

Supporting Evolutionary Development by
Feature Models and Traceability Links

Matthias Riebisch

Technical University Ilmenau,
Max-Planck-Ring 14, P.O. Box 100565, 98684 Ilmenau, Germany

matthias.riebisch@tu-ilmenau.de

Abstract

During their usage, software systems have to be changed
constantly. If such changes are implemented in an incom-
plete or inconsistent way a loss of architectural quality
will occur, i.e. in terms of maintainability and understand-
ability. The lack of traceability of the impact of changed
requirements in the software enhances this effect. Trace-
ability links have been proposed as a link between the
requirements and the different parts of a solution. In prac-
tical use, these links are difficult to establish and maintain.
Currently, tools cannot effectively support these links due
to human-required decisions. This paper introduces fea-
ture models as an intermediate element for linking re-
quirements to design models. They enable a more appro-
priate bridging of the different levels of abstraction. Fea-
ture models group sets of requirements to a feature and
enable a modeling of the variability of requirements. The
feature models structure traceability links between re-
quirements, design elements and implementation parts.
This leads to lower efforts of establishing and maintaining
the links. Furthermore, descriptions of design decisions
can be attached to the links. Industrial experience with this
approach shows its support for the evolutionary develop-
ment of large software systems, especially in the improved
comprehension of the changes by the developers.

1. Introduction
Software plays an important role in various areas: many

products contain software, most of the industrial processes
are controlled or supported by computer systems; provid-
ers of information and media cannot work without soft-
ware. In all these areas rapid changes with a high fre-
quency require changes of the incorporated software sys-
tems. Continuous development and evolution of the soft-
ware is crucial for its usability. However, in most practical
cases we have to recognize that the possibilities for this
evolution – so-called evolvability - are limited. Changes
lead to mistakes because the developers cannot completely
understand the software’s structure and behavior, or they
cannot discover all parts affected by a change. If former
design decisions are misunderstood the structure of a solu-

tion will be disturbed. As a consequence, the software
contains an increasing number of faults and structural
deficits. The next changes demand much more effort for
understanding, and they lead to more mistakes. A circle of
mistakes and structural deficits occurs, leading to a de-
creasing changeability of the software. This effect is called
Architectural Decay. Other factors like poor documenta-
tion, limited qualification or time pressure will increase
this effect. As a consequence, an increasing effort is
needed to perform changes. After a sequence of changes
the software has a state that disables any other changes,
because after them the software cannot be stabilized. A
software system in this state does not support any changes
of a product or service based on it. This can lead to hard
economic consequences, i.e. a decline of market share.

To perform software evolution without a loss in struc-
ture or evolvability, the so-called maintenance phase de-
mands for stronger attention by industry and academia.
Causes for the effects mentioned above have been detected
in various areas. Development processes are an important
issue, because measures to maintain a proper software
architecture have to be included in a sufficient way, and
design decisions have to be documented effectively. Other
issues are a lacking methodical support for changes and
rework, problems in the developer’s program comprehen-
sion, and tool support. Poor possibilities for tracing the
impacts of changes constitute a crucial reason for the lim-
ited comprehension of the developers and for a limited
verification of the completeness of the changes.

For supporting software evolution there are various ap-
proaches. In the area of program comprehension efforts
aim at the understanding of design decisions, of architec-
tural principles and of the impact of changes. Architectural
and design principles tend to solutions with higher flexibil-
ity and composability. Documentation guidelines should
improve the comprehension of a solution, its principles
and its structure. Design patterns [10] as standardized
solutions support – in addition to the comprehension – the
implementation of changes. Software engineering methods
and principles like encapsulation, modularization, infor-
mation hiding and abstractions [25] reduce dependencies
and constraints, thus reducing the impact of a change to
other parts of a software system. Methodologies with
strong focus on simplification like Extreme Programming

[3] reduce dependencies and constraints by reducing the
software’s complexity. Models and the supporting meth-
ods and tools provide information at a higher level of
abstraction than source code; in this way they support
comprehension in a complex context.

Addressing one of the issues of software comprehen-
sion, this paper presents a concept for describing the im-
pact of changed requirements to a software solution by
providing traceability links in a tool-supportable way. By
explicitly encoding design decisions attached to these
links, this knowledge is made available to retrace deci-
sions already made concerning earlier versions. The trace-
ability links and the features are to some extent based on a
formal syntax and semantics to enable tool-based evalua-
tions. They are structured by features to simplify them and
to reduce their complexity.

