
 1

Traceability-Driven Model Refinement
for Test Case Generation

Matthias Riebisch, Michael Hübner
Ilmenau Technical University, Ilmenau, Germany

{matthias.riebisch|michael.huebner}@tu-ilmenau.de

Abstract
Testing complex Computer-Based Systems is not only a

demanding but a very critical task. Therefore the use of
models for generating test data is an important goal. Tool
support during the generation of test cases can
considerably reduce the effort and the risk of errors of this
task. While model the understanding of model
transformation got better in the past, the analysis of the
input – requirement specifications mostly consisting of
natural language texts – still represents a bottleneck. In
this paper a method for closing the gaps between manual
techniques for structuring texts and automatic techniques
based on linguistics is explained. By providing suggestions
for missing or ambiguous terms the method supports the
formalization within large projects. The suggestions are
derived from a glossary and from an analysis of their
integration in use case descriptions. Additionally the
traceability links via feature models and other model
elements are analyzed. Thus, the advantages of both
techniques are joined to increase the level of tool support,
resulting in a higher efficiency of the test case generation.

1 Introduction

Contemporary Computer-Based Systems have to satisfy
a variety of requirements. Due to their complexity the
usage of models during the design constitutes an essential
necessity. Models have to support the developers in
achieving comprehension and in communicating ideas,
enabling the early assessment of a solution. However,
there is another important need for the usage of models. If
requirements for correctness and reliability play an
important role, a lot of effort for system verification and
validation has to be invested. Model-based test case
generation addresses this issue to reduce this effort.

Depending on the domain, different degrees of model
formality are accepted. If behavior, i.e. in terms of state
models, plays the most important role and rigorous
approaches are accepted for its description, a number of
approaches provide considerable support.

If non-functional properties and quality requirements
together with complex functional requirements have to be
fulfilled, requirements are usually described by natural
language texts. In such cases, rigorous approaches are not
applicable for modeling requirements and their

implementation. However, manual methods for the
analysis of textual descriptions and the generation of test
cases are very effort consuming and error-prone. The
benefit in terms of efficiency and productivity is the
justification to invest more effort in formalization and
model-based refinement, in contrast to formalization of
requirements specifications for traditional software
development, where the benefit would be minimal.
However, the generation of models for model-based
development is supported as a side effect.

Especially the issues of data transformation, behavioral
constraints and features at a higher level of abstraction are
frequently expressed by natural language terms, often
structured within semi-formal descriptions. In these types
of descriptions a term carries a meaning for a reader
because it is associated with ideas in his/her mind. Missing
semantic information hinders the use of tools for analysis
and generation.

In this contribution, automatic techniques for lexical
and linguistic analyses for formalizing text are extended to
reduce the effort for the manual completion and
replacement of missing and ambiguous parts. Therefore,
ideas of manual techniques like text templates are
integrated with the concepts of features and traceability
links to provide suggestions for the human activities. The
efficiency of the usage of large glossaries is improved.

The main benefit of this combination is the improved
degree of automation of the analysis and restructuring
activities. Furthermore, the applicability of the method in
large projects is improved by providing tool support for
cross-referencing and replacing the terms based on a
glossary. In addition to these effects, the resulting
traceability links support later design comprehension and
reengineering.

2 State of the Art

There are already good methods and techniques
contributing to the goals of model-driven test case
generation and model-driven software development.

2.1 Use Case Refinement
Semi-formal descriptions represent one of the

approaches aiming at a reduction of inconsistency and
ambiguity of natural language documents. In the case of
requirements specifications, text documents are structured

 2

using text templates, i.e. by the Volere schema [RR00]. In
many domains, use cases are widely accepted for
specifying requirements, especially for object-oriented
development methods [OMG]. To express behavioral
information of use cases, attached text templates are
established as a de facto standard [Co00]. These templates
provide a semi-formal description of the procedure of a
scenario. The template sections are described by
keywords. As a result, the average description is more
complete and less ambiguous than without a template.
Later, Tab 1 will give an example.

