
The Feature-Architecture Mapping (FArM) Method for Feature-Oriented
Development of Software Product Lines

Periklis Sochos, Matthias Riebisch, Ilka Philippow
Technical University of Ilmenau

Software Systems/Process Informatics
Ilmenau 98684, Germany

{periklis.sochos, matthias.riebisch, ilka.philippow}@tu-ilmenau.de

Abstract

Software product lines (PLs) are large, complex systems,
demanding high maintainability and enhanced flexibility.
Nonetheless, in the state of the art PL methods, features
are scattered and tangled throughout the system compo-
nents, leading to poor maintainability. Additionally, the
majority of PL methods support manual product compo-
sition, while the implementation of feature-level variabil-
ity in PL products influences the system’s conceptual in-
tegrity. Generative programming techniques do enhance
flexibility, but on the cost of maintainability. The Feature-
Architecture Mapping (FArM) method provides a stronger
mapping between features and the architecture. It is based
on a series of transformations on the initial PL feature
model. During these transformations architectural compo-
nents are derived, encapsulating the business logic of each
transformed feature and having interfaces reflecting the fea-
ture interactions. The flexibility of FArM architectures is
supported through the explicit integration of plug-in mech-
anisms. The methodology is evaluated in the context of a
wireless handheld-device PL.

1. Introduction

Software product lines (PLs) are large-scale systems
with high complexity, illustrating significant variability and
a long life-span. These attributes, in combination with
changes in the software domain and the underlying tech-
nology, impose a number of hard requirements on such sys-
tems. PLs must be changeable and evolvable and must sup-
port low effort, timely composition of flexible products.

Features play an important role in PLs. In this work fea-
tures are ”a logical unit of behavior that is specified by a set
of functional and quality requirements and represent an as-
pect valuable to the customer” [4], [13]. Features are used

for modeling the domain, managing variability, guiding fu-
ture planning, as a communication basis between the system
stakeholders or as a general guide for the system design.

Despite the crucial role of feature in PLs, the state of the
art PL methods fail to provide a strong mapping between
features and the software architecture. As a consequence
we have the phenomenon of feature scattering and tangling
as shown in Figure 1.

Figure 1. Feature A is scattered in two com-
ponents (left). Features A and B are tangled
in one component (right).

Changes in the PL occur mainly on the feature level.
Changes in a PL come from the system stakeholders and
the evolution of the underlying technology. Stakeholder
changes are directly expressed in terms of the PL features.
In a well designed feature model (FM), anticipated tech-
nology changes can be directly mapped to features. In any
other case, changes may arbitrarily affect various parts of
the system and respectively various PL features. From the
above it becomes obvious that the effect of scattering and
tangling of features has a large impact on PL maintainabil-
ity.

Furthermore, a lot of the state of the art PL methods
incorporate a manual approach to application engineering,
thus requiring extra effort for product instantiation. Addi-
tionally, the implementation of variability in PL products,
e.g. boot-time or run-time variability is mainly performed
through the use of design patterns, introducing extra archi-
tectural entities. Because of feature scattering and tangling,
these patterns are applied to numerous points in the system
in order to allow for feature-level variability, which influ-



ences the system’s architectural integrity [5]. The afore-
mentioned issues deteriorate the time-to-market and cost-
effectiveness of the PL.

Feature-Architecture Mapping (FArM) is a methodology
developed to allow a stronger mapping between features
and the architecture. FArM progressively transforms the
initial PL FM to derive architectural components, which
encapsulate the transformed features’ business logic and
whose communication reflects the feature interactions.

Section 2 illustrates the industrial case study used for
the method’s description and evaluation. Sections 3 to 4
introduce FArM and its processes. Section 5 presents the
method’s evaluation. Finally, sections 6 and 7 present re-
lated work, the conclusions and future work respectively.

2. MobilePL Product Line

The feasibility of FArM has been evaluated with a case
study from the domain of IDEs [15]. For the purposes of
further developing and evaluating FArM, a case study from
the domain of distributed, embedded applications has been
conducted [14]. Based on the experiences of this case study
the method is currently being evaluated through the devel-
opment of a PL from the domain of mobile phones. The
PL is based upon the Symbian OS. The structure of the PL
APIs is shown in Figure 2.

Figure 2. The MobilePL APIs (non-shaded).

