
Supporting Architectural Restructuring by Analyzing Feature Models

Ilian Pashov, Matthias Riebisch, Ilka Philippow
Technical University Ilmenau, Germany

{Ilian.Pashov Matthias.Riebisch Ilka.Philippow}@TU-Ilmenau.DE

Abstract

In order to lower the risk, reengineering projects aim
at high reuse rates. Therefore, tasks like architectural re-
structuring have to be performed in a way that developed
new system architectures allow reuse of all valuable legacy
systems’ parts with minimal changes. During architectural
restructuring there are two major types of modification: de-
tection of architecture disproportions and their refactoring
and detection of redundancies and their fusion. In this pa-
per we introduce a method for applying domain knowledge
for supporting these restructuring steps. The method oper-
ates on feature models. Words and terms of features and of
architectural documents are analyzed by cluster analysis,
information retrieval and metrics techniques. In this way,
the method joins the approaches of feature analysis and of
enhancing reengineering with domain knowledge by apply-
ing feature models for structuring the domain knowledge.
The method results in clues and hints for the development
of a new architecture. It provides an effective addition to
the conventional software architecture design methods.

The method was developed and applied in an industrial
reengineering project within image processing domain. It
has been proved to be applicable to large and complex sys-
tems even in case of heavy monolithic parts. We use exam-
ples from this project to illustrate the method.

Key Words

Architecture Reconstructing, Architecture Recovery,
Reengineering, Program Comprehension, Feature Model-
ing, Information Retrieval

1 Introduction

Architectural restructuring is an important task within
reengineering projects. In order to make a legacy system
conform to new domain requirements, often it needs signif-
icant architectural changes. Nevertheless it is rare the case

that a brand new system architecture is independently de-
veloped. More often the newly developed architecture is a
restructured version of the current one, which eliminates its
major disadvantages. Architectural restructuring includes
two big activities: architecture recovery and development
of a new architecture considering the valuable parts of the
legacy one.

Architectural recovery states the basis for a new system
architecture. The activity aims to recover information about
the current system architecture, which was lost or became
outdated over the years. The results of the activity are the
input for new architecture design. Architectural recovery
requires good program comprehension and reliable infor-
mation sources. In the case of little and outdated system
documentation the most reliable information can be derived
from the source code. However, the lack of abstract infor-
mation hinders the comprehension. There is often an ab-
straction gap between source code, system documentation
and architecture. To bridge this gap domain information is
applied with great success, i.e. in form of feature models
[22]. Features present customer valuable properties of sys-
tems. Feature models structure features regarding their in-
fluence over the system architecture. Feature models can be
analyzed and the results of this analyses can support system
architects in restructuring of the current architecture and by
new system design.

The development of new system architecture is probably
the key task of reengineering projects. Considering the re-
sults from architecture recovery, the newly developed archi-
tecture has to make a system conform to the latest domain
requirements and at the same time to allow integration and
reuse of all significant parts of the legacy code. If the last
is not true the reengineering projects risk increases undesir-
able high and the success of the projects can be endangered
[15]. The new system architecture has to deal with the dis-
advantages of the legacy one as well. It has to consider and
eliminate the architecture disproportions and the redundan-
cies. There is a number of methods based on source code
analyses, which can support these tasks: [1], [3], [16], [19],
[18] and [7]. All of them can be applied with more or less
success, but since they work on the lowest design level they

tend to omit high level information. These methods use do-
main knowledge in form of experts opinion, but they lack
of analyzing high level structured domain information.

In this paper we present an approach, which uses do-
main information analyses to assist detection of architecture
disproportions and redundancies within a legacy system.
Our method takes the input of system features structured
in a corresponding model, analyses them and produces a
set of clues and hints showing the above mentioned archi-
tecture problems and their possible solutions. The method
results provide additional information about clusters of fea-
tures and possible separation of concerns within a software
system. The approach is based on text analyses information
retrieval techniques. Names of features are used as informa-
tion source and related requirements are considered in case
of insufficient information. A prerequisite for the method
is the existence of feature model and traceability links be-
tween features and system architecture. These can be estab-
lished using one of the approaches presented in [22], [8] or
[24].