In our case, the behavioral specification is of special
interest for the generation of test cases. By its structure the
sections precondition, main success scenario,
postcondition and failure, contain information about the
behavior. The information is expressed in natural
language. The overall comprehension for the reader is
improved in comparison to plain text, because the
structure guides the writer of a specification. However, for
the information within the sections no further structure or
formalization is provided. Therefore the sections cannot be
evaluated by automatic tools – i.e. for verification or for
test case generation purposes. Semantics are expressed by
the use of natural language terms only. Further
formalization was out of the scope of the method, because
the resulting specification is intended to be implemented in
a conventional way.

The SOPHIST method [Ru01] performs a refinement
and a formalization of structured texts by introducing text
templates with a defined syntactical structure instead of
free natural language text. Therefore, the inner structure
provides some formalization, leading to less ambiguous
and more complete descriptions. However, the method is
carried out manually, and the templates reduce the
flexibility strongly. Another drawback is the low support
for formalizing behavioral descriptions.

Information Retrieval methods [SG83] contribute to the
exploration of the content of natural language texts. There
is a broad variety of methods and techniques that have
shown their applicability in practice, e.g. in patent
research. However, the usage of a glossary is mostly
limited to simple lists of terms, and the semantics of texts
cannot be analyzed clearly enough to derive test case
specifications.

Linguistic approaches, as developed in the CREWS
project [RBA98], search for linguistic structures within
structured texts of requirements descriptions. The
linguistic structures are replaced by templates to increase
the degree of formalization. This approach supplies
behavioral information as a part of specific conceptual
models. The methods of CREWS provide good
preconditions for automatic test case generation by
providing automatic text analysis and rule based
evaluation. Verification and validation is supported by a
model-based generation of a text and its analysis after a
revision. The flexibility of the natural language is less

limited than by the SOPHIST method. However, 10 .. 30
percent of information is not recognized during the
automatic analysis. There is no substantial support for the
manual completion of this missing information.
Furthermore, the CREWS output format does not enable a
direct generation of behavioral UML models.

2.2 Test Case Generation
For a transformation of behavioral models to test case

specifications, a large set of methods is available. E.g. the
papers by Krueger et al. [KGSB99][BGK02] show
possibilities for transforming sequence diagrams to state
charts. The resulting behavioral models can serve as input
for the test case generation and for a model-driven
development.

The integration of text analysis concepts to test case
generation approaches [RRC00] enables a construction of
test cases to some extend, but there is a high effort for
human interaction, especially for larger systems with
larger glossaries and complex interactions.

2.3 Traceability Links
Traceability links describe the dependencies between

the artifacts of different stages of development. They
support the verification of solutions by linking rationale,
decisions and solution elements. In this way they structure
complex information and ease the developers
comprehension.

Traceability links are usually applied to four major
tasks within software systems development:

• compliance verification,
• requirements (elaboration and) refinement,
• design allocation, and
• rationale determination and decision-making.

The CREWS project explored the usage of Traceability
Links to software development activities [RJ01]. Different
categories of links have been analyzed.

For applying the traceability links to generate test cases
they have to connect model elements and expressions at a
detailed level. As a result, their number is high. The issue
of maintaining and checking them is crucial. There are
some approaches supporting the elaboration and the
maintenance of the traceability links, but they demand for
further development [Rie04].

2.4 Feature models
A feature model represents the relations between the

features of a system. A feature stands for "a logical unit of
behaviour that is specified by a set of functional and
quality requirements representing an aspect valuable to the
customer and system architect" following the definitions in
[RSP03]. The feature model provides an abstract view on
the requirements by grouping them. Later, Fig 5 will show
the relations between rationale, decisions and solution
elements by traceability links grouped by features.

 3

Features are used in this approach for providing a context
by the use cases belonging to one feature.

3 Method overview

The test case generation method as a whole consists of
four major steps; its first step is described in this paper. As
initial input it works on a requirements specification in a
structured form of use cases description templates as
defined by [Co00]. Furthermore, a feature model is used
for structuring these use cases. Additionally, an initial
glossary is helpful to provide important terms of the
domain, extended by a short explanation. Fig 1 shows an
overview over the four steps.

