
Softw Syst Model (2005) 4: 55–70 / Digital Object Identifier (DOI) 10.1007/s10270-004-0059-9

Anapproach for reverse engineering of designpatterns

Ilka Philippow, Detlef Streitferdt, Matthias Riebisch, Sebastian Naumann

Technische Universität Ilmenau, Helmholtzplatz 1, 98693 Ilmenau, Germany
E-mail: {ilka.philippow,detlef.streitferdt,matthias.riebisch}@tu-ilmenau.de
Received: 5 December 2002/Accepted: 29 January 2004/Published online: 29 April 2004 – Springer-Verlag 2004

Abstract. For the maintenance of software systems, de-
velopers have to completely understand the existing sys-
tem. The usage of design patterns leads to benefits for
new and young developers by enabling them to reuse the
knowledge of their experienced colleagues. Design pat-
terns can support a faster and better understanding of
software systems. There are different approaches for sup-
porting pattern recognition in existing systems by tools.
They are evaluated by the Information Retrieval crite-
ria precision and recall. An automated search based on
structures has a highly positive influence on the manual
validation of the results by developers. This validation of
graphical structures is the most intuitive technique. In
this paper a new approach for automated pattern search
based on minimal key structures is presented. It is able
to detect all patterns described by the GOF [15]. This
approach is based on positive and negative search crite-
ria for structures and is prototypically implemented using
Rational Rose and Together.

Keywords:Design patterns – Reverse engineering – Pat-
tern recognition

1 Introduction

During the lifecycle of software systems, maintenance ac-
tivities are aiming towards the management and integra-
tion of new or changed requirements. For this purpose soft-
ware developers have to understand the existing system
completely. Developers have problems to understand soft-
ware systems, because of missing or poor documentation
like specifications or design models. In most cases the ori-
ginal developer cannot be contacted anymore. Developers
can be happy, if at least the source code, as the most rudi-
mentary and reliable form of documentation, is available.
Design patterns offer predefined and tested solutions

for fundamental design problems. The usage of design

patterns leads to benefits for new and young developers
by enabling them to reuse the knowledge of their expe-
rienced colleagues. Identification of design patterns con-
tained in system as well as determination of source code
classes for the identified patterns would lead to an im-
proved understanding of the pattern based part of exist-
ing systems. Patterns are not explicitly described in soft-
ware source code – excluding annotations or references
in the documentation. The information about design pat-
terns used in software systems is implicitly hidden and
has to be detected manually in most cases.
This paper proposes an approach for the automated

detection of patterns in existing source code. The ap-
proach is an extended version of existing pattern search
algorithms based on minimal key structures. It focuses on
the patterns described in [15], since they are a selection
of practically relevant and useful patterns for software de-
velopers and the de-facto standard. Structural as well as
behavioral pattern searching is covered. Extension of the
approach to new patterns out of the broad range of avail-
able solutions is subject of further research efforts.
The paper is subdivided into the following sections: It

starts in Sect. 1.1 with a brief overview of software main-
tenance and the relevance of source code understandabil-
ity in connection with design patterns. In Sect. 2 existing
approaches and activities for the automated detection of
design patterns are discussed. Section 3 contains the new
proposed approach, as an integration and enhancement of
existing approaches. In addition, a description of the pro-
totypical implementation in Rational Rose is part of this
section. The paper concludes with an evaluation of the
approach and an outlook onto our further work.

1.1 Maintenance and design patterns

In [14] the results of several studies of different phases
of the software life cycle are discussed and summarized.
Based on these studies software maintenance can be con-

56 I. Philippow et al.: An approach for reverse engineering of design patterns

Table 1. Maintenance activities [14]

Activity Part of expenses

Understanding of requirement 18%
Understanding of documentation 6%
Understanding of code 23%
Implementation 19%
Test 28%
Adaptation of documentation 6%

sidered as the most expensive part of the software life
cycle. The most optimistic study estimated more than
40% effort for software maintenance. Results of the eval-
uation of maintaining activities are shown in Table 1.
The summary of the first three lines in Table 1 shows

that 47% of the maintenance costs are due to the un-
derstanding of software. The application and reuse of de-
sign patterns will reduce the effort to be put into the
understanding of software. This paper is based on de-
sign patterns for object-oriented software development
out of [15]. Design patterns offer a set of objects and
classes for solving a particular design problem in a certain
context. A design pattern is described by the following
elements:

– Name, brief description of problem and solution.
– Problem description (usage scenarios).
– Solution description (involved classes, objects and
their interaction behavior).
– Consequences, advantages and disadvantages.

Patterns can be used for solving recurrent design
problems. Design patterns can be categorized as follows:
there are generation patterns (generation of objects),
structural patterns (composition of classes and objects)
and behavioral patterns (interaction of objects). For a de-
tailed description and explanation of design patterns
see [15].
How can design patterns help to understand soft-

ware systems? Each pattern represents an idea for solving
a particular design problem. If software developers are
familiar with the pattern idea they should be able to un-
derstand the function of the involved classes fairly fast.
Based on an experiment in [11] it is proven that docu-
mented patterns lead to an easier and better understand-
ing of software systems. Within the experiment of [11],
more than 70 students were told to modify a given sys-
tem. As the result of the experiment, students with know-
ledge about patterns were the fastest in changing well
documented code – patterns were documented. Students
with knowledge about patterns but without a documen-
tation containing the patterns were a bit slower. Students
without knowledge about patterns were the slowest group
in the experiment. In addition, architectural changes were
carried out faster and better using pattern knowledge.
In the best case, the structure of a software system

contains only pattern-based classes, while the program

documentation describes which classes belong to each
pattern. In practice this idealistic case does not occur
and it is difficult to identify patterns in complex software
systems. Examining the class structure is not enough for
recognizing a special pattern. The class structures of the
STRATEGY and STATE pattern are almost identical for
instance, but their semantics are different. Usually pro-
gramming languages like Java or C++ do not support
the application and documentation of patterns explic-
itly. The only possibility is an extensive documentation
using comments. Unfortunately this is strongly depen-
dent on the discipline of the developers. Beyond this, the
documentation of software developed before the explicit
definition of patterns does not contain any hints concern-
ing patterns. The detection of patterns is not trivial and
the manual search for patterns would consume high re-
sources. There are existing methods for the automated
identification of patterns, but there are too many limita-
tions discussed in the next section. Thus, a newmethod is
needed.