For illustration of the proposed techniques we use exam-
ples from an industrial reengineering project within image
processing domain. Most of the presented ideas have been
developed during the work on this project and are influenced
from real problems, which we encountered during our work.
Although some of our examples may have the specifics of
the studied system, we believe that the presented method-
ology can have general application for reverse engineering
tasks.

2 Method for Supporting Architecture Re-
structuring

2.1 Feature Modeling

Before we start to describe our approach, a short intro-
duction to feature modeling is required, as this is the utilized
key technology.

Feature modeling is a method originally developed for
structuring domain properties from customer‘s point of
view. Features are often referred as customer valuable prop-
erties of a system, which can be selected in a product config-
uration. Feature model (Figure 1) is a hierarchical structure
of features, which shows additionally grouping and con-
straint relations between features. In a feature model, each
feature can be marked as optional or mandatory. In this way,
feature modeling provides means for managing the variabil-
ity of systems in a problem domain.

Feature modeling was introduced from the Feature-
Oriented Domain Analysis (FODA) methodology [17] and
further developed from a number of approaches, for ex-
ample: [12], [6], [23], etc. Due to the ability of the fea-
ture models to present important information in a structured

way, which is also close to the structure of the architec-
ture components in a system, feature modeling was rec-
ognized in [22] as eligible technology for supporting pro-
gram comprehension and software architecture recovery. In
this previous work, we showed how a feature model can
be the necessary artifact, which bridges the abstraction gap
between source code, system documentation, architecture
and requirements. We presented a method, which collects
domain information in a feature model through reverse en-
gineering of system documentation and through perform-
ing expert interviews. Later, the established feature model
was utilized for generating and verifying hypotheses about
architecture elements, thus assisting the reverse engineer-
ing work by providing structured high level design infor-
mation. During the architecture recovery were also estab-
lished traceability links between features and architecture
elements. For example on Figure 2 are shown sample fea-
ture model, architecture components and their traceability
links from an image processing system. The traceability
links show which feature in which architecture component
is implemented.

CAR

TRANSMISSION HORSEPOWER AIR CONDITIONING

MANUAL AUTOMATIC

Mandatory
features

Optional
feature

Alternative
features

Requires

Excludes

Constraints

Figure 1. Sample Car Feature Model - adapted
from [17]

2.2 Overall Description

On the basis of the method presented in [22] we have de-
veloped an approach for assisting architecture restructuring.
In this approach we use as input the feature model and the
traceability links provided from the previous method. Over
the feature model we run analyses, which provide useful
hints and clues for eliminating design problems by archi-
tecture restructuring activities.

The method (Figure 31) starts with recovery of the cur-
rent architecture and establishment of a feature model of

1For the diagrams on Figure 3 and Figure 5 are used the Gane-Sarson
DFD-Notations [11].

Image
Processing

Image Management

Result
Management

Reveceive images

Receive
Images From

Hardware
Device

Merge
Received
Images

Compress
Received
Images

Store
Results For

Offline
Processing

Event
Driven
Result

Deletion

Timeout Finish
Processing

Organize
Processing

Queues

Send Images to
Visualization

Desks

Determine
Flow Order

Flow Control

Use Flow
Control
Strategy

Image Manager Image Receiver

T
ra

c
e

ab
il

it
y

li
n

k
 t

o

a
rc

h
it

e
c

tu
re

c
o

m
p

o
n

e
n

t

T
ra

c
e

a
b

il
it

y

li
n

k
 t

o
a

rc
h

it
e

c
tu

re

c
o

m
p

o
n

e
n

t

Figure 2. Sample Feature Model and Trace-
ability Links Between Features and Compo-
nents

the reengineered system. For these tasks can be applied for
example the [22] approach. If these artifacts are present the
step can be omitted. Traceability links between features and
architecture components are also required. In case they are
missing, their establishment should be considered as an ac-
tivity as well. On the next step, the feature model and the
recovered architecture information are analyzed in order to
detect architecture disproportions and redundancies within
system architecture. These analyses are detailed described
in sections 2.3 and 2.4. The results of the analyses are used
as hints and clues from system architects by designing a new
system architecture, which has to take into account the old
design elements of the reengineered system (section 2.5).

2.3 Detection of Architectural Disproportions

Evolution of software systems often leads to dispropor-
tional growing of parts, which in the initial system archi-
tecture have been designed as equally complex. As a re-
sult, after a time the complexity balance between archi-
tecture components is completely lost and monoliths have
appeared. The monoliths have lower maintainability and
breaking them is a common task in reengineering projects.