1. Refinement and
Formalization

1. Refinement and
Formalization

2. Definition of
State Models

2. Definition of
State Models

3. Transformation
to Usage Graphs
and Usage Models

3. Transformation
to Usage Graphs
and Usage Models

4. Statistical
Usage Testing

4. Statistical
Usage Testing

...

Definition of
Use Cases

Definition of the
Architecture

Implementation
& Integration

Fig 1: Overview over the test case generation process

In the first step, the requirements specification is
formalized and refined in an incremental way. It results in
behavioral description by formalized semantic patterns,
that is transformed into a activity model as defined by
UML 2.0 [OMG]. The terms describing the model
elements provide semantic information via associations to
the glossary and to other models. Only these activities of
the method are described in this paper

If still unavailable, a data model and a model of the
graphical user interface GUI has been built in parallel to
the incremental formalization. Their elements e.g. a button
of a GUI or a data field are required as targets of the
behavioral descriptions, and as objects within the
grammatical structure of the text templates.

As step 2 the activity diagrams of the behavioral model
are transformed to sequence diagrams and to state models,
based on the definitions of UML 2.0. from the formalized
behavioral description. For these transformations, a set of
methods is applied as mentioned in section 2.2. The
resulting behavioral models can serve as the input for the
test case generation as well as for a model-driven
development.

In step 3 the behavioral model consisting of state charts
is transformed into usage graphs by adding usage
information (e.g. probabilities). Subsequently, these usage
graphs are transformed to usage models applying the
methods [WP00] and [HPR03]. As result, sequences of
state transitions describe test cases. These activities are

performed to prepare a statistical usage testing. If other
types of tests - e.g. coverage tests - have to be performed,
different activities have to be done in this step.

As step 4 the test cases are processed automatically. For
this activity a broad variety of powerful tools is available
and ready for industrial use.

4 Incremental Refinement and
Formalization of Use Case Descriptions

This paper concentrates on step 1 of the method as
described in the previous section and in Fig 1. In this step,
a description of natural language has to be transformed
into an expression with formally defined syntax and
semantics. This transformation is performed in an
incremental process. In conjunction with the formalization,
the text parts are refined by adding more detailed
information or by replacing general terms by more
concrete ones.

This step of the method is mostly based on the powerful
text analysis techniques of the CREWS project. They
provide tool support in the transformation of 70 .. 90
percent of the text parts into syntax graphs. The main
contribution of the new method consists in the support for
the remaining parts, leading to a strong reduction of the
human effort for the transformation, especially in the case
of large systems. Suggestions for completion and
replacement are provided by a comparison of semantic
patterns and by a traceability-driven analysis of the roles
of glossary terms as described by section 4.4. Fig 2 gives
an overview about this step of the method.

Lexical Analysis

Linguistic
Text Analysis

Semantic Analysis

Structured Use
Case Description

Glossary
Initial

Glossary
Updated

Transformation
Activity
Diagram

Glossary
Cross-Linked

Fig 2: Formalization of a use case description

The method is explained using the following case study
to provide details about the activities and to demonstrate
its applicability in a practical setting. A mobile device – in
this case the Blackberry handheld 7230 – is extended by a
plugin component to support emergency services. The
device provides information services to emergency and
rescue teams in addition to their usual means of
communication. The provided information includes an
access to medical knowledge bases, geographic data and

 4

building information as well as a background information
e.g. dangers of the particular situation.

In parallel, data about the current operation are
collected both to reduce bureaucracy and to provide
information to others earlier: data about injured persons
such as name, social security data, status, current place;
information about the operation such as orderer, time and
costs.

If a GPRS connection is available, data is transmitted
immediately to a backoffice service. Otherwise it is
uploaded via the Blackberry’s docking station after an
operation. Fig 3 shows the use case diagram.

