
Traceability for Managing Evolutionary Change

Patrick Maeder, Matthias Riebisch and Ilka Philippow
Technical University of Ilmenau

Department of Software Systems/Process Informatics
D-98693 Ilmenau, Germany

{patrick.maeder|matthias.riebisch|ilka.philippow}@tu-ilmenau.de

Abstract

Traceability links can provide essential support for evolutionary
development of software, beyond requirements engineering e.g.
for reuse & design decisions, design and code comprehension,
effort estimation, checks for completeness and project man-
agement. For maximum support, traceability links are required
not only for large grained artifacts but for fine grained ones as
well. The establishment and the maintenance of these links is
crucial, because inconsistent links prevent the aimed positive
effects. However, a high effort for traceability links would inhibit
the positive effects as well. In this paper, the state of the art
approaches of definition and application of traceability links are
investigated. They are integrated together with link update oper-
ations within development methods. The investigation and the
integrated approach was evaluated in various projects in research
and industry in the fields of both forward and reverse engineering.

Keywords: traceability, evolutionary change, development
process, software maintenance, comprehension, documentation,
roadmap

1 Introduction

Development and maintenance costs of software systems are in-
creasing more and more. Maintenance costs require 67% of the
project budgets [33] or more. The requested functional and non-
functional requirements are subject of continuous changes. These
changes occur from the very beginning of a system’s develop-
ment and throughout its whole life cycle. Iterative software de-
velopment processes have been introduced to meet and resolve
this problem. Usually, the adaptation of software systems to new
and changed requirements is called software maintenance. To per-
form changes in complex systems, it is necessary to establish a
permanent connection between changed requirements and their
realization in design and maintenance activities. The connection
has to follow the different development artifacts and abstraction
levels, from analysis documents to source code. Traceability en-
ables such a connection.

Gotel and Finkelstein [11] define requirements traceability
as “ability to describe and follow the live of a requirement from
its origin, through its development and specification, to its deploy-
ment and use, in both forwards and backwards direction”. Beyond
it, they distinguish pre- and post-requirements traceability for as-
pects that refer to the requirements life prior to its inclusion in
the requirements specification and for those which result from the
inclusion.

The connection of two software artifacts (e.g. requirement
and architectural element) is usually called Traceability Link. In
addition, Letelier [14] has introduced two kinds of links: contri-
bution structures (links between stakeholders and specifications)
and rationale associated to specifications, including alternatives,
decisions, etc. These link types are aimed to support the follow-
ing aspects:

• Validation systems functionality versus verification

• Improvement of communication and cooperation among all
stakeholders

• Supporting developers to get into software systems and un-
derstand them

• Guaranteeing the contribution of all involved stakeholders

• Enabling impact analysis and effort estimation

• Simplifying the examination of legally aspects, e.g. contract
obligations, guidelines or constraints

• Improving of change management, avoiding studying con-
siderations already excluded

• Understanding of design decisions and justification of their
results

This connection is required in both methods and models. In
principle, a connection can be realized in three qualified steps:

1. Using of appropriate and self descriptive terms for names
and comments, pointing at connections and enabling the
partly or fully automated linking

2. Applying only of unified and clear textual names

3. Repository-based storage of the artifact and establishing un-
equivocal connections between them in accordance to a uni-
form scheme (during lifetime of connection)

Each of these steps leads to increased effort and costs for the
establishing and maintaining of relations and connections. But si-
multaneously the stored information grows significantly in terms
of usefulness and reliability. Only the results of the third step
are considered to be traceability links. Besides the storage of the
pure relation, they allow to include additional information like
decision aspects or alternative solutions. Traceability links offer
a further relevant advantage by enabling a version control of the
links themselves, especially if the linked artifacts are managed by
different tools.

1

The objective of this paper is to review and to integrate
existing approaches related to traceability for managing evolu-
tionary change. Based on the investigation of these approaches
open problems are recovered, that must be discussed and resolved
for integrating traceability concepts into project management and
software development processes.

A vision demonstrating the impact of powerful traceability is
explained in chapter 2. In Chapter 3 the state of the art approaches
are evaluated within practical projects. The detected open issues
are discussed in chapter 4 considering especially the further de-
velopment of existing methods and techniques.

2 Vision: Comprehensive Support for Round
Trip Engineering

The overall goal consists in establishing and maintaining trace-
ability links between artifacts of all types, stored in the same
repository as the artifacts themselves. Traceability, provides con-
nections in both directions, according to forward and to reverse
engineering activities. In many cases, artifacts have to be man-
aged by different tools and stored in different repositories.

If an artifact is changed in any way, the traceability links
connected to this artifact are changed accordingly. Changes are
the result of engineering activities. Each engineering activity –
forward or backward – updates the traceability links.