In the MobilePL architecture, data are exchanged be-
tween the handheld and the MobilePL Enterprise Server.
The latter is behind the corporate firewall and communi-
cates with email and content servers as shown in Figure 3.
A key feature of the MobilePL is the Push feature. This
enables the automatic propagation of content (e.g. emails)
when available, without need for an explicit request from
the handheld user.

3. Overview of the Feature-Architecture Map-
ping (FArM) Method

FArM’s goal is to provide a strong mapping between fea-
tures in the FM and the PL architecture. In order to achieve

Figure 3. MobilePL system architecture.

this, FArM utilizes an initially constructed FM produced by
a domain analysis method, e.g. FODA [8], to derive archi-
tectural components closely related to features. The initial
FM is progressively transformed by two cooperating teams,
namely, a feature analyst team and an architecture team.
The feature analysts work on the FM-level, e.g. with fea-
ture specifications. The architecture team makes decisions
for the component specification and the system architecture.

The FArM transformation flow is shown in Figure 4. The
FArM transformations occur in many iterations. In each it-
eration the developers concentrate primarily in one transfor-
mation but previous transformations may also be revisited,
in which case the following transformations must be per-
formed again in the given order. Note also that architecture
development takes place in each iteration. This iterative de-
velopment model assures the consistence of the produced
artefacts, i.e. FM and reference architecture and allows a
balanced approach to design and implementation.

Figure 4. FArM transformation flow and itera-
tions.

The FArM transformations handle:

Trans. 1. Non-Architecture-Related & Quality features

Trans. 2. Architecture Requirements

Trans. 3. Interacts Relations

Trans. 4. Hierarchy Relations



3.1. Initial Feature Model

The FM serving as input to FArM must satisfy the fol-
lowing elementary criteria:

• Features must be derived at least from a customer per-
spective. This criterion is a vital prerequisite for the
development of maintainable systems. Nonetheless,
features from other stakeholder perspectives may be
included in the initial FM, e.g. from an architectural or
managerial perspective.

• All features must be accompanied by a searchable
specification. This can be in the form of text and/or
models. This criterion enables the analysis of the fea-
tures during the FArM transformations.

• The FM must possess basic structural properties, i.e.
features must be structured in a hierarchical man-
ner having feature-subfeature relations with the proper
relation-cardinalities. Furthermore, features must be
marked at least as being mandatory, optional or alter-
native. This criterion illustrates the basic relations be-
tween features and is also an indicator of a semanti-
cally correct initial FM.

The above listed criteria are satisfied by the majority of
the existing domain analysis methods. As it can be seen,
efforts have been made in FArM to allow for versatility in
the application of domain analysis. Additional information
included in the initial FM are properly handled throughout
the FArM transformations.

3.2. Non-Architecture-Related & Quality
Features

FArM strives to achieve a transformed FM where each
feature can be implemented in an architectural component.
Non-Architecture-Related (NAR) features have an insignif-
icant impact on the software architecture and therefore can-
not be mapped to an architectural component. Quality fea-
tures influence the entire software system making it practi-
cally impossible for a direct implementation in an architec-
tural component. In transformation 1, FArM handles NAR
and quality features. The internals of these transformation
are presented in sections 3.3 and 3.4

3.3. NAR Feature Resolution

NAR features in FArM belong to either of the following
categories:

Physical Features representing physical attributes of the
system. These features are resolved directly through
hardware solutions

Business Features relating to pure business aspects of the
system. These features are resolved through manager-
ial solutions

Figure 5. Resolution of NAR features.

In Figure 5 the Weight feature is a Physical feature and
can be directly resolved through the use of synthetic mater-
ial for the handheld’s case and medium size. Physical NAR
features should be carefully identified, since they may have
a strong indirect influence of the software architecture. An
example is Battery. At a first glance, this feature seems
to be a physical feature. Nonetheless, battery duration im-
poses sophisticated power management algorithms having
a non-trivial impact on the software architecture.

The Competitive Market Price feature of Figure 5 is
a Business feature and can be resolved, e.g. through the
managerial solutions of periodical risk-analysis or adding
experts in the development team.

Note that the transformation decisions are captured in
traceability links between the resolved features and the root
feature (i.e. MobilePL) of the transformed FM. Traceabil-
ity links are added throughout the FArM transformations to
allow forward and backward traceability of the decisions
made.

