
Evaluating Alternatives for Architecture-Oriented Refactoring

Sven Wohlfarth, Matthias Riebisch
Department of Software Systems and Process Informatics
Technical University Ilmenau, 98684 Ilmenau, Germany

{ sven.wohlfarth | matthias.riebisch }@tu-ilmenau.de

Abstract

Refactoring of software systems represents an fun-
damental way of improving their quality properties.
Large-scale refactoring has to be performed at an ar-
chitectural level to execute such changes for larger
systems. Architecture-oriented refactoring requires
decisions with multiple, partly contradicting objectives
and uncertain consequences. To minimize risks and
effort, the decisions about optimal refactoring alterna-
tives have to be performed in a systematic way. In this
paper decision theory is adapted to architecture-
oriented refactoring. Methods for the evaluation of
refactoring alternatives are shown which are applica-
ble even to decisions with multiple and partly uncer-
tain consequences. Furthermore, the complex decision
process is structured in a rational way. In an example
the effects of an increased quality requirement to ar-
chitectural evolution are demonstrated.
Keywords: Refactoring, Reengineering, Software

Architecture, Software Quality, Decision Theory

1. Introduction

During their use, software systems have to be
changed permanently. Frequently, changes are imple-
mented in an incomplete or inconsistent way, leading
to a loss of architectural quality, i.e. in terms of main-
tainability and understandability. This effect is called
Architectural Decay. To enable further changes, the
architectural quality has to be restored. In other cases,
changed non-functional requirements demand in a re-
vision of the architecture. In both cases, a refactoring
of this system is necessary, e.g. the architecture has to
be changed without changing the behavior of the sys-
tem.

There are some refactoring steps described in litera-
ture, mostly operating at the source code level [1]. For
larger-scale changes, the architecture level is more
suitable for performing the refactoring because it en-

ables a reduction of the architecture’s complexity, e.g.
by introducing reference architectures, styles and pat-
terns.

Architecture-oriented refactoring is an approach to
restructure the software architecture of a system and to
improve its internal software quality. The principal
software quality goals for refactoring include under-
standability, flexibility, dependability and time behav-
ior. The key aspect of refactoring is the preservation of
the behavior, e.g. the functional behavior of the soft-
ware will be unchanged.

A refactoring at the architecture level demands for
larger changes than at the source code level. Therefore
it is a much more complex, difficult and risky task.
One of the critical points is the choice of an optimal
refactoring solution from the set of refactoring alterna-
tives [1]. Normally there is more then one suitable al-
ternative. But which of them offers the strongest qual-
ity improvement and the lowest effort or risk? The
refactoring alternatives have to be evaluated and com-
pared. Furthermore, the objectives of a refactoring are
frequently ambiguous, vague or even contradictory. It
is difficult for the developer to make a rational choice
under consideration of more than two or three factors
and objectives.

This paper describes an evaluation methodology for
refactoring alternatives based on rational decisions.
The well-established decision theory methods will be
adapted to refactoring decisions at the architectural
level. They are applied to create a system of objectives,
to generate refactoring alternatives and to support the
choice of a refactoring alternative, which matches the
preferences of the decision maker in the best way.
Later, the selected refactoring alternative will be im-
plemented and the achievement of the quality objec-
tives will be checked.

This paper is organized as follows: in section 2 the
State of the Art of decision theory is introduced in
brief. Section 3 introduces the methodology and de-
monstrates it by a case example. Section 4 draws the
conclusions.

2. State of the Art of Decision Theory

Decision theory comprises the prescriptive and the
descriptive decision analysis [2]. The intention of de-
scriptive decision analysis is to describe the human
decision process on a cognitive level. The focus of the
paper is on prescriptive decision analysis, because it
helps the decision maker to handle complex decision
problems in a rational way.

The prescriptive decision analysis decomposes and
evaluates the decision problem [3]. A complex deci-
sion problem can be decomposed into fundamental
components: the objectives and preferences of the de-
cision maker, the alternatives, their impacts and their
consequences.

The critical point in this decision problem is the
evaluation of the alternatives [3]. The alternatives are
several options or strategies. The decision maker has to
choose one alternative, which matches the objectives
and preferences on a high level. During the evaluation
process, the decision maker has to consider many fac-
tors, like the consequences of the alternatives, impact
factors and his preferences. Furthermore, some factors
can only be determined uncertainly. Decision analysis
methods help to evaluate the various alternatives in a
rational way. The methods help to quantify the value
or the estimated utility of the alternatives and match
them with the desired preferences of the decision
maker.