2. Traceability Links – State of the Art

2.1. Linking the Results of Different Development
Phases

For the understanding of constraints in complex sys-
tems, cross-references between different views and levels
of abstraction are a prerequisite. Research in the field of
software comprehension aims towards improved under-
standing of ideas and concepts [23]. For retracing earlier
design decisions, such references have to be described
explicitly. Understanding the impact of a changed re-
quirement to the source code is a very difficult task unless
there is support by a structure and by references. The same
demand for cross-references occurs if an implementation
is changed, i.e. by refactoring [9].

The approach of the traceability links is appropriate for
modeling, describing and maintaining these references.
The traceability approach was first developed for describ-
ing connections between different layers of requirements
descriptions. It aims at improved understanding of re-
quirements and easier determination of the impact of a
changed requirement [13]. The concept of Rich Traceabil-

ity [7] extends these simple traceability links between
different layers to enable improved structuring and un-
problematic exploitation. Various types of traceability
links have been developed for linking between the re-
quirements and various views onto a solution. A traceabil-
ity link may connect e.g. a requirement to a design element
or to a source code element [18]. Fig 1 shows traceability
links of the type <<implementedBy>> in an example. Use
cases as parts of the requirements model are linked to a
design component as part of the object model. This itself is
linked to a source code component.

2.2 Description of Design Decisions
Some software process standards extend the documen-

tation of a solution by cross-references and context links.
E.G. the German development standard V Model [29]
demands for reference links between documents and for
the documentation of design alternatives, design decisions
and their relation to requirements. However, if such de-
scriptions are contained in text documents then their main-
tenance requires a immense effort. Traceability Links
provide a much better place to attach such descriptions.
This way of storage enables a retracing of the decisions in
a better way than if stored within design documents.

Available tools like DOORS [8] and Requisite Pro [19]
enable arbitrary links between elements to store traceabil-
ity links of different types aiming at various issues [18].
Hypertext links within documents and extra tags in source
code [24] are other examples of implementations of these
traceability links. Independent from the technology used,
the consistency and completeness of the links is the most
crucial issue for achieving the benefits.

2.3. Maintenance of Traceability Links
Complex software systems with a large number of re-

quirements, design elements and implementation items
have to be described by an enormous number of traceabil-
ity links. Their consistency and completeness has to be
assured by maintaining them.

Object Model Source Code

Commercials
Removal

Commercials
Removal

Channel
Profile

Channel
Profile

<<implementedBy>>

<<implementedBy>>

<<implementedBy>>

<<uses>>

Requirements Model

Detect Logo

Detect Screen
Format Switches

Detect Cuts

Detect Volume
Changes

Fig 1. Traceability links between requirements and solution

In practical use there is only a limited acceptance for
high documentation efforts. Especially consistency checks
of these kind of links and documents after each change are
hard to perform. Due to missing tool support, the links
between the documents become inconsistent very quickly
unless a rigorous check policy is established. This support
deficiency may be an important cause for this insufficient
acceptance of traceability links.

During the application of traceability links for design
recovery purposes in a large industrial project [17] we had
to acknowledge an enormous effort for establishing and
maintaining the links. Even if highly qualified developers
and strong management support were able to achieve a
great benefit, the amount of effort reduced this benefit of
the approach. Due to the informal descriptions of the re-
quirements the possibilities for automated maintenance of
some types of links are fairly limited.

The activities for maintaining different types of links
were examined and categorized. Links connecting items
with a high degree of abstraction or informality can only
be understood using the abstract thinking and the back-
ground knowledge of a human. The elaboration and the
review of links of this type cannot be performed automati-
cally. The larger the difference in the degree of detail,
abstraction or formality the higher is the need for human
participation. Examples are traceability links between
requirements or between requirements and design ele-
ments.

Traceability links between items of similar levels of
granularity and abstraction could be assessed with less
human interaction. Traceability links between different
parts of a solution – i.e. between design elements of static
and of dynamic models – can be maintained by tools to a
much higher degree.

