1.2: CopyToClipboard()

Sdi

<<trace>>

GetSelectedText()

View

Mdi

<<trace>>

GetSelectedText()

View

Fig. 4. A partial feature model for an IDE product line, along with the features’ hy-
perslices from an architectural perspective.

The implementation of the GetSelectedText() method of the Mdi feature
in figure 4 needs to be removed and replaced by the GetActiveFrame() and
FindMarkedText() methods, as shown in figure 5. A hyperslice is ”encapsu-
lated”, so a change of its internal structure is perfectly legal.

If a customer now chooses the Mdi feature, the View class in the Core and
Mdi hyperslices can not be merged anymore. The GetSelectedText() method
in the Core has to be changed in accordance to the Mdi’s feature methods to
GetActiveFrame() and FindMarkedText(). But now merging the Core and Sdi
features is not possible anymore. This means that the Sdi feature must also be
changed and surprisingly in an absurd way.

This example has led us to the following conclusions:

Maintainability In the work on HyperFeatuRSEB [5] a software product line
has been implemented to illustrate the strengths and weaknesses of the method
and serve as a means of comparison to the FeatuRSEB method.

An analysis on the source code of this system has shown that the PL has
1243 such unimplemented methods from overall 4197, shared between various

Core

GetSelectedText()

Unimplemented

View

::View
1: Cut()

1.1:GetSelectedText()

1.2: CopyToClipboard()
Sdi

GetSelectedText()

View

Mdi

GetActiveFrame()

FindMark edText()

View

Fig. 5. A non-additive change within a hyperslice causes cascading changes in other
hyperslices (i.e. features).

combinable features, in other words: ”1 out of 3 method changes causes at least
2, at most 19, on average 4 features to change”.

The way of the Hyperspace approach to create a separation of concerns has
led to an extreme sensitization of the underlying system’s architecture to non-
additive changes. This points out the poor maintainability of the produced prod-
uct lines.

Feature Interaction Hyperslices must have declarative completeness [28]: a
hyperslice must contain all structure (e.g classes, methods, etc) definitions or
partial implementations of all other hyperslices to which they refer to. This fact
enforces the inclusion of identical, unimplemented methods, belonging to other
hyperslices. Therefore, hyperslices are not encapsulated from their environment,
on the contrary, they illustrate high coupling, since small changes in a hyperslice
cause changes in other hyperslices. These interactions are neither explicitly mod-
elled in HyperFeatuRSEB, nor are they taken into consideration in the system’s
development.

Tool Support The tool support needed for the creation and management of
hyperspaces, as well as for the definition, development, maintenance and man-
agement of hyperslices is not provided at the moment. The HyperJ tool accessible
from the IBM web site [30] and described in [29] is still in an immature phase
and not in the position to support a PL development process. There is clear need
for professional case tool support for the method’s implementation.

7 Aspect-Oriented Programming and GenVoca

Other generative programming techniques could also be used to provide a sep-
aration of concerns. This section examines the Aspect-Oriented Programming
and the GenVoca approaches.

7.1 Aspect-Oriented Programming

One could also achieve a separation of concerns using the Aspect-Oriented Pro-
gramming technique [25] and effectively perform an integration with one of the
aforementioned PL methodologies, as in HyperFeatuRSEB.

Aspect-Oriented Programming makes use of aspects. These are code descrip-
tions of a concern, which are weaved into the system and respectively affect its
behavior. There exists a special grammatical syntax [26], as well as a possible
UML extension [20] for the modelling of an aspect-oriented implementation.

One of the issues with this approach is that the aspect-modules are difficult
to understand and maintain. The developers need to maintain the system’s code
and also the extra developed aspects, ”inflating” the system’s complexity.

7.2 GenVoca

The GenVoca [2] method is based on similar principles as the Aspect-Oriented
Programming and the Hyperspace approach. Systems are built from layers con-
taining programs [3]. Each program implements a feature. Combinations of layers
allow the addition of the programs’ functionality to compose a working system.
The whole process is supported by the Jakarta tool suite [16].