Artifacts are described at different degrees of formaliza-
tion and abstraction. According to both degrees, the activities
of changing these artifacts are described more or less formal. For
formally described changes, the effects to traceability links are
defined formally as well. Updates of the links can be performed
automatically, e.g. by tools within an Integrated Development En-
vironment IDE. After each update, the links are left in a consistent
state again.

For changes described informally or semi-formally, only
support for updating the links is possible. The developer is re-
quired to decide about the changes of the links. Tools can support
these changes by proposing links and artifacts to be linked. Con-
sistency of the resulting links has to be checked immediately.

The changes to traceability links are embedded into devel-
opment activities in a way that they can be performed transpar-
ently, i.e. so that the developer does not have to care about these
changes. This embedding is reached by integrating traceability
link changes to all interrelated development methods and their
activities.

According to our vision, traceability links support the prepa-
ration and the realization of changes at every stage:

• Comprehension: an online documentation of a system en-
ables browsing to improve the comprehension of the devel-
oper. Traceability links provide the basis for hyperlinks be-
tween documents and artifacts. The developer can easily
change his point of view to understand all necessary details
of a complex system.

• Planning: Traceability links enable an evaluation of the im-
pact of a change. On this base, an effort estimation is pro-
vided for planning and deciding the development activities.

• Design: Traceability links provide relations between design
artifacts and patterns and principles, i.e. architectural styles.

• Implementation: Traceability links point to related parts of a
system which are influenced by a change.

• Verification & Validation: Traceability links enable checks
for completeness and coverage of a change against changed
requirements and design artifacts, as well as checks for the
consistency of the system artifacts.

3 Evaluation of Existing Approaches and
Experiences from Practice

The development of traceability links increases effort and costs
for software development, as mentioned before. Above that, the
establishing of traceability links crossing different abstraction and
development levels in not trivial, not even for system specialists
and experts. Moreover, the continuous expected change of re-
quirements demands the maintainability of traceability.

In the last decade there have been already some works for
establishing traceability links between model artifacts. especially
between requirements and for documentation issues. These works
are investigated in section 3.1.

There is a need for effort reduction for link maintenance,
which is influenced by embedding these links into development
activities as well as by providing intermediate artifacts, e.g. mod-
els. Approaches an methods concerning these issues are discussed
in section 3.2.

Other methods apply traceability links for reverse engineer-
ing purposes. These works have successfully provided models,
process descriptions as well as generator tools. Section 3.3 is
dealing with them.

Another important field where contributions have been de-
veloped is the maintenance of traceability links. Methods for the
integration of link maintenance into change management proce-
dures are investigated in section 3.4.

3.1 Environments for Traceability Representation

Representation concepts for traceability play an essential role.
Not only start and ending points of a particular link have to be
fixed. The significant additional information, e.g. direction, cre-
ation time of link, stakeholders, decisions and alternatives must
be determined, too.

On the market there are various commercial and research
tools for partly or fully solving this task. But nevertheless it lacks
of established standardized methods for case tool provider. There-
fore, actually a satisfying tool support for traceability is not yet
available. Some promising approaches for traceability represen-
tation are investigated now.

3.1.1 Traceability Links Based on UML

Letelier [14] makes use of the widespread UML for software de-
velopment and their good extension abilities for the development
of a so called traceability framework. In this approach the rep-
resentation of links using UML objects is shown. Unfortunately,
the methodical application of the framework is not explained.

Using UML for link representation is a well-founded de-
cision. The acceptance for application of the UML for the de-
scription of object oriented systems is growing more and more.
The UML offers representation facilities during almost the whole
development process (requirement specification, analysis and de-
sign modeling, code generation and test).

2

Figure 1 shows enhancements of the UML metamodel. But,
in the referenced paper considerations on bounding various other
relevant description means into the framework (requirements en-
gineering tools, CASE tools like Simulink, ASCET SD) and how
to integrate the activities into the software development process
are missing.

TextualRequirement UML_UseCase

TestSpecificationRequirementSpecification

validatedBy

OtherUML_Specification

verifiedBy

assignedTo

RationaleSpecification

StakeholderTraceableSpecification

rationaleOf

1

responsibleOf

1

modifiestraceTo

partOf

UML_Specification

{disjoint, incomplete}

{disjoint, complete}

{overlapping, incomplete}

Figure 1: Enhancements to the UML Metamodel [14]

An implementation of this concept has been used and eval-
uated in the first project phases of a large industrial reengineering
project [17]. The CASE tools Rational Rose and Requisite Pro
have been connected via a shared repository. Traceability links
have been established and maintained. It was very effort con-
suming to maintain links on a fine grained level, e.g. for style
requirements and to style classes. This high effort was observed
especially in the cases for links between single requirements and
design elements. The effort was much lower for links to more
abstract architectural elements. These investigations lead to the
discussion of the gap issue, see section 3.2.