Central
Database

Create
a transportation

record

Enter personal
dataEnter state

of health

Provide medical
information

Ambulance man

Mobile Device

Provide
geographical
information

<<include>>
<<include>>

Fig 3: Use Case Diagram (partly)

The use cases are structured by assigning them to
features or a feature model. For our case study, among
others, the use cases “Create a transportation record”,
“Enter state of health” and “Enter personal data” are
assigned to a feature “Collect patient transportation data”.

Further on, the use case “Enter personal data” is applied
as an example. Tab 1 shows its use case description in the
initial form, according to the template of [Co00]. The
sections Main success scenario and Alternative scenarios
are of special interest for behavioral modeling. The Social
Security Number SSN plays the role of an identifier of the
patient.

Further information about the requirements of the
system and about its environment e.g. the graphical user
interface or the data structure is described in additional
models. These models are frequently necessary for test
cases because they are referenced by use cases or test
activities, e.g. “Button XY is pressed”. The names of
model elements are related to glossary items. Fig 4 shows
a part of the data model that is used in the examples.

Tab 1: Use Case Description “Enter personal data”

USE CASE Enter personal data
Description Verify or enter the personal data of the patient.
Actors Ambulance man
Scope Software on the Blackberry device
Level User-level
Precondition The ambulance man is logged into the program

1 The ambulance man enters the SSN of the
patient.

2 The system retrieves the patient’s records
with the given SSN from the central
database.

3 The ambulance man verifies the last name
and the address of the patient.

Main success
scenario

4 If the personal data of the patient have
been changed, the personal data of the
patient is transmitted to the central data
base.

Postcondition The information about the transport is stored in
the central data base.
1a The SSN of the patient is not available.
1a1 The ambulance man enters the first

name, last name, birth name, sex, date
of birth and place of birth.

1a2 The system searches in the central
database for a patient record with the
given birth name, sex, date of birth and
place of birth.

1a3 There is a patient record with birth
name, sex, date of birth and place of
birth matching to the given data.

Alternative
scenarios

 Proceed with step 3
1a3a There is no patient record with the

given birth name, sex, date of birth and
place of birth.

1a3a1 The ambulance man enters the address.
1a3a2 A new patient record with the given

personal data is created.

 Proceed with step 4
4a There is no connection to the central

data base.
4a1 The data is stored temporarily in the

Blackberry device.

4a2 When the connection is established, the
data is transmitted to the central data
base.

4.1 Lexical analysis
The lexical analysis is performed for every entry of the
behavioral parts of the use case description. It determines
the word class (part of speech) for every word. In the
English language, there are many words with identical
forms for verb and noun. At this stage, no further
distinction is possible, therefore more than one word class
can be assigned.

First, rules are applied to map derived words to a
corresponding stem word, i.e. a plural noun is mapped to
the corresponding singular noun, and a verb with a 3rd
person singular “s” is mapped to the infinitive form.

 5

Address
city : String
zip_code : String
street : String

Injury
damage_kind : String
body_parts : String
grade : String

Person
last_name : String
first_name : String
birthday : Date
birthplace : String
SSN : String

+current_address

Hospital
department
contact person

Patient_transport
pick_up_date_and_time : Timestamp
delivery_date_and_time : Timestamp

0..n

+patient

Location
name : String
GPS_coordinates

+pick_up_location

+delivery_location

Findings
consciousness_state : String
observation_date_and_time : Timestamp
transportability_state : Boolean

0..n1..n

+injuries

0..n1..n

0..n0..n

Staff
id : String
mobile_phone : String
job_position : String

+observer

Fig 4: Data Model as an UML Class Diagram

The word class for every stem word is retrieved from a
word list. In rare cases, unknown words have to be
classified manually while the classification is recorded for
a later update of the list and the rules. The lexical analysis
is performed using well-established methods of linguistics,
e.g. [Ch71][SG83].

Example: Thedefinite-article ambulancenoun mannoun entersverb
thedefinite-article SSNnoun ofpronoun the definite-article patientnoun.

4.2 Linguistic analysis
There are rules for the linguistic analysis of clauses (i.e. of
simple sentences). A slightly simplified version of these
rules is given in the sequel.