As a consequence, there is a need for building traceabil-
ity links between items with more corresponding charac-
teristics and for structuring them in a better way. The in-
troduction if features as an intermediate level of abstrac-
tion – between requirements and architecture was intro-
duced.

3. Feature Models for Structuring Require-
ments – State of the Art

For the requirements engineering of software product
lines feature models are well accepted. Originally, feature
models have been developed for Domain Analysis. The
method Feature-Oriented Domain Analysis FODA [14]
introduced feature models as a means of describing com-
mon and different requirements within a domain. Features
are properties that enable the distinction between solution
within a domain, from a customer’s point of view. Feature
models are domain models which structure requirements
by mapping them to a feature and by forming relations
between them. A set of selected features describes a spe-
cific software system within the domain. Feature models

have proven their applicability for expressing requirements
in a product line. They are applied for describing the vari-
ability of the requirements by the method FeatuRSEB
[11]. Czarnecki and Eisenecker extend the feature model
in a very useful way [6]. Feature models as defined by
FeatuRSEB and [6] have been elaborated in own works
[22]. They are applied as a fundamental notation for fea-
tures, requirements and designs decisions. As an example,
Fig 2 shows a part of the feature model of a product line of
digital video disc recorders (VDR).

Every feature describes a property of a product from the
customers point of view. It is described by a single word
or by an expression. It covers a particular set of require-
ments which refine that feature. A feature contained by all
products of a product line is called a mandatory feature. A
feature that can be used for distinguishing between prod-
ucts is called a variable or an optional feature. There are
three categories of features:
• Functional features express the behavior or the way

users may interact with a product.
• Interface features express the product's conformance

to a standard or a subsystem
• Parameter features express enumerable, listable envi-

ronmental or non-functional properties.
A feature model describes requirements as an overview

and models the variability of a product line. It is applied
for the definition of a product by a customer. The feature
model consists of a graph with features as nodes and fea-
ture relations as edges. The features are structured by
hierarchical relations. In addition to them there are further
relations. Feature relations are classified to the following
categories:
• Hierarchical relations. The feature hierarchy repre-

sents the sequence of decisions of products. The most
important features are placed higher in the hierarchy.

• Relations of generalization and specialization as well
as aggregation are described by the refinement rela-
tion.

• Constraints between variable features that have an
influence on the sequence of decisions of products are
expressed by requires or excludes relations or by mul-
tiplicity-grouping relations. A requires relation de-
mands the selection of a variable feature, an excludes
relation prohibits it. A grouping relation describes the
possible selections of features with one super feature,
i.e. “0..1” allows none or one feature out of a group
[20]. For more complex constraints, require or ex-
clude relations are described by formal expressions
stored with the graphical elements.

If abstract nodes are useful for structuring the feature
hierarchy, concept features are introduced. There is no
implementation assigned to them. The root node of a hier-
archy is always a concept feature. More detailed informa-
tion about feature model definitions and relations is given
in [22].

Digital Video

Control Function Hardware

PDA
Remote Control

Web
Interface

Internet
Access

IR Port

LAN
Access Modem

IR Remote Control Key Pad IrDA Port

1

Editing Recording Library

Audio Editing Logo
Removal

Video Editing Commercials
Removal

EPG Control Customization

Playback

Time Control

Auto
Forget

EPG
Management

Personal
Profiles

Channel
Settings

Childrens
Protection

1
alternative
features

optional
feature

mandatory
feature

Legend:

dependency

Fig 2: Example: feature model of a digital VDR product line (partial)

The relations between features are used for a tool-based
establishment of product configurations and for their veri-
fication. To provide a formally defined syntax, the rela-
tions are described by the Object Constraint Language
OCL, a standardized part of the UML [28]. Expressions in
this language can be evaluated by several UML case tools.

Feature models with categories and relations are well
suitable for structuring requirements. Especially the formal
elements of their definition sustain tool support [21][26].
However, in many cases a more technical view in addition
to the customer’s one would be helpful to simplify a map-
ping of features to solution components. In these cases the
views as introduced by the FODA successor FORM are
helpful [15]. The distinction between FORM’s views is
not defined very clearly, so there is a need for some cus-
tomization and refinement. The so-called Design Decision
feature model in [16] represents an example for a more
technical view represented by a feature model.