3.1.2 Traceability Links Based on Hypertext

Potts and Takahashi have developed and described in [21] a so-
called conversation framework, the Inquiry Cycle Model. It con-
sists of three parts (see figure 2): the representation of require-
ments and their mutual relations (shared information), a speech
act model and the topology of changes. The first part serves for
mapping of requirements and relations (traceability links) on Hy-
pertext. The speech act model contains questions, answers, and
reasons. Questioning is considered as the main speech act. The
third part deals with requirements evolution and focuses all ele-
mentary changes. The Inquiry Cycle starts with a question about
the systems specification. Using the speech act model found
answer one ore more change requirements are defined and per-
formed. This process leads to a new version and specification.

Shared

information

(previous

version)

Change

!

AnswerQuestion

?

?

?

Shared

information

(current

version)

Reason

Speech

Act

Effects

Change
Shared

information

Speech

Act

!?

?

Challenge

Evolution Decide

Inquiry Cycle

Figure 2: Conversational Model and Inquiry Cycle [21]

Ebner and Kaindl use in [8] a Requirements Engineering
Trough Hypertext (RETH) method. They extend this method, but
do not describe it in detail.

3.1.3 Integration of Hypertext Links with Code Tags
and Documentation

Former research of the authors of this paper has been conducted
to integrate traceability links into software development processes
and repositories. As one of the results, Sametinger et al. [27] inte-
grate traceability links with links to entities for structuring source
code e.g. architectural styles, design patterns and aspects. Docu-
mentation generator tools – especially javadoc – are used to pro-
vide on-line accessible means of documentation for supporting
evolutionary development. In this method, javadoc tags are ex-
tended to express relations mentioned above by hypertext links.
Based on these tags, a documentation generator tool produces an
on-line documentation.

3.1.4 Comparison of Hypertext Links to Other Types to
Traceability Links

Using Hypertext for the construction of traceability links has
proved as simple and low cost alternative [21, 8]. Many exist-
ing tools are able to manage and to emphasize Hypertext even if
their integration and interaction is mostly insufficient. Moreover,
the issue of storing additional, semantical information attached to
the links is not yet solved consistently.

Originally the hypertext-based methods do not use a cen-
tral repository. As a consequence, maintaining consistency con-
stitutes an important success factor for integrating additional in-
formation. Unfortunately the authors of the related paper do not
discuss this issue. The method for integration traceability links
remains also an unsolved issue, as well as the version-control of
the links.

3.2 Reducing Gaps Between Models in Software
Development Processes

In software development processes there exists the well-known
abstraction gap between requirements analysis and specification
and the modeling and design of the systems architecture. Figure 3
illustrates this fact with an example form a Digital Video Recorder
project of the authors [30], that aimed at product line development
methods. The abstraction level of requirements and design arti-
facts is very different concerning uncertainty, formalization of ar-
tifact descriptions and technical aspects. Even for software devel-
opment experts it is very difficult to understand comprehensively
how all artifacts are linked up. The following two approaches try
to reduce this huge abstraction gap by introducing intermediate
models.

edoC ecruoSledoM ngiseD

slaicremmoC
lavomeR

slaicremmoC
lavomeR

lennahC
eliforP

lennahC
eliforP

>>yBdetnemelpmi<<

>>yBdetnemelpmi<<

>>yBdetnemelpmi<<

>>sesu<<

ledoM stnemeriuqeR

ogoLtceteD

 neercStceteD
sehctiwS tamroF

stuC tceteD

 emuloV tceteD
segnahC

paG

Figure 3: Abstraction Gap Between Requirements and Design

3

3.2.1 Feature Models

Originally feature models were introduced by the FODA method-
ology [12] for structuring domain properties from the view of cos-
tumers. Carnecki et al. [7] have extended feature models by con-
straints and logical relations for modeling feature dependencies.
In [24] these relations are extended with multiplicities. In [26]
a summary of current feature model definitions is to be found. A
comparison and evaluation of methods for detecting and resolving
feature dependencies is given in [5].

Feature modeling focuses on the hierarchical structuring of
requirements elicited out of a problem domain. One ore more
requirements are related to a feature. Feature models can be con-
sidered as starting point for architecture design. This idea is in-
vestigated deeper e.g. in [13, 20]. As a newer approach, FArM
constitutes a method for mapping features to architectural ele-
ments [29]. The method FArM applies feature models for archi-
tecture development as intermediate representation between re-
quirements and design. In this method, architectural development
of components is performed by stepwise transformations of fea-
ture models, each representing a component (see figure 4). This
method was especially developed for software product lines. It
was applied practically in the mobile phone domain [29]. The
experience showed that it is much easier to establish traceability
links from a requirement to the so-called initial feature model,
further on to the descendant feature models and then to the result-
ing design model. In the result, feature models are used as bridge
between requirements and their solution.