Usually, detection of monoliths is not a difficult tasks
since most of them are obvious and the related problems
have been observed a long time from the system experts.
Nevertheless, even the best experts miss sometimes impor-
tant facts and on the other hand need supporting arguments
for their opinion. A methodology for detection of archi-
tecture disproportions within software system architectures
will be of good use for reverse engineers and software ar-

Recover
existitng
system

architecture

Analyses of
recovered

architecture
information

Detection of
architectural

disproportions

Detection of
redundancies

Legacy
System

Documentation,
Source Code

Feature model,
Architecture Model,

 Features-Architecture Elements Taceability Links

Feature Model,
Traceablity Links,

Requirements

Feature Model,
 Traceablity Links,

Requirements

Average Number of Related Features
To an Architecture Component,
Sorted List of Components and

Number of Related Features

List of Similar Features Related
 to Different Components

Design of
new system
architecture

Figure 3. Supporting Architectural Restruc-
turing - Activities and Data Flow

chitects. It will show them how the features are distributed
over the system and will hint potential monoliths.

We propose a statistical method, which analyses sys-
tem features and related architecture components and de-
tects disproportions between the components. In brief the
method:

• Calculates the number of features related to an archi-
tecture component.

• Calculates the average number of features imple-
mented in all architecture components.

• Positions the architecture components according to the
diversion on the number of related features towards the
average number of implemented features.

All calculations are made over the feature model of the
studied system and the traceability links to the architecture
components. Following the traceability links, it is possible
to count the number of features related to an architecture
component. The average number of features is calculated
as an average value of the number of all features and the
number of all components. Table 1 presents sample results
of the method.

As it is visible from Table 1, there is a significant differ-
ence in the number of related features between the compo-
nents at the bottom and at the top of the table. The com-
ponents at the top of the table, especially the IM (Image
Manager) concentrate a lot of functionality and one can say

Component Features Per
Component

IM (Image Manager) 53
FO (Flow Observer) 21
VD (Visualisation Desk) 18
UII (User Interface Interceptor) 18
DISP (Dispatcher) 17
OCR (Optical Character Recognizer) 16
EIMSGW (External Information
Management System Gateway) 12
II (Image Injector) 10
ISIF (Image Source Interface) 9
ICIF (Image Consumer Interface) 9
SC (Statistics Collector) 7
IDB (Image Database) 5
XVI (External Video Interface) 5
IR (Image Receiver) 4
ISDB (Image Streams Database) 3
TD (Test Desk) 3

Table 1. Features per component classifica-
tion example

that they have become monoliths. On the other hand the
components at the bottom of the table are quite simple, al-
though they are classified on the same architecture level as
the other ones. The components in the middle of the table
(the italic font) implement number of features close to the
average for the system (13 features per component2) and
can be considered well balanced.

2.4 Detection of Redundancies

Another common problem between systems being sub-
ject of reengineering are the redundancies. It is known that
a lot of code is developed using ”copy paste” techniques
and the literature is rich of approaches which deal with this
problem, known as clone detection. Unfortunately, ”copy
paste” development is not the only reason leading to redun-
dant development. Many problems come from the system
design itself. Due to a number of reasons including system
architecture decay, a lot of requirements are solved more
than once. Implementation for one and the same feature
can be found more than once in different architecture com-
ponents. Sometimes the feature has slightly or even much
different name in the different architecture components, but
the experts claim that it is one and the same.

Since the clone detection techniques work on source
code level and omit high level design information it is hard
using them to detect redundancies caused by architecture
design problems. In our opinion, the features can help the

2+/- 20% Project specific tolerance

detection of such problems. Features stay between architec-
ture and system requirements and are influenced from both.
Features are described with terms from the domain vocab-
ulary and concentrate domain information, which allows
application of information retrieval algorithms over them.
Analyses of features and their traceability links to architec-
ture components can show redundancies caused from the
system design.

We propose a design redundancies detection method,
which does in brief:

• Application of text analyses information retrieval tech-
niques over a database of feature names in order to de-
tect and order the main system concerns. We perform
two types of analyses:

– Words frequency analysis.

– Words categorization analysis.

• Clustering of features according to text analyses re-
sults.