The whole set of these rules describes a subset of the
natural language. This subset is defined in a way that the
resulting grammar still enables human-readable texts,
because the formalized requirements specification has to
be verified and validated by the customer. In contrast to
the rather strict definitions by the templates of the
SOPHIST method (see section 2.1) there is a higher degree
of flexibility for such descriptions. Of course, the grammar
subset should be as simple as possible to limit the effort of
a tool-based evaluation.

The description of the rules for our method is very
similar to the Backus Naur format of grammar
specifications. The rules are mostly based on the CREWS
rules. Some examples are given below, but a further
discussion of the grammar would be out of the scope of
this paper.

<clause> ?= <active-clause>
| <passive-clause>

<active-clause> != agent:<noun-phrase >
verb:<active-predicate>

[object:<noun-phrase>]
[complement:<preposition-phrase>]...

<noun-item> ?= <noun> | <noun-sequence>

<noun-phrase> ?= <unrelated-noun-phrase>
| <related-noun-phrase>

<related-noun-phrase> != owned:<unrelated-noun-phrase>
„of“ owner:<noun-phrase>

As an example, the following sentence from the use
case description in Tab 1, activity 1:
“The ambulance man enters the SSN of the patient.”

is transformed by the linguistic analysis into the tree:

((the ambulance man)agent (enters)verb ((the SSN)owned: noun-

sequence of (the patient)owner)object)active-clause

4.3 Semantic analysis
At this stage the structure of the sentences is defined by

the roles of the terms within them. For a transformation to
formally defined expressions, the CREWS method
proposes an assignment to typical structures, so-called
semantic patterns. According to CREWS, a comprehensive
set of semantic patterns has to be developed. For building
behavioral models, the templates of the SOPHIST
technique are being applied here.

For the later transformation into activity diagrams the
semantic patterns refer to typical structures in activity
diagrams. In this way, the patterns map a set of clauses to
an activity diagram.

For every semantic pattern there are one or more rules
that map a linguistic structure to that semantic pattern. The
rules are applied to a node, e.g. to a clause. For every part
of the semantic pattern (e.g. part agent) an expression
specifies its contents in terms of the linguistic tree. For a

 6

semantic pattern to be applicable all mandatory parts must
be present in the linguistic tree. Optional parts are
indicated with a question mark before the equal sign.

The linguistic structure of the example sentence can be
transformed by the following rule

<clause>{verb:<enter> } → <dataEntry>
Agent:object!=agent
Object:object!=object
Source:object!=agent
Destination:object{default : ‘the
system’}?=complement[preposition=’into’].object

As a result it is instantiated and it builds a reference to a
use case providing a refinement. The name of the use case
was provided from the glossary:

<clause>{verb: <enter>, agent:object!=’the ambulance man’,
object.owned=”the SSN”, object.owner = ”the
patient“}

The resulting semantic pattern instance refers to
glossary entries:

<dataEntry> (the ambulance man)agent (the ssn)attribute (the
patient)object

To provide the input for the completion in the next
session, as another example the section 1a3a1 of Tab 1 is
analyzed “The ambulance man enters the address.” The
linguistic analysis leads to this result:

((The ambulance man)agent (enters)verb (address)simple-unrelated-

noun-phrase)active-clause

The transformation rule is rather similar to the one
above. However by providing more than one
transformation rules a higher flexibility of the texts is
allowed:

<clause>{verb:<enter> } → <dataEntry>
Agent:object!=agent
Object:object!=object
Source:object!=agent
Destination:object{default : ‘the
system’}?=complement[preposition=’into’].object

The use case describes a patient transport. That’s why an
instance of type PatientTransport is the main object of the
use case and hence the starting point of the search for
attribute and relation names in the data model. The
resulting semantic pattern instance contains Address as an
object because of its role in the sentence.