2 State-of-the-art

Existing methods for automated pattern identification
are evaluated according to the achieved results of their
search algorithms. For a better understanding of the fol-
lowing terms a figure of the process of pattern recognition
and the corresponding terms are shown in Fig. 1.
The search for patterns leads to three possible results:

– True positive in case a pattern has been recognized
and the pattern is really implemented within the soft-
ware system. This case is desired.
– False positive in case a pattern has been recognized
and the pattern is not really implemented within the
system. This case has to be avoided.
– False negative in case an implemented pattern has
not been recognized. This case has to be avoided.

Based on the achieved results it is possible to derive
metrics for the evaluation of searching tools, as described
by the recall and the precision of the corresponding al-
gorithms. Both metrics are used widely for evaluating
search results, e.g. in Information Retrieval [8].

– Recall is the number of all implemented patterns in
a software system divided by the number of recognized

Fig. 1. Basics of pattern searching

I. Philippow et al.: An approach for reverse engineering of design patterns 57

Fig. 2. Evalutation criteria

patterns. A recall of 100% means that at least all im-
plemented patterns were recognized. One might have
recognized more, but the implemented patterns are all
recognized – case 2, false positive has been avoided.
– Precision is the ratio of recognized and really imple-
mented patterns (true positive) divided by the num-
ber of recognized patterns (sum of the results true
positive and false positive). A precision of 50% means,
that half of the recognized patterns are not really im-
plemented in the software system.

Both values have to be taken into consideration for
a tool evaluation. A precision value of 100% does not ex-
clude false positive cases.
Several existing approaches for automated pattern

search have been evaluated, together with available
information about the above-explained metric values.
The approaches can be categorized by four different
search strategies, explained in the following four sections
accordingly.
To sum it up, current pattern search algorithms can

be categorized into algorithms searching for minimal key
structures, searching for class structures, searching based
on fuzzy logic, and searching based on metrics. For each
algorithm we can specify values for the quality of the
recognition process. Figure 2 depicts the classification
and evaluation scheme for pattern search algorithms used
in this paper.

2.1 Searching for minimal key structures

A defined key structure is assigned to a particular pat-
tern. Key structures for patterns describe the minimal
class and/or object structure that has to be present, so
the pattern can be securely identified. The properties of
the key structure are used as search criteria. Based on this
approach three software systems for automated search-
ing are known. DP++ [2] for C++, KT [4] for Smalltalk
and SPOOL [5] realized for C++, applicable for Java and
Smalltalk.
DP++ [2] reported that there are search criteria for

the following patterns: COMPOSITE, DECORATOR,

ADAPTER, FACADE, BRIDGE, FLYWEIGHT, TEM-
PLATE METHOD and CHAIN OF RESPONSIBILITY.
Search strategies are described for the patterns COM-
POSITE, DECORATOR and ADAPTER. The applica-
bility for other patterns is not mentioned. The tool con-
sists of three parts: the C++ Code Translation Subsys-
tem for analyzing source code, the Pattern Detection
Subsystem for the recognition of generation patterns and
the Display Subsystem for the visualization of detected
patterns. The search system has been tested with source
code containing 30–400 classes. Information about the
achieved values of recall and precision is not available.
KT [4] uses defined criteria to find COMPOSITE,

DECORATOR, STATE, STRATEGY, COMMAND,
TEMPLATE METHOD and CHAIN OF RESPONSI-
BILITY patterns. The INTERPRETER pattern cannot
be recognized. Other patterns are not mentioned. In con-
trast to DP++, code analysis is not carried out. The
recognition relies on the special meta level properties of
Smalltalk. Based on the source code, a class diagram and
an interaction diagram are created. The recognition is
carried out using the diagram information for a query
search. As an example, the class diagram serves to rec-
ognize COMPOSITE and DECORATOR patterns; the
interaction diagram is necessary to recognize the CHAIN
OF RESPONSIBILITY pattern. For the representation
of results a Rational Rose Petal File has to be generated.
The test of the search systemwas done using software sys-
tems with 40–264 classes. The tool was successful in the
detection of COMPOSITE, DECORATOR and TEM-
PLATE METHOD patterns, based on [4]. Information
about the achieved values of recall and precision is not
available.
SPOOL [5] is capable of searching BRIDGE, FAC-

TORYMETHOD and TEMPLATEMETHOD patterns.
These patterns are important for the understanding of
frameworks [5]. Similar to DP++ the search is based
on code analysis and recognition of pattern assigned key
properties. The SPOOL system consists of several small
tools with analyzing and searching functions. Based on
the analysis of code a UML model has to be derived and
stored in a Design Repository. Using the model infor-
mation a query search has to be done, similar to KT.
The Design Representation Module offers a good graph-
ical presentation of results. KT has been tested using
large software systems with 722–3101 classes. Informa-
tion about the achieved values of recall and precision is
not available.