3.4. Quality Feature Resolution

Quality features are initially quantitatively defined
through the creation of Profiles, as described in Bosch [4].
They are later resolved by resolving each part of their quan-
titative specification. For this purpose the elementary trans-
formations of direct resolution, integration in existing func-
tional features and addition of new functional features is
used. More precisely, some parts of the specification can
be directly resolved if they have no impact on the software
architecture, like in the case of NAR features. Other parts
are integrated into existing functional features by enhancing
their specifications. Finally, new features can be added to
provide functional solutions that fulfil the quality features’
specifications.



Figure 6 shows the resolution of the Security quality fea-
ture of the MobilePL PL. One part of the quantitative speci-
fication of the Security feature is satisfied through the addi-
tion of the new functional feature Firewall. Other parts of
the Security feature’s specification are similarly resolved.
For a more detailed discussion of this transformation see
[16].

Figure 6. Resolution of the MobilePL Security
feature.

3.5. Transformations based on Architec-
tural Requirements

Commonly, domain analysis methods use domain ex-
perts or application documentation to analyze a domain.
This leads to functional features expressing the customer’s
view of the PL. Nonetheless, there may exist hard architec-
tural requirements that must be satisfied. Like in the case of
quality features this is done through direct resolution, inte-
gration in existing functional features and addition of new
functional features. An example is shown in Figure 7.

Figure 7. Resolution of the HTTP Authentica-
tion architectural requirement.

The HTTP Authentication architectural requirement
refers to the authentication needed by various web sites. To
reduce network traffic the architects add an Authentication
feature to store the required usernames and passwords and
automatically pass them to web sites needing authentica-
tion. If authentication fails, the challenge is sent back to the
handheld and a prompt is shown in the web browser. There-
fore, this part of the requirement specification is integrated
into the pre-existing Web Browser feature.

3.6. Transformations based on Interacts Re-
lations

After transformations 1 and 2, the FM contains exclu-
sively functional features, both those from the customer
point of view and those closer to the system architecture.
FArM models the communication of features by introduc-
ing a new FM relation, namely, the interacts relation. Note
that this term has already been used in related work [6] but
it is explicitly extended in this work. A valid FArM interacts
relation must belong at least to one of the following types:

Type 1. It connects two features where one feature uses the
other feature’s functionality

Type 2. It connects two features where the correct opera-
tion of one feature alters the behavior of the other fea-
ture

Type 3. It connects two features where the correct opera-
tion of one feature contradicts with the correct opera-
tion of the other

Figure 8 shows examples for each type of interacts rela-
tion. Email uses the functionality of Push to receive auto-
matically propagated emails. The presence of the Profiles
feature causes the Sound feature to reduce the ringing tone
when the ”silent” profile is active. The presence of the Fire-
wall feature prevents the Web Browser from downloading
non-authorized executable files.

Figure 8. FArM interacts relations.

Initially, all interacts relations between features are iden-
tified. Features are then transformed based on FArM trans-
formation criteria and finally, interfaces are assigned to the
respective architectural components. The FArM transfor-
mation criteria are:

Criterion 1. The type of interacts relations

Criterion 2. The number of interacts relations

Based on the above criteria a feature can be integrated
into another feature or a new feature can be added. An ex-
ample for a transformation that may occur based on the type
of interacts relations (criterion 1) can be seen in the Fire-
wall-Web Browser relation. This relation belongs to the



second type of interacts relations, where the correct opera-
tion of the Firewall feature contradicts with the correct op-
eration of the Web Browser feature when the latter blocks
the download of executable files. In this case the developers
may consider either integrating the Firewall feature in the
Web Browser feature, which would resolve the contradic-
tion or enhance the Web Browser feature by providing an
open interface for control over the download process. Since
the Firewall feature presents an important feature in the
system and it also interacts with other features, the devel-
opers select the enhancement of the Web Browser feature.

An example of a transformation based on the number of
interacts relations (criterion 2) is shown in Figure 9. In this
example the UI Support feature has a large number of in-
teracts relations, namely, with every feature requiring user
interaction. For instance, the Email feature must present a
GUI to the user to allow the reading of emails. Addition-
ally, the UI Support feature has no extra logic in itself, i.e.
it merely provides references to the UI-classes. For this rea-
son the UI Support feature is integrated into every feature
needing access to user interface functionality.

Figure 9. FM transformation based on the
number of interacts relations.