• Examining features classified in a same cluster for sim-
ilarities.

Figure 4 shows an example of possible redundancies,
which we detected in our studied system. There was a set
of five features (on the left side) implemented in different
components (on the right side), which finally realized the
same tasks (on the top). All of them were doing proto-
col mapping from external protocols to an internal one, but
there were several different implementations of the map-
ping functionality and no unified interface to the native pro-
tocol, although for all components it was the same. Due
to the redundant design there also were performance prob-
lems, since the different components were running as sep-
arate processes, which is proved to be more resource con-
suming that multi threaded architecture for example.

In order to apply information retrieval algorithms there
is a need to prepare the above mentioned database with in-
formation, which can be analyzed. We put in this database
the names of the features describing a feature model and
over the database we run text analyses. The information re-
trieval analyses need a thesaurus as well. In our case we
used the thesaurus provided from the used information re-
trieval tool3.

Since normally feature names are relatively short and the
contained text information could be insufficient for infor-
mation retrieval, additionally can be added to the informa-
tion database and analyzed the related to the features re-
quirements. Nevertheless, even without taking the require-
ments into account we can argue about the correctness of

3We have used the PolyAnalystTM (www.megaputer.com) tool for our
information retrieval analyses.

Map native router communication to Open
Interface CORBA based communication and

vice versa
MOI (Misc Open

Interface)

Encapsulate OI (Open Interface) functionality
in a gateway which maps native (router
based) protocols to OI (CORBA based)

operations

Map router communication to Open Interface
communication

ERI (External Routing
Interface)

VDGW (Visualisation
Desk Gateway)

Convert message protocols
ISI (Image Source

Interface)

Map the ISC (Image Source Control)
communication to third party IS(Image

Source) communication

XIS (External Image
Source)

Protocol
mapping

Figure 4. Possible Redundancies Detected in
an Image Processing System

the later described information retrieval analyses due to the
following reasons:

• Feature names explicitly use domain technology,
which concentrates significant domain information.

• Additionally, feature models are created considering
experts opinions and are approved from them (see
[22]), thus the correctness of the used terminology is
guaranteed.

With words frequency analysis we try to find out and
classify the most frequently used words within the studied
database. The result of the analysis is a report, which shows
in how many records (in our case features) these words are
met and what percentage they are of the whole number of
studied records. As a rule, in the results are presented only
words, which are met in more than a certain percent of the
records. Table 2 shows sample analysis results from our
studied image processing system. The barrier is occurrence
in at least 2.214% of the records 4.

Word Frequency
Image 20(21.74%)
Processing 17(18.48%)
statistics 6(6.522%)
device 6(6.522%)
control 6(6.522%)
result 5(5.435%)
resource 4(4.348%)

Table 2. Words Frequency Analysis Example

4This number was chosen as recommended from the used information
retrieval tool. In general, the barrier occurrence is dynamically calculated
and depends on the number of analyzed different words and the used the-
saurus.

With words categorization analysis we aim at identify-
ing categories and sub-categories of context-related words.
The analysis searches for classes and subclasses of words
depending on their relation in a word construction, for ex-
ample sentence or in our case feature name. The result of
the analysis is a categorization tree, which presents the iden-
tified word categories and sub-categories. Table 3 shows
categorization tree example from our studied system. In
brackets in the categorization tree are given the number of
records (features), where the categorized word is met.

image(20)
convert(4)
compress(1)
TIFF(1)
source(2)
format(2)
others

statistic(3)
report(3)
counter(2)
record(1)

Table 3. Words Categorization Analysis Ex-
ample - Categorization Tree

The results from the above described analyses are used
for clustering of features and finding of duplicated and
similar features. We have developed a semi-automated
process for clustering5 features. The process is manually
driven from experts, but we have developed a tool which
supports them. The tool helps the experts to navigate
through features and define feature clusters, but the assign-
ment of features to different clusters is manually done from
the experts. Figure 5 shows the activities and the data flow
of the feature clustering process.

The results of the information retrieval analyses are used
for definition of feature groups (clusters of features). Each
feature group is described with an unique name and a list
of keywords. The words from the word frequency analy-
sis determine the names of the groups. The words from the
word categorization tree determine the list of keywords for
the groups. Additionally the experts can extend and tune
the list of keywords and the groups names. They can also
define groups which were not detected from the informa-
tion retrieval analyses. Figure 6 shows an example form for
editing feature groups.