2.2 Searching for class structures

This approach uses the pattern class structures described
by [15]. For example, the simplified class structure in
Fig. 3 belongs to the COMPOSITE pattern. If a class
owns at least two sub classes and if one sub class has a 1 to
n aggregation relation to the super class the existence of
a COMPOSITE pattern will be reported. Three software

58 I. Philippow et al.: An approach for reverse engineering of design patterns

Fig. 3. COMPOSITE pattern

systems for automated search based on complete accor-
dance of classes are known: Pat [7] for C++, IDEA [3] for
UML diagrams and the multi step search tool in [1].
Pat [7] is based on the description of the pattern class

structure by PROLOG rules. The information in C++
source code has to be transformed into PROLOG facts.
A PROLOG query algorithm is used for recognizing pat-
terns. This tool can find ADAPTER, PROXY, BRIDGE,
DECORATOR and COMPOSITE patterns. The PAT
source code analyzer is examining only the C++Headers.
There are several difficulties, e.g. distinguishing abstract
and concrete classes. Furthermore, delegation relations
and the visibility of methods cannot be recognized. The
search tool has been tested with software systems con-
taining 9–343 classes. The achieved recall values in each
of these test cases are 100%. The average precision value
is 36.75%.
IDEA [3] is an UML based search approach using class

and collaboration diagrams. Similar to Pat, PROLOG
rules are used. In addition to PAT, design and application
rules are implemented for supporting the pattern user.
The search algorithm, depicted in Fig. 4, is able to find
the following patterns: TEMPLATE METOD, PROXY,
ADAPTER, BRIDGE, COMPOSITE, DECORATOR,
FACTORYMETHOD, ABSTRACT FACTORY, ITER-
ATOR, OBSERVER and PROTOTYPE. Further infor-
mation about the test of the IDEA system and achieved
metric values could not be found.

Fig. 4. IDEA search algorithm [3]

In the multi step search process of [1] C++ source
code or OMT representation are transformed by tools
into an AOL (UML based Abstract Object Language)
Code and DESIGN Specification. A Pattern Recognizer
compares these AOL representations with pattern as-
signed AOL representations that are implemented in a so-
called Pattern Library. Collaboration diagrams cannot
be included in the recognition process. To accelerate the
recognition process, constraints are used. The recognition
is performed in three steps.
First, the Metrics Constraint Evaluation will extract

structural relationships according to defined pattern met-
rics, which are given by class roles, associations or inheri-
tance relations. Thus, a set of patterns will be identified
by its relationships. Within the second step the Struc-
tural Constraint Evaluation uses the set of patterns rec-
ognized in step one to extract those potential patterns
which also conform to all structural relations without del-
egation. The last step, Delegation Constraint Evaluation,
analyzes the difference between delegation and associa-
tion to enhance the overall pattern recognition process.
The patterns ADAPTER, BRIDGE, PROXY, COM-
POSITE and DECORATOR can be recognized using
this method. Other patterns are not covered. The search
tool was tested with different C++ Libraries [1] and re-
sulted in a recall value of 100% and an average precision
of 35%.

2.3 Pattern definition and fuzzy logic

Described in [10] this approach considers structural dif-
ferences between patterns out of [15] and real life software
systems. To handle this problem, patterns are consid-
ered as a composition of sub patterns with inheritance
relations. The proposed idea uses fuzzy logic search al-
gorithms to examine different pattern implementations.
The researchers are working on the development and im-
plementation of their idea.
As shown in Fig. 4, IDEA uses UML diagrams as in-

put. This graphical representation of the code structure
is used to find the patterns described with UML as well.
Critics are formulated as requirements, hints and con-
straints for a given pattern. These critics have to be met
by subparts of the input UML diagram to be identified as
pattern. Reference patterns, to be recognized in the UML
diagram, are described with PROLOG. IDEA claims to
be able to find all patterns of [15] without an available
implementation or any values given for the quality of the
algorithm.

2.4 Metrics

The basic idea of metric-based approaches is to charac-
terize each pattern by metrics summarized in this section.
Described in [6] , there are three categories of metrics with
examples for each category:

I. Philippow et al.: An approach for reverse engineering of design patterns 59

– Object-oriented Metrics

– weighted methods per class
– depth of inheritance tree
– number of children (subclasses)
– coupling between objects

– Structural Metrics

– Fan-in, number of modules sending information to
the observed module
– Fan-out, number of modules receiving information
of the observed module
– information flow, structural complexity

– Procedural Metrics

– pure lines of code
– McCabe’s cyclomatic complexity
– lines of comments

These metrics are calculated with a tool for the system
in question, for every of the desired patterns. A signature
will be assigned to each pattern, which basically is a list of
values for the metrics described above. For each class with
all subclasses of the evaluated system the metrics are cal-
culated as well. Potential patterns can be recognized by
comparing the list of metrics for each class of the system
with the pattern metrics.
For the metric approach a pattern repository and

a pattern wizard are available. The tools have been tested
and the tests resulted in a low average precision value of
43.55%. Based on [6] the approach is applicable for all
kinds of patterns in [15].

2.5 Manual search for patterns

Amanual searchmethod is described in [16]. It is a simple
six step description of how to find patterns.

1. Read and try to understand the specification docu-
ments.

2. Setup a brief class model with the class declarations in
the code.

3. Refine the class model based on the implementation.
4. Try to find patterns in the model using inheritance
and associations between the classes of the system.

5. Analyze the potential pattern of step 4.
6. Try to consult the original programmers and develop-
ers for a better understanding of the system.

Within a student test this approach has proven to
be intuitive. The structural strategy is embedded in the
steps of the manual method, due to its close relation to
the human way of thinking and searching for patterns.
Section 2 has shown the difficulties of current pat-

tern searching research efforts. Just one of the approaches
has the potential to find all of the 23 patterns described
in [15], although with a low precision value. The other ap-
proaches are only usable for a subset of the patterns. The
most promising algorithm searches for minimal key struc-
tures, as described in [2, 4], and [5], what is also closest to
the human way of thinking.