4. Features as Intermediate Elements be-
tween Requirements and Solution

According to the new concept, a better structuring of
traceability links is now performed by introducing features
as intermediate elements between requirements and archi-
tectural elements, thus linking items with more corre-
sponding characteristics.

Features provide an abstraction of requirements. The
difference in the degree of abstraction, uncertainty and
formality between a requirement and a feature is much

smaller than between a requirement and i.e. a design ele-
ment.

Using features as intermediate elements offers various
advantages, both for the elaboration and for the verifica-
tion of the traceability links:

Smaller number of links. While m requirements are usu-
ally implemented by n design elements, every require-
ment corresponds to only 1 feature (see Fig 4). Even if this
feature is implemented by n design elements, we have to
maintain m+n traceability links with features in between
instead of m*n direct ones.

Easier verification. The verification of direct links can
be carried out only by developers with comprehensive
knowledge about all requirements and the whole architec-
ture with all its principles. In the other case, the verifica-
tion of the links from the requirements demands no
knowledge about the solution, and the verification of the
others requires no detailed knowledge about the require-
ments. Therefore a work division is enabled. A tool-based
verification by rules is simplified by this distinction, as
discussed later in the tools section.

Easier elaboration and maintenance. For these activi-
ties the same advantage applies. It is of special value for
larger systems because of its support for work division.

Easier comprehension. In our experience it is much
easier for developers to understand and to remember refer-
ences between elements of stronger related types than of
more different ones. For the first case the terms used for
the description are more similar and the domains are more
related than for the last ones.

Channel
Settings

Commercials
Removal

Feature Model

Commercials
Removal

Commercials
Removal

Channel
Profile

Channel
Profile

<<implementedBy>>

<<implementedBy>>

<<implementedBy>>

<<implementedBy>>

<<require>>

Detect Screen
Format Switches

Detect Logo

Detect Cuts
Detect Volume

Changes

Requirements Model Object Model Source Code

<<require>>

Design decision Design decision

Fig 3: Traceability links between use cases and design elements via features

Tracing the impact of a requirement to its related solu-
tion parts is fundamental for comprehension as well as for
performing a change successfully. For relations bridging
smaller differences, it is much easier for the developer to
identify them, i.e. a relation between a changed require-
ment and the necessary change of design and code.

If compared to Fig 1, the example in Fig 3 shows how
the feature model structures traceability links between
requirements (here modeled by use cases) and elements of
the solution. The structure and the multiplicities of these
links are shown as a data model in Fig 4, using a UML
class diagram notation. Each feature summarizes a set of
requirements, and each requirement is represented by one
feature. All elements of a solution (in fact, elements of
design and implementation) are assigned to features.

Usually, one feature needs more than one elements of
design and implementation. In the ideal case, the design
principle of Separation of Concerns leads to design ele-
ments that correspond to features in a one-to-one relation.
However, most implementation technologies do not sup-
port this ideal case, leading to features scattered among
solution elements. As an example, Bosch’s architectural
method [4] leads to an implementation of quality features
(i.e. time efficiency) by more than one architectural ele-
ments (i.e. a data cache and a special structure of pack-
ages).

In these cases the introduction of an additional feature
model representing an architectural view is proposed. It is
useful, if the effort of another intermediate element be-
tween requirements and design elements is smaller than
the extra effort due to a more complex verification of one-
to-many links.

Requirement

Feature

Design
Element

Implementation
Element

1

1..*

1..*

1..*1..*

1..*
1..* 1..*

<<implementedBy>>

<<implementedBy>>

<<implementedBy>>
<<implementedBy>>

Design
Decision

Design
Decision

Design
Decision

Fig 4: Traceability links between requirements, fea-
tures and elements of the solution

Fig 4 shows additional direct traceability links between
requirements and design elements as a dashed line. They
are applied in some cases if requirements details have to
be visible to a design element. They demand extra effort
for their maintenance, but frequently this effort is small,
because rules related to features can be applied for a
highly effective verification.

This intermediate step of features is of great advantage
for other activities of an evolutionary development proc-
ess, i.e. for reverse engineering [17] and for component
refactoring [21]. In addition to them, feature models in
connection with traceability links simplify other tasks, i.e.
the check of component interaction, the effort estimation
for changes and the risks determination. Furthermore, they
support decisions about building reusable components
because a feature model shows potential variants enabling
future products.