Once the feature groups are defined features have to be
assigned to them. For this purpose all features are listed in a
feature group assignment form (Figure 7). The experts filter

5Features describing similar or logically related functionality are con-
sidered from one and the same cluster.

iteratively the listed features. The applied filter is a logical
union of keywords describing a feature group (e.g. ”Load
or Save or Store”). After the filter is applied the resulting
records are explored and the experts assign the appropriate
features to the group. The filter and the keywords can be
refined as well after the filtering results are considered. In
case of refinement, the new filter has to be applied. If the
new filtering results are satisfying (the listed features belong
to the same group) all appropriate features are assigned to
the group. The filtering and assignment steps are repeated
for each defined group.

For better grouping of features it can be necessary to
break some groups into subgroups. The subgroups are de-
fined as normal groups and considered as such in the fea-
tures assignment form. The difference is that the original
group is considered as a super group for these features. This
technique allows unlimited hierarchy of feature groups to
be reached. When the grouping is finished the resulting fea-
ture groups will present clusters of features, which have the
same concern.

Table 4 shows some sample groups, which we identified
in our studied system. Table 5 lists a set of sample features,
which we classified to an ”Image TIFF Operations” group.
Figure 8 is a snapshot of a report showing the feature group-
ing results (the established feature clusters).

Feature Group Keywords
Input Output Load, Save, Store, Delete,

File, Container, Erase, Disk
Image TIFF operations Image, TIFF, Convert,

Compress, Store
Statistics Statistic, Counter, Report

Table 4. Sample Feature Groups and The Cor-
responding Keywords

Comp. Feature Group Super
Group

II Convert raw image data Image TIFF
into standard format (TIFF) operations Image

ISIF Compress images Image TIFF
(TIFF FAX4/JPEG) operations Image

IR Compress received Image TIFF
images (TIFF FAX4) operations Image

IDB Store images in Image TIFF
TIFF format operations Image

Table 5. Features Classified To "Image TIFF
Operations" Group

The features classified in one and the same cluster can
be examined for similarities. In case similar features are

found the traceability links will show in which architec-
ture components these features are implemented, which will
point the redundant design. Figure 9 shows the form, which
helps the similarities examination. The form allows defini-
tion of new features as well, which cover the similar ones.
Table 6 shows example of features from the ”Image TIFF
Operations” group, which we considered similar and the re-
sulting new feature. Three of the listed four features had the
same tasks and could be considered identical.

Comp. Feature Resulting
Feature

II Convert raw image data Compress Images
into standard format (TIFF) In TIFF format

ISIF Compress images Compress Images
(TIFF FAX4/JPEG) In TIFF format

IR Compress received Compress Images
images (TIFF FAX4) In TIFF format

IDB Store images in Compress Images
TIFF format In TIFF format

Table 6. Similar Features From The "Image
TIFF Operations" Group

2.5 Deduction of Clues and Hints for Architecture
Development

The results from the above described analyses provide a
set of clues and hint, which if considered can support sys-
tem architects in architecture restructuring. Namely:

• A new designed system architecture should consider
and if necessary should break the monoliths pointed by
the architecture disproportions analysis and should re-
move the problems detected by the redundancies anal-
ysis.

• The number of related and implemented features can
be considered as a complexity metric for architecture
components. Although such metric is very subjec-
tive and not an exhaustive one it gives quick and good
”first look” orientation for the complexity of architec-
ture components. Keeping an eye on the number of
features covered from the designed components helps
the architects to avoid making preconditions for mono-
lithic development.

• The established feature clusters during the redundan-
cies analysis can put the development on the right track
finding the right architecture components. Our experi-
ence shows that these results are not sufficient for com-
plete components design, but the information provided
from the established feature clusters is good clue for
the architecture designers.

• The redundancies analysis shows the overlapping
functionality within the system. It can help the ar-
chitects to define better abstractions and to avoid the
double work in the new system design.