3 Our approach: Automated pattern searching

The automated pattern search is not a trivial problem. As
summarized in Table 2, most of the approaches only de-
tect a subset of the patterns described in [15]. For some
patterns no search criteria can be recognized according
to [5] and [4]. The approach based on metrics seams to
find all patterns, but with a precision value of 43.55%
the approach is not satisfactory. The known approaches
based on the complete accordance of structure will run
into problems for pattern structures differing from de-
scriptions out of [15].
To solve the problem of automated pattern search it is

necessary to meet the following requirements:

– Identification criteria for all patterns in [15] are
needed.
– Search algorithms for all patterns need to be defined,
– to achieve high metric values (ideal case 100%) for
precision/recall and thus, to find all patterns de-
scribed by Gamma [15], false negative and false posi-
tive cases have to be avoided.

3.1 Positive and negative criteria

The objective of this approach is to contribute to the re-
alization of the requirements described above.
We start with the assumption that developers can

validate potential patterns a lot easier when they un-
derstand the searching process. Based on experience the
human search process is closely oriented to pattern prop-
erties, what itself is similar to the automated search ap-
proach based on minimal key structures.
In this paper the proposed approach is based on the re-

sults of [2, 4] and [5]. For improving these existing search
procedures the minimal key structure search basis has
been extended by:

– Positive search criteria.
Determination of search criteria for all patterns in [15]
that will occur with high probability in the imple-
mentation of the particular patterns; this leads to the
inclusion of most commonly used pattern implementa-
tions into the search process.
– Negative search criteria.
Determining of search criteria that are not allowed in
context of a particular pattern, what leads to the re-
duction of false positive cases.

Typical search criteria that can be derived from pat-
tern descriptions are: abstract and concrete classes, in-
heritance, attributes (visibility, type, name); methods
(visibility, polymorphism, return type, name, parameter,
abstraction), constructors (visibility, name, parameter),
association-, composition/aggregation-, delegation-, and
friend-relations, object generation, method calls, usage
of variables and templates. For the description of search
criteria the Unified Modeling Language (UML) is used
similar to the description of patterns.

60 I. Philippow et al.: An approach for reverse engineering of design patterns

Table 2. Overview of current pattern search methods

Name Tool Method Covers these Patterns Applied to these systems Recall Precision
available?

DP++ [2] yes Min. key Composite, Decorator, Adapter, Drawing Toolkit (44 classes) n.a. n.a.
(C++) struct. Facade, Bridge, Flyweight,

Template, Chain of responsibility

KT [4] yes Min. key Composite, Decorator, Adapter, 4 Systems (62, 264, 46, 40 n.a. n.a.
(Smalltalk) struct. Template, Strategy, Chain of classes)

responsibility, State, Command

SPOOL [5] yes Min. key Template, Factory, Bridge. 2 Systems (3103 and 1420 n.a. n.a.
(C++) struct. classes), ET++ (722 classes)

Pat [7] yes Class Adapter, Bridge, Composite, NME (9 classes), LEDA 100% 37%
(C++) structure Decorator, Proxy (150cl.), zApp (240 cl.),

ACD (343 classes)

IDEA [3] yes Class Template, Proxy, Adapter, n.a. n.a. n.a.
(UML) structure Bridge, Composite, Decorator,

Factory, Abstract Factory,
Iterator, Observer, Prototype

Multilevel yes Class Adapter, Bridge, Proxy, LEDA, libg++, galib, groff, 100% 35%
search [1] structure Composite, Decorator mec, socket, no further
(C++ / OMT) information

Fuzzy no Polym. all n.a. n.a. n.a.
logic [10] pattern def. /
(Java) Fuzzy Logic

Pattern yes Metrics all 3 Systems without any n.a. 44%
Wizard [6] further information
(C++)

BACK- no Manual all n.a. n.a. n.a.
DOOR [16]

For the approach described here it is not necessary
to distinguish composition and aggregation. Within the
description of criteria and within search algorithms, del-
egation relations can be substituted for method calls and
association relations can be substituted for the usage of
variables, method calls, method parameters and aggre-
gation. The new approach extends the UML by the de-
scription of uncertain and forbidden criteria, depicted in
Fig. 5.
Based on the description with positive and negative

search criteria it is possible to determine search algo-

Fig. 5. Description for search criteria – example:
inheritance relationship

rithms for all patterns given in [15]. In detail, arguments
for criteria, their graphical description, and search algo-
rithms are explained in [9]. The explanation consists of

– description and reasons for the criteria of a particular
pattern,
– graphical presentation of the criteria,
– description of the pattern search algorithm,
– estimated search difficulty degree and search algo-
rithm run time.

As an example the new approach is explained using
the BRIDGE pattern. The BRIDGE pattern can be used
in different applications to de-couple an abstraction from
its implementation so that the two can vary, see [15]. It
is obvious that abstraction tree structures and implemen-
tations can be different in depth and width. In [5] it is
reported that there are abstractions without specializa-
tion abstractions and implementations without common
super classes. Here, a minimal key structure (positive cri-
terion) containing one abstraction class and one imple-
mentation class, serves as search criterion.
Implementation classes usually consist of primitive

operations. Methods of abstraction classes are defined
using these primitive operations.

I. Philippow et al.: An approach for reverse engineering of design patterns 61

– there is no relationship from an implementation class
to an abstraction class (negative criterion),
– there is no method call from an implementation class
to an abstraction class (negative criterion)
– and there is a relationship (positive criterion) from an
abstraction class to an implementation class.