3.7. Transformations based on Hierarchy
Relations

Features within a hierarchy relation in the FM illustrate
a strong logical relation. If features in a FM hierarchy can
be mapped to components, one could use the hierarchy re-
lations for the specification of the component interfaces.
Components implementing a super-feature may serve as a
central access point for functionality from and to compo-
nents implementing the sub-features. For example, com-
ponents beyond the hierarchy relation could access func-
tionality provided by the sub-feature-components centrally,
through the super-feature-component or the sub-feature-
components could access the functionality of other features
through the super-feature-component. This allows higher
encapsulation and lower coupling between the various com-
ponents of the PL. Additionally, super-feature-components
could also be used as a switch mechanism between sub-
feature-components, thus inherently supporting variability,
e.g. the strategy design pattern can be implemented within

the super- and sub-feature-components, without need for in-
troduction of extra architectural entities.

Based on all the above, a valid FArM hierarchy relation
must belong at least to one of the following types:

Type 1. The sub-feature specializes the super-feature

Type 2. The sub-feature is a part of the super-feature

Type 3. The sub-features present alternatives to their
super-feature

Examples of valid FArM hierarchy relations are shown
in Figure 10. The Messages - Email, SMS hierarchy rela-
tion belongs to both types 2 and 3 of the FArM hierarchy
relations, since Email and SMS are both parts of Messages
and present message alternatives. This hierarchy relation re-
sults to the addition of interfaces shown in the lower part of
Figure 10. The Messages component provides a send()
method for sending emails, which is used by the Email
component. The Encryption - Triple DES hierarchy rela-
tion belongs to type 1 of the FArM hierarchy relations. As
shown in the collaboration diagram of Figure 10, the Triple
DES component specializes the Encryption component by
providing a stronger encryption algorithm.

Figure 10. FM (upper part) and architectural
implementation (lower part) of the FArM fea-
tures.

This transformation starts by examining all features if
they can initiate new sub-features. Then, all hierarchy re-
lations are checked against the FArM hierarchy types for
validity. Invalid hierarchy relations are removed and their
features remain single, i.e. without any sub-features. Fi-
nally, new hierarchy relations are created according to the
above types. In the last step, interfaces are added to the
respective architectural components.

A representative example for this transformation is
shown in Figure 11. The single features Email and SMS
are identified as alternatives. The new Messages feature is
added as their super-feature, thus complying with type 3 of
the FArM hierarchy relations.



Figure 11. Addition of the Messages super-
feature after the hierarchy transformation.

4. Architecture Development

In the last iterations of the hierarchy transformation the
final transformed FM is developed. The FM contains only
functional features. Each feature has a concrete specifica-
tion regarding its responsibilities. The communication be-
tween features has been modelled through interacts and hi-
erarchy relations. For each of the transformed features a
respective architectural component has been derived encap-
sulating the business logic of the feature and having an in-
terface that reflects the feature communication.

As shown in Figure 4, architecture development takes
place in each FArM iteration. Throughout the transforma-
tions, architecture development occurs mainly in the form
of component specification. In the last FArM iterations the
system architects commit to a certain architecture. That is,
they adopt a specific architectural style and the developed
components are adapted to that style, e.g. the decision to
use a layered architecture would lead to ordering of each of
the components in a specific layer.

During component adaptation, FArM takes into consid-
eration two important points of PLs, namely, product com-
position and flexibility. These issues are addressed through
the explicit integration of plug-in mechanisms in the de-
veloped components. For example, the use of XML tech-
nology to impose a plug-in protocol, the introduction of a
class-loader mechanism or the use of a dynamic architec-
tural style, e.g. the Kernel architectural style.

A partial view of the MobilePL architecture developed
during this case study is shown in Figure 12. The final
transformed FM contains features mapped to an architec-
tural component. The MobilePL root feature implements
the plug-in platform where each component is plugged.

The class diagram of Figure 13 shows the facade classes
of the respective components in Figure 12. The meth-
ods getFeature(), exit() and load() are part of
the plug-in API. The methods listen(), recv() and
newThread() have been added during the transforma-
tions as a result of component communication.

Figure 14 shows the collaboration diagram for the re-
ception of a pushed email. The Push component receives a
request for listening to a certain port for incoming data. The

Figure 12. The final FM and plug-in architec-
ture.

Figure 13. Class diagram of the facade
classes of FArM components.

request has been sent originally from the Email component
through the Messages component implementing the super-
feature of the Email feature. The Push component starts
a new listening thread and returns the thread id. Upon the
arrival of data on the specified port, Push sends the data to
the Messages component, which in turn propagates the data
to the Email component.