sisylanA niamoD

1noitamrofsnarT
serutaefytilauQ

2noitamrofsnarT
.qeRerutcetihcrA

3noitamrofsnarT
.taleRstcaretnI

4noitamrofsnarT
.taleRyhcrareiH

tnempoleveDerutcetihcrA

tnenopmoC
noitatnemelpmIFArM

Figure 4: Sequence of Feature Model Transformation in FArM

Using traceability links from requirements to features and
from features to architecture and implementation artifact could re-
duce significantly the above mentioned abstraction gap [23]. The
establishment and validation of traceability links requires less ef-
fort with than without routing them through a feature model. A
feature is then acting as intermediate artifact, as mentioned above.
The effort reduction is caused by an easier identification of links
between requirements and features and between features and de-
sign elements, in comparison to the one between requirements and
design elements directly. As an additional observation in large
projects, the comprehensive knowledge for both requirements and
architectural issues in one person is not necessary to such extend.
By splitting the links, the establishment and validation of links on
both sides can be done by different people. It simplifies the con-
nection between requirements analysis and documents of the later
development phases.

Feature models can be applied for software reverse engineer-
ing and maintenance as well, as discussed in section 3.3. Because
of their important role as intermediate artifacts, features will be
used for traceability links (see chapter 4).

3.2.2 CBSP

Egyed et al. describe in [9] their method CBSP (component, con-
nector/bus, system, property) for reducing the gap between re-
quirements and architecture. The CBSP process consists of the
following briefly described steps:

1. Identifying all architecturally relevant artifacts and classify-
ing them with respect to their relevance for the different into
groups C, B, S, P. In the result artifacts could occur as mem-
ber of more then one group.

2. Identifying and determining of dependencies between nego-
tiation artifacts.

3. Splitting of complex negotiation artifacts into atomic CBSP
artifacts, atomic artifacts should remain member in only one
group. This is especially necessary for artifacts that are part
of more then one group.

4. Reducing the number of artifacts by eliminating replaced
and merging related artifacts

The process leads from a negotiation rationale view to the
architecture relevant CBSP view, representing artifacts from dif-
ferent abstraction levels. This view does not present all artifacts
and all relations; despite of this the CBSP view captures and re-
lates significant architectural elements and can be considered as
bridging level between requirements and architecture. Using the
CBSP view leads to an easier understanding of systems for archi-
tects and supports the consistency check between requirements
and architecture. The author shows the resulting view by an ex-
ample (see figure 5).

Two-Way
Bus

Cargo

Vehicle

Warehouse

<<depends>>

Minimal CBSP View

<<depends>>

<<extends>>

Optimizer

Cargo
types

real-time
bi-direct.<<extends>>

CargoRouter

Optimizer

VehicleWarehouse

ServicesConn

ArtistConn

Artist

Clock

ClockConn

C2 Architectural View

Reporter

CommunicationConn

Cargo

Figure 5: CBSP: Architecture Relevant Artifacts [9]

For supporting evolution the authors define trace require-
ments. Traceability links have to be established among ele-
ments within each abstraction level (requirements, architectural
elements, design elements) and between the different abstraction
levels using the CSCP model.

This method provides valuable contribution for supporting
evolutionary development. Especially the distinction between
views according to the stakeholders supports changes. The issues
mentioned in the conclusion of [9] have to be elaborated further
to be able provide tool support.

Our own observations confirm the advantages of this ap-
proach. Contributions to improved tool support are discussed in
section 4.

4

3.3 Traceability for Legacy Code Comprehension

3.3.1 Establishing Traceability Links Between Code
and Documentation

Especially for reengineering and reverse engineering of legacy
systems, the requirements and/or their links to the solution are
frequently invalid. Code comprehension is necessary to under-
stand the intentions. Traceability links can be used to store the
resulting knowledge.

Antoniol et al. discuss the automated generation of trace-
ability links in several articles.

In [2] the authors describe an approach for the automated
linking of two software releases. To achieve this, both code ver-
sions are transformed into a kind of class diagram via the abstract
object language (AOL). Within the diagram differences between
both versions (e.g. added, deleted and modified classes and meth-
ods) are graphically displayed.

In [3] Antoniol et al. discuss the problem of subsequent
establishing traceability links between documentation and code
components. Therefore, they have chosen the approach of infor-
mation retrieval.

Starting from the assumption that developers use their
application-domain knowledge for naming identifier in code ar-
tifacts, the authors have chosen two different methods to generate
connections between these artifacts and free text documents.

In the first step, both sources will be prepared. The text doc-
uments are split in separate words, capital letters are converted to
lowercase, stop words are removed and by applying a morpholog-
ical analysis the singular, infinitive form of the remaining words
is chosen. The code-components are treated quite similar. Identi-
fier are extracted and if necessary separated in single words. The
rest of the preparation is similar to this for words from free text
documents.