5. Tool Support

5.1 Feature Model Management
The application of feature models for the development

and evolution of a product line in industry is only feasible
if tool support is available. Measures for ensuring consis-
tency are required, because feature models for industrial
projects are complex and because of their important role
for success. Tools for feature modeling have to be inte-
grated with other tools for product line development. They
have to provide the following support:

• Graphical editing and displaying feature models
according to the definitions of [22] with hierarchi-
cal refinement and with a handling of incomplete
information

• Evaluation support for the modeled information by
providing a defined syntax and semantics

• Consistency checks of feature models
• Integration with or interfaces to CASE tools of

other vendors
• Storing and maintaining traceability links

• Modeling of feature constraints including for-
warded constraints from design and implementa-
tion

• Visualization and check of constraints
• Evaluation of constraint violations as basis for ef-

fort estimations
• Decision support by visualizing possible feature se-

lections with their constraints
Many of these requirements are already implemented

by tools or they are subject of ongoing works. The tool
AmiEddi [2] supports graphical elaboration and editing of
feature models. However, it does not offer evaluation
support for constraints and for the selection of features for
defining products. No (traceability) relations to other mod-
els are possible within this tool. Currently a successor tool
CaptainFeature [5] is developed to support model exten-
sions and relations. This tool provides an XML interface
for integration with other CASE tools (see Fig 5).

Requirements
Specification

Test Case
Development

Design Implementation

Repository
Configuration

& Version
Management

Feature
Modelling

Feature
Modelling

Usage

Legend:
Workflow
Access, storage,
cross-check

Fig 5: Feature modeling within a repository-based
environment for evolutionary development

If the number of features is very high, then a represen-
tation by graphs is not sufficient. In these cases features
and their relations are displayed by tables [17]. If their
repository can be extended, existing requirements engi-
neering tools can be a candidate for the representation of
this kind of relations. In an industrial project, Requisite
Pro [19] was used in that way successfully.

For modeling constraints and for checking configura-
tions, specific tools are currently developed [26] to pro-
vide a formal description and evaluation of dependencies
based on an OCL extension. An OCL interpreter evaluates
the expressions, checks definitions of products and deter-
mines violations.

For the requirements specification of products in a
product line and for configuring products based on it, a
product configuration tool was developed. It can easily be
adapted to different product lines. It is described by [12].

The tool supports the selection of single features and of
predefined groups of features. It checks configurations for
consistency against the feature constraints and shows vio-
lation by rules.

5.2 Tool Support for Traceability Links
For the storage and evaluation of traceability links con-

nections between elements across the borders of different
tools are necessary, i.e. by the means of a common reposi-
tory (see Fig 5). For the integration of a heterogeneous
tool set, some open repositories are available on the mar-
ket. They offer adaptable interfaces, i.e. using XML. The
definition of links within the source code was imple-
mented using the javadoc tool [27]. The UML model ele-
ments - i.e. of the requirements model and the design
model - are connected by defining Tagged Values for each
element [24].

5.3 Integrated Tool Support
There is a demand for tool support not only for storage

and management but for establishing, maintaining and
exploiting the traceability links. Therefore an integrated
support for both feature models and traceability links is
required.

Support for Tracing Connections. For understanding
connections and dependencies the developer is supported
by providing links between elements of different levels of
abstraction. Traceability links enable navigation among
different models and different levels of abstraction. For
example, starting from a feature, referenced elements in
the object model and referenced source code elements can
be displayed in an editor to explore them or to perform
rework. For selections, the referenced model elements are
highlighted by selecting a traceability link, or they are
displayed for selection in a list. The list-like visualization
of referenced items is especially useful for checks of the
completeness of a change. This way of support leads to a
comfortable selection.

Establishing Traceability Links. A traceability link usu-
ally expresses a relation that has been established during
problem solving activities or recognized during reverse
engineering activities. This link is then recorded by a de-
velopment tool and is stored in the repository. The devel-
oper performing these activities checks and confirms the
new link. After confirmation, it becomes a part of the
documentation. The advantage consists in lower effort for
establishing the links.