<dataEntry> (the ambulance man)agent (the address)object (the
system)destination

4.4 Tool-supported formalization
For a text of the use case description, the relations

between the words and terms of the texts are at this stage

described by formal means, because they are assigned to
the linguistic variables of semantic patterns. However, the
meaning of most terms is still related to the context.
Therefore they can not be evaluated during a
transformation into a model. A glossary is applied to
provide a context and to relate terms to each other. Three
typical cases have to be handled:

1. a term is part of the glossary
2. a term is not available in the glossary
3. a term is incomplete
Other cases, e.g. if a term does not match any of the

semantic patterns, have to be handled manually. However,
in our experience these cases are less than one third, others
report 10 percent [RBA98].

If the term is part of the glossary then the term within a
semantic pattern is replaced by a reference to the glossary
item, and in this way references to other elements of the
context can be drawn.

If a term is not available in the glossary, then it has to
be replaced manually by a glossary item, or the glossary
has to be extended. However, for large systems with a
large glossary this is a very effort-consuming task.
Moreover, any changes to the glossary are critical for the
evaluation. The consistency of the references between
glossary items and terms in requirement description as
well as in model elements has to be maintained. As an
experience from our case studies we had to draw the
conclusion, that the effort for manual term replacement
and the necessary consistency checks is nearly as high as
that of manual techniques for formalizing natural language
texts, e.g. the SOPHIST method [Ru01].

In our method, a subset of the glossary items is built,
that is provided for a manual selection and replacement.
This subset is derived by evaluating the references
between glossary items and features. As mentioned earlier,
a feature represents an abstraction of a set of use cases. Fig
5 shows the relations of the data model in an UML class
diagram. Features map use cases to the solution, as usual
for many approaches [RSP03]. This mapping is described
by traceability links (full lines in Fig 5). In this
formalization method, terms are related to each other via
the glossary (shown as dashed lines in Fig 5).

Use Case Design Model
Element

Feature

Implementation
Element

1

1..* 1..*

1..*

Glossary Item
0..*

1..*
1..*

0..*

Fig 5: Relations Between Features and Glossary Items
via Traceability Links

The context of a use case is expressed by its assignment
to a feature. Therefore, all glossary items occurring in use
cases (and model elements) of the same feature can be
regarded as belonging to this context. This relation is
exploited for building the subset of glossary items that is

 7

provided for the manual replacement. Furthermore, the
linguistic information is included to provide only terms of
the required type.

Enter SSN

Verify Last Name
and Address

Connection
Available ?

Update Database

SSN
Available ?

Entry
Found ?

Enter Address

Enter Name, Sex,
…, Date of Birth

Search Database
for Matching Entry

Create a
New RecordStore Temporarily

Transmit to Database
via Docking Station

Fig 6: Resulting Activity Diagram

If none of the proposed terms is an appropriate
replacement, the developer may enter a new term.
However, this new term has to be integrated into the
glossary, e.g. by building references via a thesaurus. By
enabling new terms, a flexible way of working is not
reduced by the method.

In the third case if a term is incomplete, one or more
suggestions for a replacement and completion are provided
to the developer. In our example from section 1a3a1 of
Tab 1 “The ambulance man enters the address.” the object
is missing, and the address occupies the role of the object.
This incompleteness is not discovered during the lexical,
the linguistic or the semantic analysis. However, when the
terms are replaced by a comparison between other models
and the glossary, Address is not available in the data
model as an object but as an attribute of a Person (Fig 4).
Therefore, the expression has to be completed by the
developer. This is supported by proposing possible
candidate terms from the context. The suggestions are
based on a subset of the glossary items. Similar to the
former case, the subset is derived by an evaluation of the
glossary items from the context as determined by a feature
and the use cases related to it via traceability links. All
glossary items of the word class noun and with a reference
to Person in the data model are included in the subset.

The selection demands only low effort, because only
the two terms “the ambulance man” and “the patient” are
proposed.

If a proposed subset is incomplete, e.g. because it is
based on incomplete model information, the developer can
add items to the glossary or he can extend the models. In
this way the flexibility is maintained.

For refinement there is the additional option of entering
information directly into templates, as proposed by the
SOPHIST technique. This way is fairly quick, but the
flexibility is less than by analysing natural language texts.