Figure 6 shows the graphical representation of the
properties of the BRIDGE pattern using the extended
UML notation.
To find the BRIDGE pattern in a given model, Fig. 7

shows the corresponding search algorithm.
The approach described in this paper provides the ex-

tended UML description for all of the 23 patterns out
of [15] together with a search algorithm for each of the
patterns derived from this description. In Appendix A the
extended UML notation and the positive/negative search

Fig. 6. Key structure of the bridge pattern

Fig. 7. Pseudo-code for the bridge pattern
search algorithm

Table 3. Assessment of the new approach – creational patterns

Pattern Complexity Comments

Abstract O(n) Identifiable without doubt,
Factory compared to [6], where Abstract

Factory was recognized
without being present in the
analyzed software system

Builder O(n) Also described in [6]

Factory O(n) Comparable to [5]. The pattern
Method is identifiable without doubt by

our algorithm

Prototype O(n) More detailed recognition char-
acteristics, based on our positive
and negative search criteria

Singleton O(n) Identifiable without doubt,
compared to [6], where several
Singletons were identified but
not present in the analyzed
system

criteria are listed. To understand the criteria it is neces-
sary to be familiar with the pattern description.
In Tables 3, 4 and 5 pattern search algorithms of the

approach described in this paper are listed with their
search complexity and a comment clarifying their differ-
ence or advantage compared to the existing algorithms.
The assessment of our approach is based on the stu-

dent projects of Table 6 described in the next section. In
the second column of Tables 3, 4 and 5 the worst case time
complexity of our approach is stated by assessing the up-
per bounds of time consumption of our algorithms.

Table 4. Assessment of the new approach – structural patterns

Pattern Complexity Comments

Adapter O(n) None

Bridge O(n3) Our algorithm has additional
negative search criteria, none of
the evaluated algorithms can offer

Composite O(n) Our algorithm has additional
negative search criteria, none of
the evaluated algorithms can offer

Decorator O(n2) More detailed recognition char-
acteristics, based on our positive
and negative search criteria

Facade O(n3) Our algorithm has additional
negative search criteria, none of
the evaluated algorithms can offer

Flyweight O(n2) None
Proxy O(n) Our algorithm has additional

negative and positive search
criteria, none of the evaluated
algorithms can offer

62 I. Philippow et al.: An approach for reverse engineering of design patterns

Table 5. Assessment of the new approach – behavioral patterns

Pattern Complexity Comments

Command O(n2) Our algorithm has additional
negative search criteria, none of
the evaluated algorithms can
offer

Interpreter O(n2) Also described in [6]

Iterator O(n) None

Mediator O(n2) Also described in [6]

Memento O(n) Also described in [6]

Observer O(n2) Our algorithm has additional
uncertain search criteria, none
of the evaluated algorithms can
offer

State O(n2) Our algorithm has additional
negative search criteria, none of
the evaluated algorithms can
offer

Strategy O(n2) Our algorithm has additional
negative search criteria, none of
the evaluated algorithms can
offer

Template O(n) Comparable to [5] and [6],
Method identifiable without doubt. The

pattern is identifiable without
doubt by our algorithm

Visitor O(n) Also described in [6]

Chain of O(n2) None
responsibility

Table 6. Student projects

Project LOC Classes Patterns

Web-Based Course 1800 23 Singleton, Factory,
Enrolment System Facade

Graphical Editor 200 14 Singleton, Strategy

Pattern Search 6000 147 All 23 patterns

3.2 Prototype implementation

The procedure of pattern detection, depicted in Fig. 8,
consists of three basic parts:

– source code based extraction of the UML diagrams,
– pattern search and
– pattern representation.

The prototypical implementation has been realized
for C++ source code using the Rational Rose and To-
gether case tool. The Rational Rose C++ Analyzer en-
ables UML diagram extraction out of C++ source code.
Using the Rose Extensibility Interface, shown in Fig. 9
and described in [12] it is possible to access single UML
model elements by either Rational Rose Automation or

Fig. 8. Implemented pattern
search procedure

Fig. 9. Rose extensibility components

Rational Rose Script. For the prototype, pattern search
algorithms are formulated using the Rational Rose Script
Language.
The static aspects of the source code are represented

as a tree of classes or, in other words, a class diagram.
Using the access possibilities of of Rational Rose or To-
gether, we can move through the tree, request sub trees
or lists of elements defined by constraints. In addition it is
possible to search for elements or relationships defined in
the UML model.
Compared to the Rational Rose Extensibility Inter-

face, add-ins for Together are fairly easy to implement,
since Together as well as the add-ins are Java coded. The
reverse engineering capabilities of Together are better
than those of Rational Rose. As a result of the proto-
typical implementation, the C++ Rational Rose Ana-
lyzer has turned out to be insufficient due to the fact
that some relevant properties (aggregation-, delegation-,
friend-relation, object generation, usage of variables,
method call and template) are missing in Roses auto-
matic reengineering capabilities. Thus, only patterns not
dependent on the aforementioned properties have been
prototypically implemented and tested. Model elements
of recognized pattern classes will be marked in the model
using colors, depicted by the pattern representation mod-
ule in Fig. 8.

I. Philippow et al.: An approach for reverse engineering of design patterns 63

Our approach provides search algorithms for all of the
23 patterns of [15]. Algorithms for the SINGLETON, IN-
TERPRETER and COMPOSITE pattern have been im-
plemented using Rational Rose Script. SINGLETON and
INTERPRETER were successfully tested with a preci-
sion value of 100% and a recall of 100%. Both algorithms
were tested using code examples of student projects, as
shown in Table 6.
The Web-Based Course Enrollment System is in use

by our faculty to give the students the opportunity to sign
in for courses, check their schedule or change their sched-
ule. The project was developed as part of a lecture for
graduate computer science students. The students were
asked to develop the system by using modern software en-
gineering methods, with patterns being one of them. In
addition, a documentation including the patterns used,
was written. The Graphical Editor was the result of
a single student project, to present strengths of pattern
programming. The last project, Pattern Search, was de-
veloped solely to be used with the pattern search algo-
rithms. All 23 patterns were implemented using Visual
C++ without any add-ins for pattern creation. All pat-
terns were implemented just using the description of [15].
The COMPOSITE pattern could not be tested ex-

haustively, due to the limitations of the used CASE tool.
For a full implementation further effort will be put into
the integration of the Gen++ tool described in [5]. The
above stated values for precision and recall are based on
a search of patterns in small student projects. Thus, they
are just marginally comparable with other values elab-
orated with other source code. In essence, a reference
project, containing all patterns of [15] in different flavors
with a full documentation is needed to produce compara-
ble values with all approaches.