3 Related Work

A very detailed and comprehensive overview about ex-
isting research approaches and open questions in the field
of restructuring and refactoring is given in [20] They point
out that there is an urgent need for techniques to support
the reducing of software complexity by incrementally im-
proving the internal software structure. They also consider
the necessity to apply refactorings at a higher abstraction
level than source code e.g. applying on UML design mod-
els similar to [5], [27] or to use Gamma Design Patterns
for a high level program structure description. Approaches
that are focused on the integration of domain knowledge in
form of features that are derived from existing architectures
or located in the source code and enhanced with current do-
main requirements for supporting design decisions are [8]
and [24].

Before carrying out refactoring activities based on fea-
ture models the recovered and described architecture must
be analyzed in consideration of architectural disproportions
and redundancies. Therefore metrics and clone analyzing
techniques can be useful integrated into the architectural re-
structuring process.

In [9] an approach is presented that provides design prin-
ciples and rules based on a factor-criteria-metrics-model.
Several components of an object oriented system can be an-
alyzed to point out the conformity to specific design goals
and to derivate decisions for the software stability improve-
ment. This technique can be used in addition to the pro-
posed method.

Decomposing software systems into modules leads to
benefits for software flexibility and comprehensibility. In
[13] a tool is introduced that assists refactoring of source
code in order to achieve a proper package structure. There-
fore they use a metric for evaluating the quality of package
structure. The metric is defined as the weight of all desir-
able dependencies in all packages divided by the tool weight
of the dependencies in all packages and provides a way to
quickly evaluate the internal quality of large software prod-
ucts based on their source code. Similar to the work in [26],
metrics are used in our method to detect a need for refactor-
ing a given software system. Statistical Techniques can also
be used to provide empirical measurement on the practical
use of refactoring.

Clone detection is necessary for finding of redundan-
cies. For lowering of software complexity particular soft-
ware clones can be removed. In [4] a comprehensive com-
parison of different clone detection techniques is presented

and evaluated by consideration of the achieved values for
the recall and precision metrics. Most of the techniques op-
erate on source code level only.

For detection of clones several techniques have been in-
vestigated considering their usefulness for supporting refac-
toring activities. Some of them are based on a full source
code text view, other focus on whole block sequences us-
ing metrics or pattern matching techniques. All approaches
provide useful information about inherent clones but in the
most cases the information is not enough for clone based
refactoring.

In [14] the Gemini environment is described that can be
used for analyzing the code clones and for modifying them
e.g. for reducing the clone pairs and clone classes by using
a so called Code Clone Shaper. In [21] the relation between
software reliability and maintainability in connection with
software code clones is shown. It is explained that modules
having code clones can be more reliable on average than
modules having non code clone. But modules having very
large code clones are getting less reliable and are less main-
tainable. An approach for clone-analysis which focuses on
the extraction of clone differences and their interpretation in
terms of programming language entities and on the study of
contextual dependencies is introduced in [2]. This approach
supports the computer-aided refactoring process and it is a
good extension to our approach. Refactoring decisions can
be done based on provided general information and special
characteristics of selected clone clusters.

Information Retrieval offers various techniques for eval-
uating natural language documents [25]. The basic princi-
ple of concluding the importance of a concept in a partic-
ular environment from its frequency is applied here. Fea-
tures and requirements documents are evaluated by analyz-
ing texts in relation to other documents of a domain.

There are several methodologies for describing and
structuring domain knowledge. The ASIUM system that
is described in [10] supports the acquisition of seman-
tic knowledge from texts based on a conceptual clustering
method.

4 Conclusion

The increased demand for reengineering of software sys-
tems in the last decades has provoked research in the cor-
responding direction. A lot of technologies have been de-
veloped to help overcoming the related problems. Some
of the approaches are automated, some semi-automated or
fully manual. Finally the practice shows that still reengi-
neering projects require a lot of manual work and expert
help. Every system being subject of reengineering has its
peculiarities and only people who are deep into it and its
problems can restructure it, redesign it and make it conform
to the latest software technologies and to the present user

needs. Reengineering methods support the work of these
people. They help them recover information, which is lost,
outdated or has never been documented. The results of the
reengineering approaches are often considered as clues and
hints from the system experts by performing their redesign
activities.

In this paper we showed how system experts can get
some good clues and hints about architecture restructur-
ing activities from problem domain information gathered
in a feature model of a reengineered system. We showed
how analyses performed over feature models and applica-
tion of information retrieval techniques can hint system ex-
perts existing design problems like unbalanced architecture
and design redundancies. Additionally the proposed anal-
yses provide hints about overcoming design problems and
about possible separation of system tasks over architecture
components.