4.5 Transformation to activity diagrams
The input of the last step is provided as expressions

following a formally defined syntax and semantics. In our
case, the expressions are provided in XML. The rules for
transforming the expressions to activity diagrams have
been defined by defining the semantic patterns for section
4.3. The rules are implemented in an XSLT-based
prototype tool. Fig 6 shows the resulting UML activity
diagram that represents the use case description of Tab 1.

5 Conclusion

The method presented in this contribution integrates
forward engineering and verification by providing refined
model information to both processes. To enable this
integration, models have to express additional information.
This integration is inspired by the idea of model-based
development. Further work is necessary to prepare this
approach to additional domains.

6 Acknowledgements

This work was partly funded by the German Research
Association DFG under grant PH49/5-1.
We would like to thank our colleague Detlef Streitferdt for
his feedback to an earlier version of this paper.

7 References

[BA99] C. Ben Achour: Extraction des Besoins par
Analyse de Scénarios Textuels, Université Paris 6,
1999.

[Bo00] J. Bosch: Design & Use of Software Architectures
- Adopting and Evolving a Product Line Approach.
Addison-Wesley, 2000.

[BGK02] M. Broy, R. Grosu, I. Krüger: Automatically
Generating A Program, US Patent No.: 06405361,
2002.

[CA05] CARE Requirements Engineering Tool, Version
3.x. Sophist Group, 2005. Online available at
http://www.sophist.de

[Ch71] N. Chomsky, Deep Structure, Surface Structure
and Semantic Interpretation. Steinberg & Jacobovits,
1971.

[Co00] A. Cockburn: Writing Effective Use Cases,
Addison-Wesley, 2000.

[CR95] The Standish Group: CHAOS report, 1995.
[FL00] P. Fröhlich, J. Link: Automated test case

generation from dynamic models. In: Proc. ECOOP
2000, LNCS 1850, Springer (2000) 472-491.

[Gal99] L. Gallagher. Conformance testing of object-
oriented components specified by state/transition
classes, 1999.

[Gö01] M. Götze: Statistical Usage Testing Based on
UML Diagrams. Studies project report, Dept. Process

 8

Informatics, Ilmenau Technical University, Ilmenau,
Germany, 2001.
[HPR03] M. Hübner, I. Philippow, M. Riebisch:

Statistical Usage Testing Based on UML. Proc. 7th
World Multiconferences on Systemics, Cybernetics
and Informatics. July 27-30, 2003, Orlando, FL,
USA.

[Ja03] How to Write Doc Comments for the Javadoc Tool.
Sun, 2003. Online available at
http://java.sun.com/j2se/javadoc/writingdoccomments

[KGSB99] I. Krüger, R. Grosu, P. Scholz, M. Broy: From
MSCs to Statecharts. In: Distributed and Parallel
Embedded Systems, Kluwer Academic Publishers.
1999. http://www4.informatik.tu-
muenchen.de/papers/KGSB99.html

[RJ01] B. Ramesh, M. Jarke: Toward reference models
for requirements traceability. IEEE Transactions on
Software Engineering, Vol. 27, No. 1, pp. 58-93, 2001

[RRC00] B. Regnell, P. Runeson, C. Wohlin: Towards
Integration of Use Case Modelling and Usage-Based
Testing, Journal of Systems and Software, 50(2):117-
130, 2000.

[RSP03] M. Riebisch, D. Streitferdt, I. Pashov: Modeling
Variability for Object-Oriented Product Lines. In: F.
Buschmann, A.P. Buchmann, M. Cilia (Eds.): Object-
Oriented Technology. ECOOP 2003 Workshop
Reader. Springer, Lecture Notes in Computer Science ,
Vol. 3013, 2004, pp. 165 - 178.

[Rie04] M. Riebisch: Supporting Evolutionary
Development by Feature Models and Traceability
Links. In: Proceedings 11th Annual IEEE International
Conference and Workshop on the Engineering of
Computer Based Systems (ECBS2004), Brno, Czech
Republic, May 24-26, 2004, pp. 370-377.

[RR00] J. Robertson, S. Robertson: Volere Requirements
Specification Template, 2000.