3.3 Conclusion

In this paper a new approach for the automated pat-
tern search in software systems is proposed. The pattern
search is oriented according to the human way of search-
ing. The approach is based on similar approaches that
are described in Sect. 3.1. These approaches have been
extended by positive and negative search criteria, lead-
ing to new search algorithms for the standard patterns
described in [15]. Using this approach, false positive re-
sults can be avoided and the precision value can be im-
proved, based on the results of the student projects. Fu-
ture research efforts will be spent on the evaluation of the
method with bigger software systems.
The experience with the prototypical implementation

of the approach confirmed the need for further human in-
teraction, already stated by existing approaches. Thus,
human-oriented search procedures are suitable. In add-
ition, source code should contain pattern-oriented docu-
mentation. Programming languages have to be extended
for pattern-oriented design and implementation. For this
purpose the suitability of OpenJava [13] should be evalu-

ated. The pattern search evaluation requires highly qual-
ified developers familiar with pattern structures and pat-
tern application.
The automated pattern search strongly depends on

the quality of source code analysis tools. At least they
should be able to extract the search criteria out of the
source code, as listed in Appendix A.1.
Our new approach is still subject an ongoing evalu-

ation process with another CASE tool, due to missing
reengineering capabilities of Rational Rose. Currently we
are in contact with a tool vendor for the integration of
the algorithms of our approach into their CASE tool. In
addition, a reference source code example is going to be
established to get comparable results with all algorithms.

Appendix : Search structures for patterns

Here, the extended UML notation and the positive/nega-
tive search criteria for all patterns are listed. To under-
stand the criteria it is necessary to be familiar with the
pattern description.

A.1 Creational patterns – ABSTRACT FACTORY

– Search for a concrete factory.
– A concrete factory has at least two methods contained
in the definition of the factory method pattern.

Fig. 10. ABSTRACT FACTORY search criteria

A.2 Creational patterns – BUILDER

– Search for a concrete builder.
– The concrete builder has a method returning the com-
plete product.

Fig. 11. BUILDER search criteria

64 I. Philippow et al.: An approach for reverse engineering of design patterns

– Builder has an aggregation relation to the product.
– The concrete builder has at least one construction
method referring to the reference variable of the
product.

A.3 Creational patterns – FACTORYMETHOD

– Search for a concrete generator containing a factory
method.
– The factory method is virtual.
– The factory method generates an object of another
class (concrete product); the return type is a class (ab-
stract product) differing from the generated object.
– As return type (abstract product), the super class of
the created object is used.

Fig. 12. FACTORY METHOD search criteria

A.4 Creational patterns – PROTOTYPE

– Search for a clone operation of a concrete prototype.
– The clone operation generates an object of the own
class using its copy constructor.
– A copy constructor has to be available.
– The return type of the clone operation is the own class
or a super class.
– The clone operation is virtual.

Fig. 13. PROTOTYPE search criteria

A.5 Creational patterns – SINGLETON

– Search for a singleton class.
– The class does not have a public constructor, it has
only a private or protected constructor.
– The class has a static exemplar operation; the return
type is the own class or a super class.
– There is a declaration of a static variable of the own
class or a super class type.

Fig. 14. SINGLETON search criteria

A.6 Structural patterns – (Class) ADAPTER

– Search for an adapter.
– The adapter inherits from two classes: from the first
class public (destination) and from second class pri-
vate (adapted class).
– Adapter overwrites at least one operation of the des-
tination class; this operation calls an operation of
the adapted class that is polymorphic and declared
virtual.

Fig. 15. (Class) ADAPTER search criteria

A.7 Structural patterns – (Object) ADAPTER

– Search for adapter class.
– Adapter is a subclass of another class (destination).
– Adapter has a reference to the adapted class.
– Adapter overwrites at least one method from destina-
tion (virtual declaration); this method calls a method
from the adapted class.

Fig. 16. (Object) ADAPTER search criteria

I. Philippow et al.: An approach for reverse engineering of design patterns 65

– Adapter is not a super or sub class from the adapted
class.

A.8 Structural patterns – BRIDGE

Fig. 17. BRIDGE search criteria

was described above.

A.9 Structural patterns – DECORATOR

– Search for decorator class.
– There is a 1-to-1 aggregation to a super class.
– Decorator has at least one sub class (concrete decora-
tor).
– Concrete decorator has a method that calls decora-
tor::operation(); in this method a local operation is
called.
– The method decorator::operation() calls a method of
the component class with the same name.

Fig. 18. DECORATOR search criteria

A.10 Structural patterns – FACADE

– Search for facade.
– A set A of classes has references to facade.
– Facade has references to a sub system (set B).
– The sub system classes don’t know the facade.
– The sub system classes don’t know the classes of set A.

Fig. 19. FACADE search criteria

A.11 Structural patterns – FLYWEIGHT

– Search for three classes: flyweight factory, flyweight
and concrete flight weight.
– The factory uses methods returning exactly what they
are generating.
– The factory has a 1 to n reference to the flyweight
class.
– All operations of the flyweight class always receive
a particular parameter (extrinsic state). Methods can
also receive additional parameters.
– The concrete flyweight is a subclass of flyweight; it is
generated by the factory.