The proposed approach is driven from real problems ob-
served in an industrial project. Being such one it carries the
specifics of the studied system, but in our opinion it has the
potential to be successfully applied in other reengineering
projects.

5 Future Work

We plan to continue our work in researching the possi-
bilities for application of features and feature modeling in
reengineering projects. Feature models give a very com-
prehensive structure of the domain knowledge and contain
architecture information as well. Due to these characteris-
tics of the feature models we see a good potential for their
application in reengineering projects. Up to now we found
out how feature modeling can be applied for program com-
prehension and architecture recovery and how analyses of
feature models can produce a set of clues and hints, which
support architecture restructuring and new design. Now we
intend to direct our research to find out how features and
feature modeling can help overcoming system architecture
decay and obsolescence of the whole system. We would
like to find the right fundamentals, which will move away
as much as possible the time point when the next reengi-
neering will be required.

References

[1] S. Baker.
On finding duplication and near-duplication in large software

systems.
In Newcomb P. Wills, L. and Chikofsky E., editors, Process-

dings of the Second Working Conference on Reverse En-
gineering, pages 86–95. IEEE Computer Society Press,
Juli 1995.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lage, and K. Kon-
togiannis.

Advanced clone-analysis to support object-oriented system
refactoring.

In Processdings of the 7th Working Congress on Reverse En-
gineering (WCRE 2000), pages 98–107, Brisbane, 2000.
Computer Society Press.

[3] I. Baxter, A. Yahin, L. Moura, M. Santanna, and L. Bier.
Clone detection using abstract syntax trees.
In Processdings of the International Conference on Software

Maintenance, 1998, 1998.
[4] S. Bellon.

Vergleich von techniken zur erkennung duplizierten quell-
codes.

Master’s thesis, Institute for Informatics, University of
Stuttgart, 2002.

[5] M. Boger, T. Sturm, and P. Fragemann.
Refactoring browser for uml.
In Processdings of the 3rd Intl Conf. on eXtreme Program-

ming and Flexible Processes in Software Engineering,
pages 77–81, Alghero Italy, 2002.

[6] K. Czarnetcki and U. Eisenecker.
Generative Programming: Principles and Techniques of

Software Engineering Based on Automated Configura-
tion and Fragment-Based Component Models.

Addison Wesley, 2000.
[7] S. Ducasse, M. Rieger, and S. Demeyer.

A language independent approach for detecting duplicated
code.

In Processdings of the International Conference on Software
Maintenance (ICSM99), 1999.

[8] T. Eisenbarth, R. Koschke, and Simon D.
Aiding program comprehension by static and dynamic fea-

ture analysis.
In Processdings of the International Conference on Software

Maintenance. IEEE Computer Society Press, November
2001.

[9] K. Erni and C. Lewerentz.
Applying design-metrics to object-oriented frameworks.
In Processdings of the 3rd International Software Metrics

Symposium, pages 64 – 74, Berlin, Germany, March
1996. IEEE Computer Society Press.

[10] D. Faure and C. Ndellec.
A corpus-based conceptual clustering method for verb

frames and ontology.
In Processdings of the LREC workshop on Adapting lexical

and corpus resources to sublanguages and applications,
Granada, Spain, Mai 1998.

[11] C. Gane and T. Sarson.
Structured Systems Analysis.
Prentice-Hall, 1979.

[12] M. Griss, J. Favaro, and M. dAlessandro.
Integrating feature modeling with the rseb.
In Processdings of the Fifth International Conference on

Software Reuse, pages 76–85, Victoria, Canada, June
1998. IEEE Computer Society Press.

see http://www.intecs.it.

[13] E. Hautus.
Improving java software through package structure analysis.
In M. Blaha F. Balmas and S. Rugaber, editors, Processdings

of the WCRE’99 (6th Working Conference on Reverse
Engineering), Oct. 1999.

[14] Y. Higo, Y. Ueda, K. Kamira, S. Kusumoto, and K. Inoue.
On software maintenance process improvement based on

code clone analysis.
In Processdings of the 4th International Conference, PRO-

FES 2002, pages 185–197, Rovaniemi, Finland, Decem-
ber 2002. LNCS 2559, Springer.