Figure 14. Collaboration diagram for the re-
ception of a pushed email.



5. FArM Evaluation

This section provides an evaluation of FArM regarding
the maintainability and flexibility of the produced PL. It
also gives references to the current tool support for the
method.

5.1. Maintainability

As mentioned in section 1, PL changes are mainly driven
from new market needs and technology enhancements both
occurring on the feature level. The following sections will
discuss the addition and changing of a feature.

5.2. Addition of a feature

FArM supports the addition of a feature by carrying
out the aforementioned transformations for the new feature.
The latter is exposed to the elementary transformations, be-
ing directly resolved, integrated into existing features or im-
plemented into new functional features. Its communication-
needs to other PL features are modelled and the possible
newly identified components are derived. Finally, the plug-
in nature of the FArM architecture allows the easy integra-
tion of new components through a plug-in mechanism.

An example is the addition of the optional MMS feature.
The feature is first added to the initial FM as a single feature.
The feature remains intact through transformation 1 since it
is neither a quality nor a NAR feature. In transformation 2
the architects identify the need to extend the communica-
tion protocol between the server and the handheld to handle
multimedia content. This architectural requirement is inte-
grated into the pre-existing Messages feature. In transfor-
mation 3 the need for sending messages causes the addition
of an interacts relation between the MMS and the Messages
features. In the last transformation the interacts relation
is transformed into a hierarchy relation between Messages
and MMS. Finally, the respective architectural component
is adapted to the plug-in protocol of the MobilePL archi-
tecture through the addition of interfaces like load() and
exit(), for loading the feature during system booting and
freeing of resources during system shutdown.

5.3. Changing of a feature

The following change scenario is considered: ”Simul-
taneous data reception of many push-enabled applications
causes performance deterioration on the handheld device.
A prioritized policy for pausing and resuming pushed data
shall be imposed...”. In the FArM architecture (Figure 14)
only the Push component needs to be changed to assign pri-
orities to support the pausing and resuming of the listen-
ing threads. The Push component can inform the server for

pausing and resuming data transmission respectively. As
shown from this scenario the encapsulation of the feature
business logic in one architectural component has localized
the effect of the change, thus increasing system maintain-
ability. Even in the case where a large number of features
needs to be changed, the FArM interacts relations can be
used to estimate and guide the development efforts.

Figure 15 shows the Blackberry implementation of the
Push feature. Blackberry [10] is a commercial PL of the
RIM company. The logic of the Blackberry Push feature
is scattered to all push-enabled components of the system.
Each push-enabled component has to create its own thread
and listen to a specified port for incoming data. The re-
alization of the previous change scenario for the Black-
berry Push feature would cause the changing of each push-
enabled component, plus the addition of a priority manager
to synchronize all components.

Figure 15. Blackberry implementation of the
Push feature.

5.4. Flexibility

With the term flexibility, this work refers to the effort
needed for product instantiation and the efficiency with
which feature-level variability is added to the PL products.

Many PL methods necessitate extra effort for the instan-
tiation of PL products. Product instantiation takes place,
e.g. through extension of the developed components during
PL engineering. Other methods require the writing of ”glue-
code” for the connection of the developed components. Due
to a stronger mapping between features and the architec-
ture, the effort for the composition of PL products can be
reduced. Throughout the FArM transformations traceabil-
ity links are added between the transformed FMs and the
final FM and PL architecture. Because of this fact, the se-
lection of a feature in the initial FM by a customer can be
traced down to the transformed FM and the respective archi-
tectural component(s). Additionally, the explicit integration
of plug-in mechanisms in the PL architecture reduces the
effort for the composition of the final product.

The other issue discussed under the term flexibility is
that of feature-level variability. As mentioned in section 1,
the implementation of feature-level variability in PL prod-



ucts, has a negative impact on the system’s conceptual in-
tegrity [5], because of the introduction of extra architectural
entities, baring little or no relation to neighbor system com-
ponents.

FArM addresses this issue with a number of rules applied
throughout the FM transformations. Namely, features with
boot-time or run-time variability should not be integrated
into other features. This assures that the business logic of
these features is implemented in one or more architectural
components, which can later be used for the implementa-
tion of a variability mechanism. During transformation 3,
the number of interacts relations of variable features must
be minimized, e.g. through the addition of new features
that are assigned some of the variable feature’s interacts re-
lations. This encapsulates the variable feature and allows
for an easier implementation of the variability mechanism.
In transformation 4, the super-features of variable features
must be extended to receive the needed variability mecha-
nism. For example, the Messages component should be ex-
tended with the architectural entities of the strategy design
pattern, in order to properly propagate received messages to
one of the Email, SMS or MMS components.