Fig. 20. FLYWEIGHT search criteria

A.12 Structural patterns – COMPOSITE

– Search for a composite class.
– A composite class has a 1 to n aggregation relation to
one of its super classes (component).
– Existing sub classes won’t add functionality to the
composite class, which means, they don’t call methods
of the composite class followed by an own method.

66 I. Philippow et al.: An approach for reverse engineering of design patterns

Fig. 21. COMPOSITE search criteria

A.13 Structural patterns – PROXY

– Search for proxy.
– Proxy is a sub class.
– Proxy has a reference to a class of a real subject or only
a subject.
– All public methods of proxy are existent in the class
that is referenced by proxy.
– In each of these proxy methods there is a call of the
method with the same name in the referenced class.

Fig. 22. PROXY search criteria

A.14 Behavioral patterns – COMMAND

– Search for a structure out of several classes: the caller,
the abstract command, the concrete command, the
client and the receiver.
– The command class is abstract.
– The caller has a 1-to-1-aggregation relation to com-
mand.

Fig. 23. COMMAND search criteria

– Concrete command is a sub class of command.
– Concrete command has a reference to his receiver. The
receiver will be passed as parameter of the constructor
of the concrete command.
– There is a client instantiating the concrete command.

A.15 Behavioral patterns – OBSERVER

– Search for subject, observer and concrete observer.
– Subject has a 1-to-n reference to observer.
– Subject has two methods receiving observer as param-
eter.
– Concrete observers are subclasses of observer.
– A concrete observer has a reference to subject or a sub
class of subject (concrete subject).

Fig. 24. OBSERVER search criteria

A.16 Behavioral patterns – VISITOR

– Search beginning with the visitor class.
– A visitor has operations receiving the elements of
other classes as parameter.
– Each of these element classes has a method for receiv-
ing the visitor class as parameter.
– Within this method of the element class, a call of the
corresponding method of the visitor class is done; pa-
rameter is the element itself.

Fig. 25. VISITOR search criteria

A.17 Behavioral patterns – INTERPRETER

– Search for a tree.
– The root class is abstract.

I. Philippow et al.: An approach for reverse engineering of design patterns 67

Fig. 26. INTERPRETER search criteria

– Each sub class implements one of the methods always
as a new method.
– The ratio of simple aggregation relations to the root
class divided by the number of subclasses is at least
50%.
– Sub classes don’t reference each other directly.

A.18 Behavioral patterns – ITERATOR

– Search for two templates: list and iterator.
– Iterator has a reference to the list.
– List generates the iterator within a method.

Fig. 27. ITERATOR search criteria

A.19 Behavioral patterns – MEMENTO

– Search for memento.
– Memento doesn’t have a public constructor.
– Memento is generated by an originator class.
– Memento has a method for setting its state and
a method for returning its state.
– The originator is allowed to access the private inter-
face of memento (friend class declaration).
– The generator doesn’t have a reference to memento.
– A container is handling a reference to memento with-
out generating it.

Fig. 28. MEMENTO search criteria

A.20 Behavioral patterns – TEMPLATE METOD

– Search for template method.
– The template method is not polymorph.

Fig. 29. TEMPLATE METOD search criteria

– The template method calls at least one local poly-
morph method.

A.21 Behavioral patterns – STRATEGY

– Search for a tree of strategy classes.
– The root class (abstract strategy) is abstract.
– All sub classes (concrete strategies) have the same
public interface as their abstract super class.
– No concrete strategy holds a reference to the abstract
strategy.
– No concrete strategy holds reference to another con-
crete strategy.
– The compositor holds a reference to the abstract strat-
egy but not to concrete strategies.

Fig. 30. STRATEGY search criteria

A.22 Behavioral patterns – MEDIATOR

– Search for a concrete mediator.
– A concrete mediator has references to its concrete col-
leagues.
– Concrete colleagues don’t have references between
each other.
– If there is an abstract colleague, the object handles
a reference to the abstract mediator or directly to

Fig. 31. MEDIATOR search criteria

68 I. Philippow et al.: An approach for reverse engineering of design patterns

the concrete mediator, in case there is no abstract
mediator.
– If there is no abstract colleague, each concrete col-
league is handling a reference to the abstract mediator
or direct to the concrete mediator, in case there is no
abstract mediator.

A.23 Behavioral patterns – STATE

Fig. 32. STATE search criteria

– Search for a tree of state classes.
– The root class (state) is not abstract.
– All sub classes (concrete states) have the same public
interface as their super class.
– No concrete state holds a reference to the root class.
– No concrete state holds a reference to another con-
crete state.
– In context there is a reference to the root class but not
to the concrete states.

Fig. 33. CHAIN OF RESPONSIBILITY search criteria

A.24 Behavioral patterns –
CHAIN OF RESPONSIBILITY

– Search for a tree.
– The root class is a HelpHandler.
– HelpHandler implements the HandleHelp method.
– The HandleHelp method won’t be overwritten in all
sub classes, but it is overwritten mostly inside the tree
structure.
– Classes can be divided in two categories, based on
the HandleHelp method. For this categorization only
classes overwriting the HandleHelp method will be
considered.
– The first category contains all classes forwarding the
own HandleHelp method to HandleHelp methods of
other classes.
– The second category contains all classes without for-
warding mechanism within the HandleHelp method.
– At least 75% of the classes have to belong to the first
category.