The GenVoca modelling of PL systems is performed by means of a formal
algebraic notation [3]. It is based mainly upon the same principles of class com-
position as the Hyperspace approach and therefore bares the same problems.
Finally, the Jakarta tool suite proves to be in an immature state to support the
actual development of a product line [5].

8 Feature-Architecture Mapping – FArM

The methodology presented in this section of the paper introduces solutions
based on the identified deficiencies of the state of the art PL methodologies.
It strives to achieve an efficient mapping between feature models and the ar-
chitecture and at the same time preserve the qualities of a PL, like enhanced
maintainability, ease of evolution and simplified product generation.

Domain Analysis−

Feature Modelling
e.g. FODA

Feature Model

Transformation

Building Reference

Architecture

Initial Feature

Model

Transformed

Feature Model

Reference

Architecture

Building Architectural

Components

Architectural

Components

Customer Requirement

Analysis
List of Features

Comparison of Customer

Features with PL Features

Are all features

in the PL?

Generate

Product

Is it a future feature or

an important customer?

Yes

No
Customize Product

and/or Build in PL

Yes

No

Unable to serve

Customer

Fig. 6. The FArM Product Line and Product Engineering workflows.

8.1 Process Overview

FArM is divided into a Product Line Engineering and Product Engineering
phases effectively managing the PL’s development complexity. FArM’s work-
flows for the Product Line and Product Engineering phases are illustrated in
figure 6.

FArM may be applied right after the domain modelling stage of a PL’s de-
velopment cycle. The current state of the method supports the FODA domain
analysis method [21].

After the development of an initial feature model, FArM proceeds with two
concurrent bidirectional processes, namely the Feature Modelling Transforma-
tion and Building Reference Architecture processes. The result of these processes
is a transformed feature model compliant with the newly built PL’s reference
architecture. The latter is a plug-in architecture.

At this point, each identified feature is implemented in exactly one architec-
tural (plug-in) component in the Building Architectural Components process,
following the guidelines defined in the transformed feature model and reference
architecture artifacts.

In FArM’s Product Engineering phase needs to be pointed out that if the cus-
tomer’s requirements are satisfied by the product line features, the product will
be generated by simply plugging the feature-components to the plug-in platform.

8.2 Product Line Engineering

This section takes a closer look at the Product Line Engineering phase of FArM
and its processes.

Feature Model Transformation The Feature Model Transformation process
receives the initial feature model and performs a transformation based on prede-
fined transformation rules. The goal of this process is to allow a logical ordering
of the features and model the product line’s feature interactions, as well as pro-
viding a complete list of possible non-costumer related features. The Feature
Model Transformation is based upon the PL’s requirements and high-level ar-
chitectural decisions. This process runs concurrently with the Building Reference
Architecture process, maintaining a bidirectional communication link among the
two processes.

The transformation of the initial feature model is performed through the use
of predefined transformation rules. These can lead to adding features, inte-
grating features within other features, dividing features and reordering the
hierarchy of features on the feature model.

FArM transformation rules are based on:

– Grouping Features: Grouping features must illustrate a logical relation to
their sub-features (e.g. Interface–Mdi-Sdi in figure 1).

– Quality Features: Quality features must be integrated inside functional
features (e.g. ”performance” in an IDE could be integrated as a time limi-
tation on the model-code synchronization feature and/or other features).

– Architectural Requirements/Implementation Details: The PL itself
may impose the existence of a variety of architectural structures through
requirements or implementation details. These should in turn yield features
in the feature model to retain the one-to-one relationship between feature
model and architecture (e.g. a ”security” feature in the IDE PL to prevent
unregistered use of the software, is mainly a concern of the developers. Thus
it must be implemented is the PL architecture and reflected as a feature in
the feature model, although it is not a customer visible feature.).

– Interacts Relationships: When referring to interacts relationships, we con-
centrate on the communication between features for the completion of a task.
Transformations based upon such communication support the developers in
the explicit modelling of the extra-hierarchical relationships between features
and also transferring this knowledge to the system’s architecture. Interacts
relationships support also the design for maintenability as well as PL end-
product instantiation.