[15] L. Hyatt and L. Rosenberg.
A software quality model and metrics for identifying project

risks and assessing software quality.
In Processdings of the 8th Annual Software Technology Con-

ference, 1996.
[16] T. Kamiya, S. Kusumoto, and K. Inoue.

Ccfinder: A multi-linguistic token-based code clone detec-
tion system for large scale source code.

IEEE Trans. Software Engineering, 28:654–670, 7 2002.
[17] Kyo C. Kang, G. Sholom, J. A. Cohen, W.E. Hess, A. Novak,

and S. Peterson.
Feature-oriented domain analysis (foda): Feasibility study.
Technical report, CMU/SEI-90-TR-21, Software Engineer-

ing Institute, Carnegie Mellon University, 1990.
[18] K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and

E. Merlo.
Pattern matching for design concept localization.
In Processdings of the Second Working Conference on Re-

verse Engineering, pages 96–103, Toronto, Ontario, July
1995. IEEE Computer Society Press.

[19] J. Krinke.
Identifying similar code with program dependence graphs.
In Processdings of the Eighth Working Conference On Re-

verse Engineering (WCRE01), 2001.
[20] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, and

P. Van Gorp.
Refactoring: Current research and future trends.
In Processdings of the ETAPS workshop LDTA 2003, 2003.

[21] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Mat-
sumoto.

Software quality analysis by code clones in industrial legacy
software.

Technical report, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-
TR2001007, September 2001.

[22] I. Pashov and M. Riebisch.
Using feature modeling for program comprehension and

software architecture recovery.
In Processdings of the 10th IEEE Symposium and Workshops

on Engineering of Computer-Based Systems (ECBS’03),
Huntsville Alabama, USA, April 2003. IEEE Computer
Society.

[23] M. Riebisch, K. Boellert, D. Streitferdt, and I. Philippow.
Extending feature diagrams with uml multiplicities.
In Processdings of the Integrated Design and Process Tech-

nology (IDPT) 2002, pages 1–7, 2002.

[24] C. Riva and J. V. Rodriguez.
Combining static and dynamic views for architecture recon-

struction.
In Processdings of the Sixth European Conference on Soft-

ware Maintenance and Reengineering, Budapest, March
2002.

[25] G. Salton and M. J. McGill.
Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[26] F. Simon, F. Steinbrckner, and C. Lewerentz.
Metrics based refactoring.
In Processdings of the European Conf. Software Mainte-

nance and Reengineering, pages 30–38, 2001.

[27] G. Suny, D. Pollet, Y. LeTraon, and J.-M. Jzquel.
Refactoring uml models.
In Processdings of the UML2001, pages 134–138. LNCS

2185, Springer, 2001.

Database
with

Features

Describe Groups of
Features with Name

and List of
Keywords

Feature Names

Filter The Feature
Database with a
Group Keywords

Feature Groups

Explore The Filtered
Records and Assign

The Group to The
Suitable Features

Set of Features
Containing The Keywords

Refine The
Group and The

Keywords

Adapt The
Filter in The

Database

Define Possible
Subgroups and The

Corresponding
Keywords

Assign The
Subgroups as

Groups to Sets of
Suitable Features

Assign The Group
as Super-group to
The Previous Set

of Features

Clusters of
Features

(Groups and
Subgroups)

Set of
Features

Assigned to
Hierarchical

Groups

Words
Categorisation

and Repeat
Frequenca
Analyses

Categories
of important

words

Set of Features Assigned
to a Feature Group

Refined Keywords for
a Feature Group

Set of Features
Containing Group Keywords

Feature Subgroups

Set of Features Assigned
to a Feature Subgroup

Figure 5. Features Clustering Process Data
flow

Figure 6. Features Clustering Tool - Feature
Groups Edit Form

Figure 7. Features Clustering Tool - Feature
Groups Assignment Form

Super Group Group Component Feature

Image Image IO operations IS (Image Store) Retrieve images and attributes

Store images and attributes

TD Store loaded images into IS container style

Image TIFF operations IDB Store images in TIFF format

II Convert raw image data into standard format (TIFF)

IR Compress received images (TIFF FAX4)

ISIF Compress images (TIFF FAX4/JPEG)

Figure 8. Features Clustering Tool - Groups-
Features Report (Established Feature Clus-
ters)

Figure 9. Features Clustering Tool - Similari-
ties Examination Form