The code is processed in a component-based way. From ev-
ery component a query is generated to all before indexed text doc-
uments. The similarity between a component and a document is
measured while applying one of two different classifiers. The first
classifier is computed by a probabilistic approach from the prob-
ability for the similarity between a code-component and a docu-
ment. As alternative a vector space model (VSM) is used. This
model measures the the distance between document and query in
vector representation.

The presented method was implemented in a prototype tool.
In the prototype object-oriented classes are used as software-
components. Only the mnemonics of classes, attributes, methods
and parameters are used to build a query. Comments are not used
for identification of links so far. The described text preparation is
applied semi-automatically, using language tools and thesaurus.

Based on a case study, the method has been applied using
both classifier for comparing their single results. For the rating
the metrics precision and recall are used. While the values for
recall are very good (near 100%) the values for precision are very
low, mostly 3 to 15%.

Marcus and Maletic investigate in [15] another approach for
automated generation of links between documentation and code.
In contrast to the work discussed before, the authors use latent se-
mantic indexing (LSI). LSI is based on the already mentioned vec-
tor space model and includes additionally: “aspects of the mean-
ings of words and passages reflective in their usage”.

To evaluate their method the authors use the same examples
as Antoniol et al. in [3] and give the reader the chance by this to
compare both studies. The authors conclude, that their method
achieves at least comparable results for recovering traceability
links. As additional advantages of their method they mention
firstly the lower effort for preprocessing, resulting in less compu-
tation time. The second advantage consists in the independence of
a special natural language, programming language or paradigm.
However, the results in term of precision and recall are similar to
the ones mentioned above.

3.3.2 Connecting Requirements, UML Artifacts and
Code

Settimi et al. compare in [28] different information retrieval meth-
ods for the automated establishing of links between requirements,
UML artifacts, test cases and code.

Similar to the previous cited works, a preprocessed extracted
text is applied. Stop words are removed and the remaining key-
words are reduced to their roots by removing pre- and suffixes.

The authors describe two different methods for retrieving
traces: firstly the already mentioned vector space model, and sec-
ondly an enhanced version of it, which ranks the relevance of the
results while using a pivot normalization weighted score. Addi-
tionally, both methods are evaluated using a general thesaurus.

The shown results are quite similar to these of Antoniol et al.
[3]. It was possible to reach a recall of more than 90%, but with
precision of 10–15% (i.e. nine of ten retrieved links are incorrect).
The authors speak also about a higher recall for requirements to
UML artifacts than to code artifacts in their study. They suggest to
retrieve UML artifacts as intermediate elements between require-
ments and code.

3.3.3 Traceability Links and Features for
Hypothesis-Based Reverse Engineering

Recent research activities of the authors of this paper have made
use of traceability links for program comprehension and architec-
ture recovery in industrial projects. Pashov et al. [18, 19] apply
features as intermediate artifacts for reducing the gap between
legacy code and changed requirements. Features are utilized as
media carrying hypotheses for architectural artifacts, with rela-
tions between code and features built by traceability links. Identi-
fiers are analyzed using information retrieval techniques, similar
to the approaches investigated above. In [17] Pashov describes
the application of traceability links in a large industrial refactor-
ing project. To enable tool interaction in heterogeneous environ-
ments, the links are stored in database-like cross reference tables
to relate requirements, features and legacy code components.

The experience has shown that traceability links can be ap-
plied very usefully in reverse engineering activities, if an effective
integration between the different types of artifacts can be reached.

3.3.4 Query Based System

Tryggeseth and Nytrø present in [32] a method to dynamically re-
trieve links. The work of the authors is based on the assumption
that static traceability consumes a high amount of work for gener-
ation and maintenance and is often still not fine grained enough.

As a consequence, the authors suggest the dynamic estab-
lishing of links based on concrete queries which are directed to the
system model. Different link types are identified and and query
mechanisms to retrieve these links are developed.

5

3.3.5 Code Annotations

For the evolutionary changes of software systems the recovery
of former design decisions is an essential issue. There are ap-
proaches for establishing code annotations as semi-formal expres-
sions concerning the intentions of a developer. Templates for an-
notations are proposed to enable and simplify a later recovery.
If such annotations could be established consistently, change ac-
tivities would be much easier. However, the current state of the
practice of code documentation by comments discourages such
approaches which are demanding much severe discipline of the
developers [16, 1].

Within prototype projects our own experience approved the
value of such annotations. Among others, they have been used
successfully for recovering design patterns within existing source
code [31].

3.4 Maintenance of Traceability Links

Even the best way for establishing and managing traceability
tends to fail to keep pace with the evolution of a system. The
result is a gradual erosion of the traceability structure leading to a
loss of reliable representation of the state of connections between
artifacts. The following work gives an example on how to cope
with the effort, necessary to maintain traceability.

3.4.1 Event Based System

Cleland-Huang et al. develop in [6] an event based traceability
system (EBT) to maintain links between requirements. Require-
ments evolution is regarded as a series of change events.