The modelling of feature interactions is implemented in FArM through an
extension to the feature model, namely the interacts relationship. An example
of an interacts relationship is shown in figure 7. Information related to a FArM
interacts relation can be of a textual or formal form (e.g. OCL) and must avoid
going into implementation details. These are documented in the feature’s respec-
tive architectural component’s documentation.

All transformation rules defined within the Feature Model Transformation
process strive to achieve a balance between the initial feature model and the
changes needed to allow a strong mapping to the architecture, preserving the
nature of the initial features.

Building Reference Architecture FArM’s reference architecture is a plug-in
architecture. The root feature of the feature model representing the product line
is the architecture’s plug-in platform. Each feature is implemented in exactly
one plug-in component and adheres to the platform’s plug-in format.

During this phase the developers have the task of defining the plug-in format
and communication protocols for inter-component communication. Based on the
requirements placed upon each feature and the needed interactions, each com-
ponent is assigned and commits to the implementation of an interface to provide
services to other components.

Messages sent to a parent component/feature are transmitted to the proper
sub-component/feature, allowing the decoupling of the components and provid-
ing the needed flexibility for instantiating PL products.

The advantages of such a plug-in architecture, from the perspective of estab-
lishing a strong mapping between feature models and architectures are:

Compiler

Jplug

MVC

Interface

Jav acSdi

11

Mdi

Feature A interacts
with feature B

BBAA Interacts

Interacts

1..*

The Compiler feature acquires the sources for

compilation from the Interface feature

Fig. 7. An interaction relationship in a FArM transformed feature model.

– Allowing automatic product generation: Features plugged into the plug-in
platform instantly compose PL products.

– Allowing the encapsulation of features in plug-in components.
– Decoupling of the features is achieved through the hierarchical plug-in struc-

ture.
– Component interfaces allow the modelling of feature interactions.

8.3 Feature-Architecture Mapping Solutions

Based on the description of FArM, this section will illustrate the solutions to the
identified problems in the state of the art feature-oriented methodologies from
the perspective of the mapping between feature models and architecture.

Feature Model-Architecture Transition FArM’s main goal is to clarify the
transition from a feature model to an architecture. This is achieved through a
detailed description of the Feature Model Transformation and Building Reference
Architecture processes, as well as the introduction of transformation rules and
the support for the creation of the PL’s architecture.

The state of the art methodologies analyzed in the previous sections provide
insufficient description of the needed steps for this transition.

PL Maintainability HyperFeatuRSEB’s maintainability issues are resolved
within FArM through the use of a modular plug-in architecture.

Figure 8 illustrates the solution to the maintainability problem introduced
in section 6.3. Now, each plug-in component representing a feature, defines an
interface to allow the interaction between features. A change in the inner parts
of the Mdi feature has no effect on the feature’s interface.

Jplug

Sdi

Interface

Mdi

11

...

Sdi

GetSelectedText()

Sdi

GetSelectedText()

View

Mdi

GetSelectedText()

Mdi

GetActiveFrame()

FindMark edText()

View

Jplug

<<trace>>

GetFeature()

...

Jplug

<<trace>>

Interface

GetSelectedText()

Interface

<<trace>> <<trace>>

if(jplug.GetFeature(�Sdi)̂ != NULL)

 sdi.GetSelectedText();

else

 mdi.GetSelectedText();

view.GetActiveFrame();

view.FindMark edText();

Fig. 8. A FArM solution to the maintainability issues of HyperFeatuRSEB.

Feature Interaction The issue of feature interactions is identified and ac-
cepted by FArM as a part of the PL system. It is therefore integrated within the
development process in the Feature Model Transformation and Building Ref-
erence Architecture processes. Explicit modelling of the feature interactions is
performed through the feature model extension interacts relationship and its
reflection in the plug-in components’ interfaces. Furthermore, this process can
be supported from related work on resolving feature interactions [9], [31].

None of the state of the art methodologies directly addresses the issue of fea-
ture interactions. In FODA, FORM and FeatuRSEB this issue is not a separate
part of the development process, while the Hyperspace approach in HyperFea-
tuRSEB claims to achieve a ”clear” separation of concerns, neglecting feature
interactions and causing the maintainability problems already discussed.