The decomposition of the decision problem and the
structured evaluation are important factors for rational
decision-making. Other rationality requirements will
be presented in the following sections.

Decision theory has proven its practical applicabil-
ity in various contexts, e.g. financial or investment
decision problems [4]. The alternatives of financial
decision problems are several investment objects e.g.
machines, patent licenses. The consequences are even
uncertain, because they depend on unpredictable influ-
ence factors, e.g. the demand of the customers.

3. Establishing a Decision Process for Ar-
chitecture-Oriented Refactoring

Architecture-oriented refactoring usually has to

solve different competing requirements. The conse-
quences of a decision are mostly uncertain, e.g. be-
cause the effort for deriving them is too high for prac-
tical cases. These characteristics of refactoring deci-
sions encourage us to apply decision analysis here.

3.1. Requirements for Rational Decisions

To make a rational decision, the decision process
has to fulfill two criteria: The procedure of the deci-
sion has to be rational and the basis for the decision
has to be consistent [3, 5, 6].

The following aspects are relevant for a rational de-
cision process:
- Information: It is important, that the decision maker

has considered and processed the relevant informa-
tion. The investigation effort should correspond to
the importance of the decision problem. It is not nec-
essary to analyze the whole software system if only a
small part has to be improved.

- Expectation: The decision maker has to focus on
objective expectations about the future.

- Objectives and preferences: The objectives and pref-
erences have to be described clearly. Furthermore,
they have to be weighted according to the importance
of the quality problems.

The second criterion of a rational decision-making

is a consistent decision basis. This is determined by the
following factors:
- Future orientation: The choice between alternatives

should be determined by their expected conse-
quences. Former events and factors are irrelevant.

- Transitivity: If the decision maker prefers the alterna-
tive a before b and b before c - then he has to prefer
the alternative a before c.

- Invariance: The preferences of the decision maker
should be invariant to each other. The factor costs of
the refactoring correlates with the refactoring effort
for example.

3.2. Creating a System of Objectives

The first phase of the refactoring process is the de-
termination of the objectives. The objectives are the
required, but unfulfilled software quality characteris-
tics. The software quality is defined as the totality of
characteristics of an entity that bears on its ability to
satisfy stated and implied needs [6]. The software qual-
ity characterizes the quality of the software product
and the engineering process. The product quality is the
quality of the software product itself, like understand-
ability or flexibility. The quality of the refactoring
process is represented by quality characteristics like
efficiency or transparency.

The determination of the quality objectives is inter-
twined with the analysis and evaluation of the software
system and particularly with the analysis of the soft-
ware architecture. Architecture analysis is a structured
way to identify the problematical parts of the architec-

ture (e.g. in components, in sub-systems and in their
relations). These parts are the reason for already unful-
filled quality objectives. There is a broad field of archi-
tecture analysis methods. A well-accepted method is
the Architecture Tradeoff Analysis Method (ATAM)
[7]. Besides the determination of the quality objectives,
the architecture analysis is the basis for the generation
of refactoring alternatives to restructure the problem-
atical parts.

The set of quality objectives needs to be structured.
The intention is to resolve contradicting objectives.
They are removed by refining and classifying them [5].
The objectives are classified into fundamental and
means objectives. Fundamental objectives represent
the preferences of the decision maker directly. Means
objectives are necessary to fulfill fundamental objec-
tives. They represent the preferences of the decision
maker in an indirect way.

For refactoring activities we have to focus on fun-
damental objectives first. If a fundamental objective is
too complex, it can be refined using a tree structure
[5]. A complex quality objective at the root or at a
node is refined by more detailed leaves. Understand-
ability for example will be refined to sub-objectives
loose coupling and testability. The detailed fundamen-
tal objectives (leaves) have to be supplemented with
metrics (for measuring) and concrete thresholds. The
procedure of building a system of objectives can be
top-down or bottom-up.

RSS Reader Example
We have chosen an RSS reader [9] as practical ex-

ample for illustrating the method and the decision
process. This reader is part of the functionality of a cell
phone. It accesses and shows news as RSS feeds from
the web. For the next product version the reader is to
be improved concerning its usability. Typically for a
cell phone, only 11 keys are available for typing. Es-
pecially the direct input of URLs of RSS feeds lacks of
usability. The product manager defined this quality
requirement that does not directly affect the functional
behavior of the cell phone.