If such a change event occurs, a message is published to all
dependent objects. Changes of all types are fed back to the prim-
itive steps create, inactivate, modify, merge, refine, decompose
and replace. After a change of a requirement, an event trigger au-
tomatically generates a message. It includes the type of change,
the ID and description of the affected requirement and links to
rationale and stakeholder involvement.

Links are established by using the publish-subscribe
paradigm. The importance of each link is defined by a so called
link strength. According to this strength, every single event is
prioritized. Depending on the type of change and the affected ob-
jects, a message defines the task that must be performed to update
the link.

Furthermore, two mechanisms are explained for resolving
changed, indirect dependencies. An indirect link is a connection
to an object with a dependency to a changed object. The first
mechanism to handle these links is called “lazy notification”. Us-
ing this way, dependent artifacts are excluded from notification,
if they are connected to intermediate artifacts. The second mech-
anism is called “pessimistic notification” and requires all indirect
dependent artifacts to update their link. EBT allows a forward and
backward traceability by use of a recursive query mechanism.

This approach was originally developed for requirements
traceability, however it could easily be adopted to all software
development artifacts. Especially the priority-based mechanisms
proved to be useful for the management of incomplete or uncer-
tain information in models.

The priorities have been applied successfully to control the
propagation of a change throughout the network of related devel-
opment artifacts.

4 Strategies for further development

For a comprehensive support for evolutionary development the in-
tegration of traceability links constitutes an essential issue. Trace-
ability links have to be established as incorporated part of each
model and of each engineering activity. Therefore, three main
fields require future research:

• Definition of traceability links within every relevant model,
both at syntactical and semantic level, and their introduction
into repositories,

• Integration of establishing and updating steps of traceabil-
ity links to every activity of every engineering method, for
forward and reverse engineering,

• Definition of rules and criteria for checking traceability links
for correctness, consistency and completeness.

For the definition of traceability links in terms of syntax and
semantics there are already various proposals, e.g. [22]. However,
to reach an integration into repositories and tools, a consolidation
and an agreement is necessary, driven by the needs of evolutionary
development. The definition to be established has to be as simple
as possible, however with some rigor to enable rule-based checks.
The effort for establishing and maintaining traceability links de-
pends on the distance they have to bridge. As a conclusion from
industrial refactoring projects [18, 17] the effort depends on the
distance concerning the level of abstraction and the developer’s
area of competence. Intermediate models and artifacts – e.g. the
feature model, see section 3.2 – help to reduce effort significantly.
For semi-formal means of description, concepts stored in a glos-
sary or thesaurus can serve as intermediary artifacts and help to
shorten the gaps, traceability links have to bridge.

Traceability links have to be integrated into engineering
methods in a way, that every activity performs the appropriate
changes to the concerned links. The links have to be updated in
such a way, that their consistency and correctness is maintained.
To perform an integration toall engineering methods and their ac-
tivities, it is necessary to decompose all activities into elementary,
atomic steps. These atomic steps are then enhanced by traceabil-
ity link update activities. Figure 6 illustrates this way of maintain-
ing the consistency of traceability links. By developing traceabil-
ity changes for an comprehensive set of atomic change steps, all
engineering methods can be enhanced easily.

There are approaches for analyzing development activities
for elementary, atomic steps, e.g. Baldwins Modular Operators
[4] or Potts’ and Takahashi’s Types of Change [21]. The enhanced
atomic steps can them be implemented within tools for design
and development, assuring consistent traceability links within the
tool’s repository. It can already be foreseen that this tool support
will reduce efficiently the effort for the traceability link mainte-
nance. This expectation is based on the benefits from refactor-
ing tools supporting elementary steps of code refactoring, because
they follow a basic idea very similar to the way the atomic steps
mentioned above support link updates. Even if a part of the update
decisions have to be performed by a developer, tools can propose
alternatives thus reducing the design space.

The propagation of changes within the set of traceability
links of a repository represents another important issue. State of
the Art methods – e.g. the Event Based Traceability System EBT

6

spetS-orciM

segnahC-orciM gnidnopserroC

skniL ytilibaecarT ot

tcafitrA na fo egnahC

skniL ytilibaecarT fo egnahC

 tilpS &ezylanA

ytivitcAegnahC

 etadpU

skniL ytilibaecarT

Figure 6: Maintaining Consistency of Traceability Links by
Atomic Change Steps

(discussed in section 3.4) – contribute valuable solutions for man-
aging incompleteness, inconsistency and uncertainty of the mod-
els. The use of priorities and the propagation mechanisms help to
control and to reduce the overhead for updates and validations of
the links. The different approaches for connecting artifacts of dif-
ferent types via traceability links as mentioned in sections 3.2 and
3.4 facilitate the maintenance of traceability links between differ-
ent types of artifacts – e.g. requirements, UML elements, code
elements – and for different design methodologies and develop-
ment activities.