5.5 Tool Support

A prototype tool for research on the efficient application
of the FArM method has been developed with the DOME
(DOmain Modeling Environment) tool. DOME is a meta-
case system suitable for building object-oriented software
models. FArM specifics, such as traceability links, inter-
acts relations and constraints have been implemented as a
DOME tool-specification. This is a graphical, high-level
specification of node and connector types, connection con-
straints, and additional syntax and semantics.

For the industrial application of FArM though, a col-
lection of professional tools can be used. For the domain
analysis and transformations of FArM the developers may
use a common industrial documentation managing tool like
IBM’s Rational Requisite Pro. This will allow the captur-
ing and tracing of requirements, feature specifications, as
well as the various transformation decisions. The design
and implementation of the PL architecture can be done with
conventional case tools, e.g. Borldand’s Together tool-suite.
Finally, the generation of end-products can be implemented
with the use of a software dependencies and packaging tool,
e.g. the RPM Package Manager. More precisely, each com-
ponent implementing a feature can be placed in a separate
package and the FM requires and excludes relations can be
applied in the form of package dependencies.

Currently, work is done on the unified application of the
FArM processes within the Eclipse environment, through
the use of the provided plug-in interfaces.

6. Related Work

This section illustrates the main state of the art PL meth-
ods from the perspective of feature-architecture mapping.
It also presents related work to the internals of the FArM
processes.

The main state of the art PL methods are FeatuRSEB [7],
KobrA [1] and Functionality-based Architectural Design
(FAD) [4]. FeatuRSEB and KobrA are based on use-cases
to derive architectural components. In order to provide
a mapping between features and architecture, FeatuRSEB
makes use of traces, while KobrA introduces a similar con-
struct called decision model. The derivation of PL com-
ponents through use-cases, promotes the phenomenon of
feature scattering and feature tangling as described in sec-
tion 1. A feature is described in parts of various use-cases.
Consequently, deriving components from use-cases eventu-
ally leads to the implementation of features within numer-
ous architectural elements. Nevertheless, use-case derived
architectural components illustrate high encapsulation and
low coupling on the use-case level, allowing for sufficient
maintainability in various domains. The use of traces and
decision models for the mapping between features and the
architecture is indeed a sufficient solution for medium sized
PLs. Unfortunately, a large number of features and classes
in a system lead to an explosion of the number of traces
and the number of decisions for the decision model. This
makes the creation and maintenance of these constructs a
challenging task.

FAD is based on the concept of archetypes to de-
rive architectural components. Archetypes represent the
core abstractions of a system. During FAD the identi-
fied archetypes are instantiated through the use of architec-
tural styles and design patterns. FAD provides no mapping
mechanism between features and the architecture. The main
issues with FAD are the identification of archetypes, their
instantiation and of course, the lack of a mapping mech-
anism. FAD does provide a number of hints to support
archetype identification, although it denotes that it is mainly
a creative, intuitive process. The instantiation of archetypes
through architectural styles and design patterns also leads to
the introduction of potentially ”artificial” entities, offend-
ing the principle of the system’s conceptual integrity [5].
Nonetheless, FAD archetypes present re-occurring architec-
tural patterns, contributing to overall conceptual integrity.

An attempt to map the FODA domain model to a generic
architecture has been made in [12]. This method utilizes
FODA’s information model to derive objects that map to the
constructs of the Object Connection Architecture (OCA)
[9]. The latter is an architectural model focusing on the sep-
aration of control and data flow of large software systems.
This approach increases the system’s flexibility and main-
tainability for numerous scenarios. Nonetheless, objects in



this method are derived from FODA’s information model,
rather than the FM. The information model captures and
defines the domain knowledge and data requirements that
are essential in implementing applications in the domain.
This fact results to architectural components partially im-
plementing various customer-related features, which in turn
leads to a poor feature-architecture mapping with a main-
tainability penalty.

On their attempt to compensate for limited PL flexibil-
ity a number of generative programming techniques have
been integrated into PL methods. Representative exam-
ples are the HyperFeatuRSEB method [3] integrating the
Hyperspace approach [11] with FeatuRSEB and the Gen-
Voca method [2]. These methods are based on program-
ming techniques supported by UML extensions to logically
map code to features. This approach does enhance the PL
flexibility, but on the expense of PL maintainability. More
precisely, the extra models and code introduced increase the
effort needed to accommodate changes and support PL evo-
lution.