Tool Support FArM requires the use of a case tool for the development of the
plug-in architecture and a feature modelling tool for construction and mainte-
nance of the PL feature model. For both tools exist sufficient (semi-)commercial
software solutions [17], [10], [12].

The issue of sufficient tool support was identified as one of the problems in
the HyperFeatuRSEB and the GenVoca methods.

9 Conclusions

This paper has explored the main feature-oriented PL methodologies from the
point of view of the linkage between feature models and architecture. Based
on the identified shortcomings, an approach is introduced to allow a stronger
mapping between a PL’s feature model and architecture.

More precisely, although FODA and FORM provide a number of guidelines,
their focus is not placed directly upon the resolution of a weak mapping between
feature models and architecture. FeatuRSEB performs a mapping through the
heavy use of traceability links, providing little support for the creation, manage-
ment or maintenance of such constructs.

The integration of generative programming techniques in product line method-
ologies, like Aspect-Oriented Programming and GenVoca, proves to be insuffi-
cient for the development of a product line. Maintainability problems and com-
plexity in the aspect-modules, as well as lack of modelling principles and suffi-
cient tool support in the GenVoca environment, denote these issues.

HyperFeatuRSEB uses the Hyperspace approach to isolate features within
hyperslices. The result of this process carries a number of disadvantages, e.g. low
maintainability and immature tool support.

The Feature-Architecture Mapping method (FArM) introduced in this paper
identifies the nature of the problems prevailing in the aforementioned method-
ologies and supports the mapping of features to the architecture with existing
technologies.

Explicit feature modelling processes with well defined transformation rules
support the smooth transition from a feature model to the architecture. The

interaction between features is documented on different levels: on the model
level through the feature model extensions of the interacts relationships, and on
an architectural level in the interfaces of the respective plug-in components.

Furthermore, support for the development of a flexible and maintainable
product line architecture is provided through the proposed plug-in structure.
Figure 8 shows the flexible nature of the FArM architecture: the Interface
feature serves as a switch mechanism between the Sdi and Mdi features, thus
enabling an automatic product instantiation. The method supports the gener-
ation of PL products, while the maintainability and the system’s complexity
remain manageable. Finally, the method allows the use of commercial tools.

10 Further Work

The next steps in the development of the Feature-Architecture Mapping (FArM)
method include:

– The support of more domain analysis methods for the creation of the initial
feature model.

– The formal definition of transformation rules for the transition from the
feature model to the architecture.

– Integration of feature interaction resolution techniques in the FArM pro-
cesses.

– The development of a process specifically for the support of the definition of
component interfaces in respect to feature interactions.

A number of features from the IDE product line presented in the examples
have already been implemented with FArM. An industrial case study is tak-
ing place at the point of this writing in the domain of mobile phones. More
specifically, the plug-in platform of the Blackberry handheld is used for the de-
velopment of client components with the FArM method. Publications will follow
on this theme. Further work will also include the implementation of the method
in various other domains, e.g. real-time system’s, medical domain, etc. Finally,
future work includes the precise definition of the method’s limitations.

References

1. Atkinson, C: Component-based product line engineering with UML. Addison-
Wesley (2002)

2. Batory, D. and Geraci, J. B.: Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering (23)(2), 67–82 (1997).

3. Batory, D.; Lopez-Herrejon, E. R.; Martin J.: Generating Product-Lines of Product-
Families, Automated Software Engineering Conference, Edinburgh, Scotland, 81–92
(2002)

4. Blackberry Handheld, http://www.blackberry.com/
5. Boellert, K.: Object-Oriented Development of Software Product Lines for the Se-

rial Production of Software Systems (Objektorientierte Entwicklung von Software-
Produktlinien zur Serienfertigung von Software-Systemen). PhD Thesis, TU-
Ilmenau, Ilmenau Germany (2002)

6. Philippow, I.; Riebisch, M.; Boellert, K.: The Hyper/UML Approach for Feature
Based Software Design. In: The 4th AOSD Modeling With UML Workshop. San
Francisco, CA (2003)