Consistency, correctness and completeness of the traceabil-
ity links constitute prerequisites for their utilization. Though
some of the atomic steps of link updates mentioned above will
assure these conditions, a large part of the development artifacts
is not yet defined formally enough for automatic updates. There-
fore, links have to be checked permanently.

According to the different degrees of rigor and abstraction
of the artifacts, checks of different types are required:

• For formally defined artifacts e.g. state transition models or
source code, the concerned traceability links can be checked
for validity by rules.

• For artifacts with a semi-formal description like most design
elements, rules can be applied only partly. Checks for se-
mantic correctness have to be performed by humans, because
associations to concepts and terms are necessary. The use of
intermediate models as mentioned in section 3.2 will reduce
the effort for checks significantly by reducing the complexity
of this task.

• For models with a lower degree of formality, e.g. require-
ments descriptions by use case templates, checks can only
be based on the evaluation of natural-language expressions.
The use of glossaries, thesauri and linguistic methods can
provide support. Checks for this kind of artifacts will result
in hints and suspicions, similar to the so-called bad smells
for code refactoring [10].

Checks of the last type can make use of important works in the
field of requirements traceability [22]. Furthermore, glossaries,
thesauri and linguistic methods can be used to increase the de-
gree of formality. Former works of the authors have applied these
means successfully for the model-based generation of tests [25].

5 Conclusion

Traceability links can provide the necessary support for evolu-
tionary development only if they are available for fine-grained
artifacts. However, the establishment and the maintenance of
these links has to be performed in a way that assures consis-
tency and correctness. Furthermore, a high effort for traceabil-
ity links should be prevented. In this paper, the evaluation results
of various approaches are presented. This evaluation has shown,
that there are already various contributions to the definition of an
widely-accepted standard for traceability links. These approaches
are integrated to form a roadmap how to integrate the maintenance
of traceability links into any development method. Intermediate
models and other artifacts reduce the effort by reducing the gaps
to be bridged. Furthermore, there are valuable approaches to the
application of traceability links to single development activities
are investigated in a way to support both forward and reverse en-
gineering. In the discussion of a roadmap for further work three
areas are identified – the definition of traceability links, the inte-
gration of update techniques into development activities and link
validation. These work packages have to be performed at dif-
ferent levels of abstraction, for different types of models and for
different domains.

Acknowledgments

This work was result of a research project partly supported
by a grant from the German Research Foundation (Deutsche
Forschungsgemeinschaft DFG) under project id Ph49/7-1.

References

[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for
program understanding. In C. Norris and J. J. B. Fenwick, edi-
tors, Proceedings of the 17th ACM conference on Object-oriented
programming, systems, languages, and applications (OOPSLA-02),
volume 37, 11 ofACM SIGPLAN Notices, pages 311–330, New
York, Nov. 4–8 2002. ACM Press.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia. Main-
taining traceability links during object-oriented software evolution.
Software–Practice and Experience, 31(4):331–355, Apr. 2001.

[3] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo.
Recovering traceability links between code and documentation.
IEEE Trans. Software Eng, 28(10):970–983, 2002.

[4] C. Y. Baldwin and K. B. Clark.Design Rules: Volume 1. The Power
of Modularity. The MIT Press, Cambridge, Massachusetts, 2000.

[5] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Fea-
ture interaction: a critical review and considered forecast. Computer
Networks, 41(1):115–141, 2003.

[6] J. Cleland-Huang, C. K. Chang, and M. J. Christensen. Event-based
traceability for managing evolutionary change.IEEE Trans. Soft-
ware Eng, 29(9):796–810, 2003.

[7] K. Czarnecki and U. W. Eisenecker.Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, Boston, 2000.

[8] G. Ebner and H. Kaindl. Tracing all around in reengineering. IEEE
Software, 19(3):70–77, 2002.

[9] A. Egyed, N. Medvidovic, and P. Grünbacher. Refinement and evo-
lution issues in bridging requirements and architecture - the CBSP
approach, May 2001.

[10] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[11] O. C. Z. Gotel and A. C. W. Finkelstein. An analysis of there-
quirements traceability problem. InFirst International Conference
on Requirements Engineering (ICRE’94), pages 94–101, Colorado
Springs, Apr. 1994. IEEE Computer Society Press.

7

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Nov. 1990.

[13] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM:
A feature-oriented reuse method with domain-specific reference ar-
chitectures.Ann. Software Eng, 5:143–168, 1998.

[14] P. Letelier. A framework for requirements traceability in UML-
based projects. InProceedings of 1st International Workshop on
Traceability in Emerging Forms of Software Engineering, Incon-
junction with the 17th IEEE International Conference on Automated
Software Engineering, Edinburgh, UK, Sept. 2002.