To implement this quality requirement, a revision of
the system and software architecture is necessary - an
architectural refactoring. In the design process mostly
the software architect acts as the decision maker.

As solution, the required usability of the RSS reader
shall be reached by offering an additional RSS feed
manager running on a personal computer. The reader
on the cell phone then only imports the feed lists. This
additional RSS feed manager as well as the import
functions are not available. The reader has to be
changed accordingly. This change demands for flexi-
bility, similar to many functional enhancements during

the evolution of a cell phone product. Therefore the
architect decides for the introduction of a switching
mechanism as general solution for enable a switching
of behavior. In this case it will be applied for switching
between the internal and the external RSS feed man-
ager. The interface to the external RSS feed manager
will use the same facilities as the synchronize func-
tions of calendar and address book of the cell phone.

There is a contradicting objective influenced by the
refactoring – safety & security. This contradiction is
resolved by refining the fundamental objectives to sub-
objectives and by classifying them into fundamental
and means objectives (figure 1). In our case the deci-
sion for increasing the flexibility interferes with the
quality objective for safety & security – especially due
to the additional interface to an external platform. As
resolution, the import interface (a means objective) is
specified rigorously to enable the application of secu-
rity restrictions.

The aimed switching to an external RSS feed man-
ager (means objective 1) requires flexibility for switch-
ing behavior as means objective 2. To achieve this
objective on an architectural level, a loose coupling of
the components is necessary (means objective 3).

Fundamental objective
Usability

Means objective 2
Flexibility

Means objective 3
Loose coupling

Contradicting objective
Security

(Access restriction)

Rigorously
specified import

interface

Migrating the RSS feed
manager to better user

interface

Means objective 1

Figure 1. A sample system of objectives

Even if the changed quality requirement demands
only for an architectural refactoring without changing
the overall system behavior. However, components
and parts within the architecture have to be function-
ally changed to fulfill the non-functional, quality ob-
jective usability.

3.3. Generating Refactoring Alternatives

The second step is the generation of refactoring al-
ternatives. A refactoring alternative is an option or a
strategy to restructure a critical part of the software
system.

A refactoring alternative can be a single refactoring
step or it can be a combination of several refactoring
steps. A refactoring step is a useful combination of
several refactoring activities, which belong together
(see picture 2). There are many documented refactor-
ing activities available. The refactoring catalog [10]
represents an example. Refactoring activities can be
adapted easily. However, not all activities are suitable
for architecture-oriented refactoring. They are de-
signed for minor changes at the level of software code.

Alternative a

Alternative b

Consequence a

Consequence b

Influence Factors

Impact of
structural
patterns

Know How,
Experience

Availability
of support

...

Figure 2. The components of a refactoring step

Sources for the generation of the refactoring alter-
natives are patterns and styles, personal experiences or
former solutions. The patterns include design and ar-
chitectural patterns [11, 12]. The patterns are common
used solutions for design or architectural problems
[13]. They describe a solution structure for the prob-
lematical parts of the software architecture. For several
design patterns, sequences of refactoring activities that
help to transform an existing system into one imple-
menting the pattern have been described in [14]. Ar-
chitectural styles are more abstract. They describe fun-
damental responsibilities and relations of the compo-
nents of a software system.

Consequences of refactoring alternatives are deter-
mined by influence factors, e.g. a positive or negative
impact from design patterns on other parts of the solu-
tion, effort or risks. If impacts are uncertain, probabili-
ties will be used instead. The consequences of the
refactoring alternatives depend on the influence factors
and the attributes of the refactoring steps, like the ef-
fort or the estimated risk.

If the decision maker has to deal with uncertainty,
the impact should be modeled to ease a later evalua-
tion. The following types of impact models are useful
[4, 5]:
- Decision matrix: The refactoring alternatives will be

combined with the influence factors (e.g. states,
events) and their occurrence probabilities in a matrix.
The points of intersection are the consequences. A
decision matrix is useful, if the consequences are a
functional relation between the influence factors and
the attributes of the refactoring. An example is the
functional relation between refactoring efforts and
costs.

- Decision tree: Such a tree combines the alternatives
(modeled as squares), the corresponding events (cir-
cles), the occurrence probabilities and other factors
(like costs, effort). The different refactoring alterna-
tives will be modeled as branches. There is a root as
starting point. The consequences are the result of
each branch. A decision tree is useful to describe
refactoring strategies.