Maintaining Traceability Links during changes. The
traceability links have to be changed if any changes hap-
pen to design and implementation. If an element of design
or implementation is changed, all potentially affected
traceability links are displayed by the tool, together with
proposals for revisions. As an advantage a developer can
concentrate on a smaller number of links; this is valuable
especially in large projects.

For changes performed as part of software refactoring
activities usually typical procedures are followed, as de-
scribed by [9]. Synchronized changes of traceability links
can be performed in a similar way based on rules. Refac-
toring of traceability links are a subject of current research.

5.4 Checks of Consistency and Completeness
Maintaining the consistency of the traceability informa-

tion with low effort is one if the most important goals of
this work. The description of the links within XML-based
documents and repository and the expression of feature
relations by OCL enables rule-based checks. Some exam-
ples of rules for completeness are:
• Is there a requirement not related to any feature
• Is there a feature not related to any design element
• Is there a design element implementing features which

are not covered by successor (refining) design ele-
ments

For consistency checks a requirement has to be related
to a design element. If both contain natural language ex-
pressions, then the possibilities for automatic checks are
limited. Heuristics comparing the used vocabulary – as-
sisted by a glossary – can detect suspicious links. After a
preselection of the links by these heuristics they can be
checked by a developer. Especially for a large number of
links, a preselection provides an advantage by reducing the
effort of checks to an affordable amount. Examples for
heuristic rules are:

A link is suspicious to be invalid if:
• No word in the connected expression corresponds
• A quality feature is connected to a design element

without a parameter
• A quality feature is linked without a design decision

attached.

6. Conclusion and Future Work
Feature models have achieved a quite good acceptance

in industrial projects because of their advantages men-
tioned at the beginning. They are currently added to the
enterprise-wide development standards of several compa-
nies. The unification of differing definitions and the dis-
semination of feature models are currently a subject of
various workshops, i.e. at ECOOP 2002 and 2003 [22].
Traceability links provide the potential of high efficiency
with low extra efforts, because their support requires only
minor adaptation in existing CASE tools. Links between
requirements, features and design elements have success-
fully been applied in an large industrial project. However,
methodical and tool support is of big importance for the
acceptance of this approach in the industrial practice.

If tools for feature modeling are integrated with re-
quirements engineering tools, extra benefits can be made
by referring a subset of the glossary terms to features.

In this paper the tasks of understanding a solution and
of tracing dependencies is in the main focus. In addition to
them, there are numerous other important factors for a
successful evolutionary software development. They have
to be investigated as well. To mention a few of them:
• Defining an adapted software development process.

Definitions are needed to provide tests before devel-
opment. The refactoring has to be organized in a way
that short iterations minimize the risks. Ideas of Ex-
treme Programming as continuous refactoring and
achieving simplicity [1] can contribute to the success
as well.

• Defining proper project management targets. To
prevent the effect of Architectural Decay the project
management has to enable a continuous flow of
changes and their embedding with refactoring activi-
ties. Long-term goals for maintainability and evolva-
bility have to support a long time of usage.

• Development and evolution of appropriate architec-
tures. The basic principles like modularization and
Separation of Concerns support the prefabrication,
e.g. by building suitable components. Design patterns
together with appropriate software architectures help
to achieve the development goals in respect to func-
tional and non-functional features.

7. Acknowledgements
I would like to thank Periklis Sochos for his sugges-

tions for improving the English of this paper. My thank is
dedicated to him, to Ilian Pashov and Detlef Streitferdt for
their feedback during the integration of the concept of
traceability links into their works. I’d like to thank Ilka
Philippow for funding this work in the department of
Process Informatics. My thank goes to the anonymous
reviewers for their helpful comments.

8. References

[1] Ambler, S. W.: Agile Modeling - Effective Practices for
Extreme Programming and the Unified Process. Wiley, 2002.

[2] AmiEddi 1.3 – Feature Modeling Tool. Available for
Download at http://www.generative-programming.org

[3] Beck, K.: Extreme Programming Explained: Embrace
Change. Addison Wesley Longman, Reading/Massachusetts,
1999.

[4] Bosch, J.: Design and use of software architectures – Adopt-
ing and evolving a product-line approach. Addison Wesley,
2000.

[5] CaptainFeature, V 1.0. Available online at
https://sourceforge.net/projects/captainfeature/

[6] Czarnecki, K., Eisenecker, U.W.: Generative Programming.
Addison Wesley, 2000.