[RBA98] C. Rolland, C. Ben Achour: Guiding the
Construction of Textual Use Case Specifications, Data
& Knowledge Engineering Journal, 25(1-2):125-160.

[Ru01] C. Rupp: Requirements-Engineering und -
Management [in German]. Hanser, 2001.

[SG83] G. Salton, M. McGill: Introduction to Modem
Information Retrieval. McGraw-Hill, 1983.

[OMG] UML 2.0 Specification. Online available at
http://www.uml.org/.

[WP00] G.H. Walton, J.H. Poore: Generating transition
probabilities to support model-based software testing.
Software - Practice and Experience, 2000. 30:1095–
1106.

 9

7.1 Glossary
In the glossary there are entries for all semantic patterns

“enter the personal data of (person)” → use case

“enter the state of health of (patient)” → use case

“enter (attributes) of (object)” → Communication(‘enter’)

“enter (attributes)” →

7.2 Model Transformation for Test Case
Generation

In this section approaches for the transformation of
behavioral models are investigated for their applicability at
the level of refined requirements and test case
descriptions.

#+# Siehe HICSS04 S.12: non-deterministic behavior:
wenn alternative Abläufe ohne klaren gegenseitigen
Ausschluss (oder wegbekommen durch gleich verbieten ?
oder durch Reihenfolge implizit vorgeben ?) Beispiel:
welche Banknoten gibt ein Automat aus. Lesefehler von
EC-Karten, fehlende Netzwerkverbindung,

Frage des Standpunkts, ob deterministisch oder nicht:
Beobachtbarkeit

#+# global system states: nichts dazu in HICSS04 und
Diss, also reduzieren auf Betrachtung realer Verhältnisse

The behavioral description as an important part of a
requirements specification is provided in form of use case
templates [Co00].

starting from use case descriptions e
incremental refinement process of use case templates
represents an important part of the method described in
this paper. In this process, the CREWS concept and the
SOPHIST technique are integrated. In a stepwise
refinement information is added interactively, and the
degree of formalization is increased.

8 Traceability Links as a Bridge between
Use Cases, Design Elements and
Implementation Components

The aim is to transform the content into an expression
with formally defined syntax and semantics, i.e. an UML
state model or a MSC. In this section an approach for
adapting the principles of traceability links is presented.
Traceability links connect requirements, design elements
and implementation components together with glossary
terms. The links are extended by additional information of
design decisions.

The improvement consists in the additional
information that is attached to the traceability link.

9 Categorization and Formal Definition of
Traceability Links

Based on the results of the State of the Art analysis, a
categorization of types of traceability links is developed to
trigger different evaluation methods according to different
elements. The categories match the different types of
model elements and the categories of refinement activities.
Furthermore, the concept of a semantic web for linking
terms is added by introducing links between terms of a
glossary with those (?) of template texts.

The syntax of traceability links is formally defined to
enable their evaluation by tools. Based on this definition,
links between elements of different UML models are
introduced. Furthermore, glossary terms and templates of
the use case description are established as targets of the
links. Examples for the different types of links are derived
from the case study.

10 Traceability Link Driven Development

Scoping decisions for the selection of requirements and
features to be implemented are made by assessing both
demand and effort. Effort estimation is performed based
on traceability links.

During requirements refinement, traceability links are
established to enable verification and assessments for
completeness and conceptual integrity.

In the design process design alternatives are elaborated.
Decisions lead to design elements, with traceability links
between requirements and these elements. Information
about the design decisions is attached.

Non-functional requirements are assigned to the
appropriate elements or they are resolved by introducing
functional solutions following to the method of Bosch
[Bo00].

Changes and their verification heavily depend on
traceability links. Therefore they have to be kept in a
consistent state during changes.

structuring natural language texts are combined with to
close the gaps and to increase the level of tool support as
well as the degree of automation. A method is presented
that joins the SOPHIST method for structuring texts by the
usage of templates [Ru01][CA05] with linguistic and
Information Retrieval methods developed in the CREWS
project [RBA98]. Terms as the carrier of semantics are
stored in a glossary, and they are linked to structured texts
as well as model elements.