- Decision diagram: A decision diagram is less de-
tailed than a decision tree. Instead of modeling each
refactoring step, a decision diagram contains sets of
refactoring steps (squares), which belong together.
The influence factors will be aggregated and mod-
eled as circles. The several consequences are not
modeled in detail. A decision diagram contains the
impact on the objectives directly (modeled as a hexa-
gon). The refactoring alternatives and the states or
events can be combined flexibly via borders. Cycles
are not allowed. A decision diagram is comparable to
network plans, like PERT or Event-Driven Process
Chains [15]. A decision diagram is useful, if the de-
cision problem is too complex due to many refactor-
ing steps and influence factors.

Alternatives for the RSS Reader
In the example, alternative a consists in the applica-

tion of the Strategy design pattern. It enables a inter-
change between two algorithms by encapsulating them
into classes with a common abstract superclass [13]. It
can here be applied to enable a switching between in-
ternal and external RSS feed handler. One of the re-
quired refactoring steps is the encapsulation of the cor-
responding classes with an identical interface, here the
method subscribeToFeed(). This refactoring step has
specific attributes and consequences. They are deter-
mined by influence factors, like the positive or nega-
tive effects of already implemented design patterns.

RSSReader

subscribeToFeed()

RMSHandler

subscribeToFeed()

Comfort
RMSHandler

subscribeToFeed()

Internal
RMSHandler

subscribeToFeed()

Figure 3. RSS reader with Strategy pattern

Alternative b consists in an inline extension of some
classes by an import interface. This refactoring alterna-
tive was developed from the experience of the archi-
tect.

The architect has modeled the refactoring steps with
the required effort (hours) in form of a decision tree
(see picture 3). The result of each step is a state with
either a better loose or a continued tight coupling of
the FeedList. The corresponding occurrence probabili-
ties are given in brackets. The consequences for the
refactoring effort and the occurrence probabilities are
aggregated at the end of each branch. The impact for
the flexibility of RMSHandler is estimated with grades
between 1 and 5 (1 high – 5 low).

Implement-
ation of the
Strategy
pattern
(10 h)

Inline extension by
an import interface
(10 h)

CT (0,7)

BE(0,3)

CT (0,2)

CT (0,2)

BE (0,8)

BE (0,8)

ConsequencesDecoupling
of methods
(3 h)

Effort: 13 h (0,14)
Flexibility: 4
Effort: 13 h (0,56)
Flexibility: 2

Effort: 10 h (0,2)
Flexibility: 5

Effort: 10 h (0,8)
Flexibility: 1

Effort: 10 h (0,3)
Flexibility: 1

BE: Better Encapsulation, CT: Coupled Tightly

(a)

(b)

Figure 4. A sample decision tree

The decision tree starts with the square on the left
side of the figure 4. The first step of alternative a is the
implementation of the Strategy pattern with a devel-
opment time of 10 h. The result of this step could be a
better encapsulation of the RMSHandler with a prob-
ability of 30 %. The flexibility would be of grade 1.
With a probability of 70 % a loose coupling of the
RMSHandler could not be reached. An additional de-
coupling of methods is necessary, because the source
code of the RMSHandler is tangled with the source

code of other features. After the decoupling activity,
which has taken 3 h of development time, the encapsu-
lation of the RMSHandler could be improved (prob-
ability 80 %) or a loose coupling could not be reached
(probability 20 %). In the better case, the flexibility
will be of grade 2 with an total effort of 13 h. The total
probability of this branch is 56 %. In the other case the
flexibility will be of grade 4 with a total effort of 13 h.
This case can occur with a total probability of 14 %.

The first step of alternative b is an inline extension
by an import interface. This step takes 10 h of devel-
opment time. This step could enhance the encapsula-
tion of the RMSHandler (probability 80 %) or a loose
coupling of the RMSHandler could not be reached
(probability 20 %). In the better case, the flexibility
will be of grade 1. In the other case it will be of
grade 5.

3.4. Evaluating the Refactoring Alternatives

In the evaluation, the consequences of the refactor-
ing alternatives are compared to the preferences of the
decision maker. It has to be analyzed which of the al-
ternatives matches the preferences in the best way.
There are different ways of evaluation if there are
more than one consequences, or if consequences can-
not be determined certainly [5, 16].