7. Bosch, J.: Design & Use of Software Architectures - Adopting and Evolving a Prod-
uct Line Approach. Addison-Wesley (2000)

8. Buschmann, F.: Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley & Sons (1996)

9. Calder, M.; Kolberg, M.; Magill, M.H.; Reiff-Marganiec, S.: Feature Interaction A
Critical Review and Considered Forecast. Elsevier: Computer Networks, Volume
41/1 (2003) 115–141

10. Captain Feature, http://sourceforge.net/projects/captainfeature

11. Czarnecki, K.; Eisenecker, U.W.: Generative Programming. Addison-Wesley (2000)

12. DOME (DOmain Modelling Environment), http://www.htc.honeywell.com/dome/

13. Griss, D.; Allen, R. and d’Allesandro, M.: Integrating Feature Modelling with the
RSEB. In: Proceedings of the 5th International Conference of Software Reuse (ICSR-
5) (1998)

14. Pashov, I.: Feature Based Method for Supporting Architecture Refactoring and
Maintenance of Long-Life Software Systems. Phd Thesis. Technical University of
Ilmenau, Ilmenau, Germany, 2004 (submitted)

15. Jacobson, I.; Christerson, M.; Jonsson P.; and Oevergaard, G.: Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley (1992).

16. Jakarta Tool Suite. www.cs.utexas.edu/users/schwartz/

17. Rational Rapid Developer,
http://www-306.ibm.com/software/awdtools/rapiddeveloper/

18. Riebisch, M.: Towards a More Precise Definition of Feature Models. In: Workshop
at ECOOP. Books On Demand GmbH, Darmstadt, Germany (2003) 64–76

19. Streitferdt, D.; Riebisch, M.; Philippow, I.: Formal Details of Relations in Feature
Models. In: Proceedings 10th IEEE Symposium and Workshops on Engineering of
Computer-Based Systems (ECBS’03). IEEE Computer Society Press, Huntsville
Alabama, USA (2003) 297–304

20. Suzuki, J. and Yamamoto, Y.: Extending UML with Aspects: Aspect Support in
the Design Phase. In Proceedings of the Aspect-Oriented Programming Workshop
at ECOOP ’99 (1999).

21. Kang, K.; Cohen, s.; Hess, J.; Novak, W.; Peterson, A.: Feature-Oirented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh (1990)

22. Kang, KC; Kim, S.; Lee, J.; Kim, K.; Shin, E.; Huh, M: FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures. Annals of Software
Engineering, 5 (1998) 143–168

23. Kang, KC; Lee, J. and Donohoe, P.: Feature-Oriented Product Line Engineering.
IEEE Software, Vol. 9, No. 4, Jul./Aug. (2002) 58–65

24. Kang, KC; Lee, K.; Lee, J.: FOPLE - Feature Oriented Product Line Software En-
gineering: Principles and Guidelines. Pohang University of Science and Technology
(2002)

25. Kiczales, G.: Aspect-Oriented Programming. Springer-Verlag, In Proceedings of
the 1997 European Conference on Object-Oriented Programming (ECOOP ’97),
(1997) 220–242

26. Kiczales, G.: Getting Started with AspectJ. Communications of the ACM (44)(10),
(2001) 59–65

27. Kang, KC.; Lee, K.; Lee, J. and Kim, S.: Feature-Oriented Product Line Software
Engineering: Principles and Guidelines. In: Domain Oriented Systems Development:
Practices and Perspectives. Taylor & Francis (2003) 19–36

28. Ossher, H.; Tarr, P.: Multi-Dimensional Separation of Concerns and the Hyper-
space Approach. In: Software Architectures and Component Technology. Kluwer
Academic Publishers (2001)

29. Tarr P. and Ossher, H.: Hyper/J User and Installation Manual (2001)
30. Multi-Dimensional Separation of Concerns: Software Engineering using Hyper-

spaces. www.research.ibm.com/hyperspace/
31. Zave, P.: FAQ Sheet on Feature Interaction. AT&T (1999)