References

1. Antoniol G, Fiutem R, Cristoforetti L (1998) Design pat-
tern recovery in object-oriented software. In: 6th International
Workshop on Program Comprehension, June, pp 153–160

2. Bansiya J (1998) Automatic Design-Pattern Identification.
Dr. Dobb’s Journal. Available online at: http://www.ddj.com

3. Bergenti F, Poggi A (2000) Improving UML design using au-
tomatic design pattern detection. In: Proc. 12th. International

I. Philippow et al.: An approach for reverse engineering of design patterns 69

Conference on Software Engineering and Knowledge Engineer-
ing (SEKE 2000), pp 336–343

4. Brown K (1996) Design reverse-engineering and automated
design pattern detection in Smalltalk. Master’s thesis. Depart-
ment of Computer Engineering, North Carolina State Univer-
sity. Available online at: http://www.ncsu.edu/

5. Keller RK, Schauer R, Robitaille S, Page P (1999) Pattern-
based reverse engineering of design components. In: Proc. Of
the 21st International Conference On Software Engineering.
IEEE Computer Society Press, pp 226–235

6. Kim H, Boldyreff C (2000) A method to recover design
patterns using software product metrics. In: Proc. of the
6th International Conference on Software Reuse (ICSR6).
Available online at: http://www.soi.city.ac.uk/∼hkim69/
publications/icsr6.pdf

7. Kraemer C, Prechelt L (1996) Design recovery by auto-mated
search for structural design patterns in object-oriented soft-
ware. In: Proc. of the Working Conference on Reverse Engin-
eering, pp. 208–215

8. Salton G, McGill M (1983) Introduction to Modern Informa-
tion Retrieval. McGraw-Hill, New York

9. Naumann S (2001) Reverse Engineering of Design Patterns.
Diploma Thesis. Technical University of Ilmenau (in German)

10. Niere J, Wadsack JP, Wendehals L (2001) Design pattern
recovery based on source code analysis with fuzzy logic. Tech-
nical Report tr-ri-01-222, University of Paderborn. Available
online

11. Prechelt L, Unger B, Philippsen M (1997) Documenting De-
sign Patterns in Code Eases Program Maintenance. In: Proc.
Of the ICSE Workshop on Process Modeling and Empirical
Studies of Software Evolution, pp 72–76

12. Rational (2000) Using the Rose Extensibility Interface Ratio-
nal Rose 2001 Rational Rose Software Corporation

13. Tatsubori M, Chiba S (1998) Programming Support of Design
Patterns with compile-time Reflection. OOPSLA 98 Work-
shop Reflective Programming in C++ and Java, Vancouver,
Canada

14. West R (1993) Reverse Engineering – An Overview, HMSO,
London

15. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design
Patterns – Elements of Reusable Object-Oriented Software,
Addison Wesley

16. Shull F, Melo WL, Basili VR (1996) An inductive method
for discovering design patterns from object-oriented software
systems. Technical Report UMIACS-TR-96-10, University of
Maryland

Ilka Philippow is a full Pro-
fessor for Process Informatics at
the Ilmenau Technical Univer-
sity since 1992.
In the eighties she was work-

ing in the field of software de-
velopment for technical and em-
bedded systems. She received
the PhD in Computer Science
in 1981 and finished her habili-
tation in 1989 at the Technical
University of Ilmenau.

During the last decade she has achieved experience in
reqirements engineering and modeling for complex software
systems and tool supported software reuse. She was leading
involved in the development of the modeling tool OTW that
enhances the UML ability with the Object-Process-Model
(OPM). OPM can be used for simulation of software pro-
cesses as well as for business processes. Her research activities

are oriented on the evolutionary development of software and
software product lines, UML model based pattern recognition
and UML model based test case generation. The latest ac-
tivities are focussed on feature based supported architecture
recovery and restructuring.
She is working very close with industrial partners like

Siemens AG in Munich and Daimler-Crysler Research Center
in Ulm.
Her previous position include: Dean of the Faculty for In-

formatics and Automation (1995–1998) and Vice President of
the Ilmenau Technical Unicersity (1998–2000).

Detlef Streitferdt is a PhD
student at the Technical Uni-
versity of Ilmenau, Germany.
He received his degree in Com-
puter Science from the Univer-
sity of Stuttgart, Germany. As
part of his diploma studies he
spent a year studying Computer
Science at the University of Wa-
terloo in Canada.
His current research interests

include requirements engineering
for software product lines and pattern recognition in reverse
engineered UML models. He was program co-chair of the
“Modeling Variability for Object-Oriented Product Lines”
– workshop at the 17th European Conference on Object-
Oriented Programming (ECOOP).

Matthias Riebisch is an As-
sistant Professor at the Tech-
nical University of Ilmenau. He
holds a degree in Automation
Engineering (Dresden Technical
University). Matthias Riebisch
received his PhD from the Tech-
nical University of Ilmenau, Ger-
many.
His current research inter-

ests include Software architec-
tures, object-oriented modelling,

software reusability, evolvability of software, software devel-
opment processes, architecture and modelling of informa-
tion systems, maturity of software development processes,
methods and organizations, software quality management,
best practice management and information security.
Current reserach projects include methods for the de-

velopment of software product lines (“Alexandria”), UML-
based test case generation in cooperation with the Univer-
sity of Central Florida and sponsored by the DFG (Deutsche
Forschungsgemeinschaft).
He was workshop chair of the “Modeling Variability

for Object-Oriented Product Lines” – workshop at the
17th European Conference on Object-Oriented Programming
(ECOOP).

70 I. Philippow et al.: An approach for reverse engineering of design patterns

Sebastian Naumann studied
Computer Sciences at the Tech-
nical University of Ilmenau, Ger-
many between 1996 and 2001.
Since 2002 he has been work-
ing at the Institut f. Automa-
tion und Kommunikation e.V.
Magdeburg (ifak) as a scientific
employee in the working group
Intelligent Transport System.