If the decision maker has to consider only one con-
sequence of the alternatives, and this consequence can
be determined certainly, a value function v is used for
evaluating. The value function v assigns numbers be-
tween 0 and 1 to each alternative. If the decision maker
prefers a before b, then a higher number is assigned to
a (formula 1).

 Abababvav ∈⇔≥ ,,)()(f (1)
The value function v for alternatives with more than

one consequence is based on an additive model. An
alternative a is characterized by a vector of conse-
quences a = (a1,…, am). The value of the consequences
is normalized in the interval [0,1]: The highest value is
normalized with 1, the lowest with 0. The value of an
alternative is calculated by the value function v (for-
mula 2). Each of the consequences is weighted by a
factor w according to its relevance.

 ∑
=

=
m

r
rrr avwav

1
)()((2)

If there is exactly one consequence with an uncer-
tain value, a utility function is used to determine the
expected value (EV). Such a utility function applies a
probability p of a situation s = (s1,…, sn) as the weight
of the corresponding consequence a.

 ∑
=

=
n

i
ii aupaEV

1
)()((3)

A utility function with more than one uncertain con-
sequences is similar to the value function v of formula
2. Each consequence is weighted by a factor k accord-
ing to its relevance and by the probability p of a situa-
tion s = (s1,…, sn).

 ∑ ∑
= = 











⋅=

n

i

m

r
irrri aukpaEV

1 1
)()((4)

In general, the determination of the probabilities is
difficult. Another way to evaluate the alternatives is
based on fuzzy logic [17]. Probabilities are modeled as
linguistic variables, with positive, neutral or negative
values. The consequence of an alternative is evaluated
by fuzzy sets. However, fuzzy logic is imprecise and
has only a low relevance for the decision theory.
Therefore, it is not discussed here in detail.

The preferences of the decision maker have to be
expressed quantitatively to enable an evaluation. For
their determination there exist different methods, e.g.
the Direct Rating Method [16]. By this method, the
highest and the lowest values of the consequences are
normalized to 1 and 0. The values in-between are in-
serted to the interval and an interpolation is performed.

Evaluation of the RSS Reader Alternatives
Two sample utility functions for the consequences

of the alternatives a and b (see figure 4) are shown in
figure 5. The minimum flexibility grade (5) and the
maximum effort (13 h) is of the lowest preference of
the decision maker, thus assigned to an utility of 0. The
utility of 1 is assigned to the highest flexibility grade
and the lowest effort.

5 4 3 2 1
Flexibility (grade)

13 10
Effort (hours)

Utility
1

0,5

0

Utility
1

0,5

0

Figure 5. Utility functions for two consequences

The alternatives a and b can now be evaluated using
the utility functions shown in figure 5. In our case, the
decision maker has weighted the impact on the flexi-
bility (a1 and b1) with 0.6 and the effort (a2 and b2)
with 0.4. The expected utility derived using formula 4:

88.040.048.0)()()(
60.012.048.0)()()(

21

21

=+=+=
=+=+=

bEVbEVbEV
aEVaEVaEV (5)

As a result of the evaluation, the expected utility of
alternative b is higher than the one of alternative a.
However, this result is based on estimations and is
therefore a suggestion for the decision maker.

3.5. Implementation and Final Analysis

The selected refactoring alternative has now to be
implemented. In a planning step, critical or especially
complex refactoring activities are analyzed in detail.
Unit tests and reviews have to prove, that the external,
viewable behavior remains unchanged. For the RSS
reader example, only the system behavior for the RSS
feed subscription remains unchanged, described by
some use cases.

A final analysis has to check if the changes to the
software architecture have lead to an improved soft-
ware quality. In the final analysis the quality objectives
are compared to the actual quality state.

The implementation phase of the architecture-
oriented refactoring process is well supported by sev-
eral refactoring tools, like the refactoring functions of
the open source IDE Eclipse [18].

4. Conclusion and Summary

This paper wants to facilitate refactoring, an activity
to improve the software quality without changing the
functional behavior of a software system [1], espe-
cially on the level of the software systems architecture.
During refactoring activities decisions between refac-
toring alternatives have to be made, which are driven
by several, partly contradicting objectives, and which
consequences are partly uncertain. The characteristics
of these decisions encourages the application of deci-
sion theory [5].