[7] Dick, J.: Rich Traceability. Telelogic AB, 2000. Available
online at http://www.telelogic.com/resources/

[8] DOORS Requirement Engineering Toolset.
http://www.telelogic.com/

[9] Fowler, M.: Refactoring: Improving the Design of Existing
Code. Addison Wesley, 1999.

[10] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[11] Griss, M.; Favaro, J.; d’Allesandro, M.: Integrating Feature
Modeling with RSEB. Hewlett-Packard Comp., 1998.

[12] Halle, M.: Case Study for the Development of reusable
Components for Software Product Lines. (in German: Fallstudie
zur Entwicklung wiederverwendbarer Komponenten im Rahmen
von Software-Produktlinien.) Diploma Thesis. Technical Univer-
sity Ilmenau, Germany, 2001.

[13] Hull, M.E.C.; Jackson, K.; Dick, A.J.J.: Requirements Engi-
neering. Springer, 2002.

[14] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.,
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, 1990.

[15] Kang, K., Kim, S., Lee, J., Kim, K., Shin E. and Huh, M.:
FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures. Annals of Software Engineering, 5,
1998, pp. 143-168.

[16] Pashov, I., Riebisch, M.: Using Feature Modeling for Pro-
gram Comprehension and Software Architecture Recovery. In:
Proceedings 11th Annual IEEE Symposium and Workshops on
Engineering of Computer-Based Systems (ECBS'04), Brno, CZ,
May 24-27, 2004. IEEE Computer Society, 2004 (accepted for
publication).

[17] Pashov, I.: Feature Based Method for Supporting Architec-
ture Refactoring and Maintenance of Long-Life Software Sys-
tems. PhD Thesis, Technical University Ilmenau, 2004 (submit-
ted).

[18] Ramesh, B.; Jarke, M.: Toward Reference Models for Re-
quirements Traceability. IEEE Transactions on Software Engi-
neering, Volume 27, Issue 1 (January 2001) pp. 58 - 93

[19] -: Rational Requisite Pro Requirements Engineering tool
set. IBM Corp. Available online at
http://www.rational.com/products/reqpro/

[20] Riebisch, M.; Böllert, K.; Streitferdt, D., Philippow, I.:
Extending Feature Diagrams with UML Multiplicities. 6th World
Conference on Integrated Design & Process Technology
(IDPT2002), Pasadena, CA, USA; June 23 - 27, 2002.

[21] Riebisch, M.: Evolution and Composition of Software Sys-
tems. (in German: Evolution und Komposition von Softwaresys-
temen.) Habilitation Thesis. Technical University Ilmenau, 2003
(submitted).

[22] Riebisch, M.; Streitferdt, D.; Pashov, I.: Modeling Variabil-
ity in Object-Oriented Product Lines. In: Buchmann, A.; Busch-
mann, F. [Eds.]: ECOOP Workshops 2003. Springer, 2003. (in
print)

[23] Rugaber, S.: The use of domain knowledge in program
understanding. Annals of Software Engineering, 2000

[24] Sametinger, J.; Riebisch, M.: Evolution Support by Homo-
geneously Documenting Patterns, Aspects and Traces. 6th Euro-
pean Conference on Software Maintenance and Reengineering.
Budapest, Hungary, March 11-13, 2002 (CSMR 2002) . Com-
puter Society Press, 2002. S. 134-140.

[25] Sommerville, I.: Software Engineering. Addison Wesley,
6th Edt., 2000.

[26] Streitferdt, Detlef: Family-Oriented Requirements Engineer-
ing. PhD Thesis, Technical University Ilmenau, 2003 (submit-
ted).

[27] Sun Microsystems: Javadoc Tool Home Page,
http://java.sun.com/j2se/javadoc/

[28] Object Management Group: Unified Modeling Language
Specification, Version 1.4. http://www.omg.org, 2001

[29] -: The V Model – Development Standard for Federal IT
Systems. (in German: Das V-Modell - Planung und Durchfüh-
rung von IT-Vorhaben - Entwicklungsstandard für IT-Systeme
des Bundes. Allgemeiner Umdruck Nr. 250: Vorgehensmodell.)
Available online at http://www.v-modell.iabg.de