Related work to the inner processes of FArM can be
found in FAD [4] regarding quality feature resolution. In
FAD quality features are resolved through architectural
styles and design patterns. Although this approach achieves
quality feature resolution, it also introduces architectural
entities potentially breaking the system’s conceptual in-
tegrity. FArM makes use of design patterns only for the
internal parts of the derived components, where size and
complexity remain manageable. Work has been done for
FArM’s type 3 of interacts relations [6]. This work assumes
that components operate with no knowledge of each other.
FArM explicitly models feature interactions and extends the
concept of interacts relations. Nonetheless, the techniques
of the related work can be used in FArM, as long as the
principle of conceptual integrity is taken into consideration.

7. Conclusions and Future Work

This paper introduced the Feature-Architecture Mapping
(FArM) method for feature-oriented development of soft-
ware PLs. FArM utilizes a number of mature software
practices, enriched with new elements to achieve a stronger
mapping between features and the architecture.

By iteratively refining the initial FM, a FM is con-
structed, containing exclusively functional features, whose
business logic can be implemented into architectural com-
ponents. Furthermore, the FM hierarchy and the FArM in-
teracts relations model the communication between the PL
features. This leads to a PL architecture where each archi-
tectural component encapsulates the business logic of a fea-
ture and the component communication reflects the feature
interactions. The evaluation of the method has shown its
potential to enhance PL maintainability and flexibility.

Further work in FArM includes the concrete definition
of its applicability in other application domains and the au-
thoring of a detailed report for its implementation.

References

[1] C. Atkinson et al. Component-based Product Line Engineer-
ing with UML. Addison-Wesley, 2002.

[2] D. Batory and J. Geraci. Composition Validation and Sub-
jectivity in GenVoca Generators. IEEE Transactions on Soft-
ware Engineering, 23(2):67–82, 1997.

[3] K. Boellert. Object-Oriented Development of Software
Product Lines for the Serial Production of Software Systems.
PhD thesis, TU-Ilmenau, Ilmenau Germany, 2002. german.

[4] J. Bosch. Design & Use of Software Architectures-Adopting
and Evolving a Product Line Approach. Addison-Wesley,
2000.

[5] F. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Longman, 1995.

[6] M. Calder, M. Kolberg, M. Magill, and S. Reiff-Marganiec.
Feature Interaction A Critical Review and Considered Fore-
cast. Elsevier: Computer Networks, 41(1):115–141, 2003.

[7] D. Griss, R. Allen, and M. d’Allesandro. Integrating Feature
Modelling with the RSEB. In 5th International Conference
of Software Reuse, 1998.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study. Technical report, Software Engineering Institute,
Carnegie Mellon University, 1990.

[9] K. J. Lee, M. J. Rissman, R. DIppolito, C. Plinta, and R. V.
Scoy. An OOD Paradigm for Flight Simulators, 2nd ed.
Technical report, Software Engineering Institute, Carnegie
Mellon University, Sept. 1988.

[10] R. I. M. Limited. BlackBerry Java Development Environ-
ment Version 3.6 Developer Guide Volume 1, Fundamentals.
RIM, 2003.

[11] H. Ossher and P. Tarr. Software Architectures and Compo-
nent Technology, chapter Multi-Dimensional Separation of
Concerns and the Hyperspace Approach. Kluwer Academic
Publishers, 2001.

[12] A. S. Peterson and J. Jay L. Stanley. Mapping a Domain
Model and Architecture to a Generic Design. Technical re-
port, Carnegie Mellon University, Software Engineering In-
stitute, 1994.

[13] M. Riebisch. Towards a More Precise Definition of Feature
Models. Workshop at ECOOP, pages 64–76, 2003.

[14] P. Sochos. Mapping feature models to the architecture. First
International SPLYR Workshop, pages 51–60, 2004.

[15] P. Sochos, M. Riebisch, and I. Philippow. Feature-oriented
development of software product lines: Mapping feature
models to the architecture. Net.ObjectDays, pages 138–152,
2004.

[16] P. Sochos, M. Riebisch, and I. Philippow. Feature-oriented
architecture design for maintainability and evolution of
product lines. Software Engineering, March 2005. german.