In this paper, the methods of decision theory are
adapted to architectural refactoring. By this adaptation
the structure of the architecture-oriented refactoring
process could be improved. This provides the basis for
a rational procedure for architecture-oriented refactor-
ing decisions. It helps to structure the objectives and to
resolve conflicting objectives as well as risks. Refac-
toring alternatives are developed and evaluated accord-
ing to their consequences. The paper presents methods
for evaluating refactoring alternatives by decision the-
ory methods, even if the set of consequences is diffi-
cult to interpret and the values are uncertain. The ap-
plication of the method is demonstrated using exam-
ples from a case study.

As an experience we can conclude, that architec-
ture-oriented refactoring represents a very helpful
technology for improving software quality. The pre-
sented method helps to reduce the large effort for
evaluating alternatives, caused by a large amount of
influence factors and by incomplete information about
interdependencies. Furthermore it helps to reduce un-
certainty, that would otherwise lead to a reduced value
of the results.

However, the suitability of the support of the archi-
tecture-oriented refactoring decisions is limited by the
correctness of the modeled refactoring scenario. Such a
scenario has to include all relevant events and envi-
ronmental influences with realistic probabilities

From an economic point of view the method helps
to reduce risks, to simplify the development process
and to increase its efficiency. Furthermore, the method
supports planning and risk management by providing
decision support and by optimization.

Finally it can be stated, that the support for architec-
ture-oriented refactoring decisions can help to avoid
additional expenses and unwanted side effects. The
efficiency of the refactoring process and the communi-
cation with the stakeholders can be improved.

5. References

[1] M. Fowler, K. Beck and E. Gamma, Refactoring:
Improving the design of existing code, Addison-
Wesley, Boston, 2005.

[2] P.R. Kleindorfer, H.C. Kunreuther and
P.J.H. Schoemaker, Decision Science: An integrative
perspective, Cambridge University Press, 2003.

[3] T.L. Saaty, Decision Making for Leaders: the Ana-
lytic Hierarchy Process for Decisions in a Complex
World, RWS Publications, Pittsburgh, 2001.

[4] M. Florenzano, P. Gourdel and V. Marakulin, “Im-
plementing Financial Equilibrium of Incomplete Mar-
kets – Bounded Portfolios and the Limiting Case”, In
Applied Decision Analysis, edited by F.J. Girón and
M.L. Martínez, 181-191, Kluwer, Boston, 1998.

[5] R. Clemen and T. Reilly, Making Hard Decisions
with Decision Tools, Pacific Grove, Brooks Cole,
2004.

[6] E. Forman and M.A. Selly, Decision By Objectives,
World Scientific Publishing Company, 2002.

[6] ISO Standards 8402, “Quality management“, 1995.

[7] R. Kazman, M. Klein and P. Clements, “ATAM:
Method for Architecture Evolution” Technical Report
CMU/SEI-2000-TR-004 (2000), http://www.sei.cmu.
edu/pub/documents/00.reports/pdf/00tr004.pdf.

[9] J2ME RSSReader: http://sourceforge.net/
projects/j2merssraeder, (accessed Jan. 10, 2006).

[10] M. Fowler, “Alpha list of refactorings”,
http://www.refactoring.com/catalog/index.html
(accessed Nov. 01, 2005).

[11] J. Bosch, Design & Use of Software Architec-
tures: Adopting and evolving a product line approach,
Addison-Wesley, Harlow, 2000.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad and M. Stal, Pattern-oriented software archi-
tecture - A system of patterns, Wiley, Chichester, 2001.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides:
Design Patterns – Elements of reusable object oriented
Software, Addison-Wesley, Munich, 2004.

[14] J. Kerievsky: Refactoring to Patterns, Addison-
Wesley, Boston, 2005.

[15] G. Hoblik, Dynamic organization methods for
networked process- and infrastructure planning, Aus-
trian Art & Culture, Vienna, 2000.

[16] D. Bouyssou, T. Marchant, M. Pirlot, P. Perny, A.
Tsoukias and P. Vincke, Evaluation and Decision
Models. A Critical Perspective, Kluwer, Boston, 2000.

[17] J.J. Buckley, Fuzzy probabilities and fuzzy sets
for web planning, Springer, Berlin, 2004.

[18] D. Gallardoa, “Refactoring for everyone”,
ftp://www6.software.ibm.com/software/developer/
library/os-ecref.pdf (accessed Nov. 01, 2005).