[15] A. Marcus and J. I. Maletic. Recovering documentation-to-source-
code traceability links using latent semantic indexing. InProceed-
ings of the 25th International Conference on Software Engineering
(ICSE-03), pages 125–137, Piscataway, NJ, May 3–10 2003. IEEE
Computer Society.

[16] J. Niere, W. Scḧafer, J. P. Wadsack, L. Wendehals, and J. Welsh. To-
wards pattern-based design recovery. InProceedings of the 24th In-
ternational Conference on Software Engineering (ICSE-02), pages
338–348, New York, May 19–25 2002. ACM Press.

[17] I. Pashov.Feature Based Method for Supporting Architecture Refac-
toring and Maintenance of Long-Life Software Systems. PhD thesis,
Technical University Ilmenau, Germany, 2004.

[18] I. Pashov and M. Riebisch. Using feature modeling for program
comprehension and software architecture recovery. InProceedings
11th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS2004), pages 406–
418, Brno, Czech Republic, May 2004.

[19] I. Pashov, M. Riebisch, and I. Philippow. Supporting architectural
restructuring by analyzing feature models. InCSMR, pages 25–36,
2004.

[20] I. Philippow, M. Riebisch, and K. B̈ollert. The Hyper/UML ap-
proach for feature based software design. In O. Aldawud, M. Kand́e,
G. Booch, B. Harrison, D. Stein, J. Gray, S. Clarke, A. Z. Santeon,
P. Tarr, and F. Akkawi, editors,The 4th AOSD Modeling With UML
Workshop. Sixth International Conference on the Unified Modeling
Language UML2003, San Francisco, USA, Oct. 2003. published
online.

[21] C. Potts and K. Takahashi. An active hypertext model for system
requirements. In J. C. Wileden, editor,Proceedings of the 7th In-
ternational Workshop on Software Specification and Design, pages
62–68, Redondo Beach, CA, Dec. 1993. IEEE Computer Society
Press.

[22] B. Ramesh and M. Jarke. Toward reference models of requirements
traceability.IEEE Trans. Software Eng, 27(1):58–93, 2001.

[23] M. Riebisch. Supporting evolutionary development by feature mod-
els and traceability links. InProceedings 11th Annual IEEE Inter-
national Conference and Workshop on the Engineering of Computer
Based Systems (ECBS2004), pages 370–377, Brno, Czech Repub-
lic, May 2004.

[24] M. Riebisch, K. B̈ollert, D. Streitferdt, and I. Philippow. Extend-
ing feature diagrams with UML multiplicities. InProceedings of
the Sixth Conference on Integrated Design and Process Technology
(IDPT 2002), Pasadena, CA, June 2002.

[25] M. Riebisch and M. Ḧubner. Traceability-driven model refinement
for test case generation. InProceedings 12th Annual IEEE Interna-
tional Conference and Workshop on the Engineering of Computer
Based Systems (ECBS 2005), pages 113–120, Greenbelt, Maryland,
USA, Apr. 2005. Computer Society.

[26] M. Riebisch, D. Streitferdt, and I. Pashov. Modeling variability
for object-oriented product lines. In F. Buschmann, A. P. Buch-
mann, and M. Cilia, editors,Object-Oriented Technology. ECOOP
03 Workshop Reader, LNCS 3013, pages 165–178. Springer, 2004.

[27] J. Sametinger and M. Riebisch. Evolution support by homoge-
neously documenting patterns, aspects and traces. InProceedings
6th European Conference on Software Maintenance and Reengi-
neering, Budapest, Hungary, March 11-13, 2002, pages 134–140.
Computer Society Press, 2002.

[28] R. Settimi, J. Cleland-Huang, O. B. Khadra, J. Mody, W. Lukasik,
and C. DePalma. Supporting software evolution through dynam-
ically retrieving traces to UML artifacts. InProc of the 7th Int.
Workshop on Principles of Software Evolution, pages 49–54, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[29] P. Sochos, M. Riebisch, and I. Philippow. The feature-architecture
mapping (farm) method for feature-oriented development of soft-
ware product lines. InProceedings 13th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based
Systems (ECBS06), Potsdam, Germany. IEEE Computer Society,
2006.

[30] D. Streitferdt. Family-Oriented Requirements Engineering. PhD
thesis, Technical University of Ilmenau, 2004.

[31] D. Streitferdt, C. Heller, and I. Philippow. Searchingdesign patterns
in source code. InProceedings of the 29th Annual International
Computer Software and Applications Conference (COMPSAC);Ed-
inburgh; July 2005, pages 33–34, 2005.

[32] E. Tryggeseth and Ø. Nytrø. Dynamic traceability links supported
by a system architecture description. InProceedings: 1997 Interna-
tional Conference on Software Maintenance, pages 180–187. IEEE
Computer Society Press, 1997.

[33] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon.Principles of Soft-
ware Engineering and Design. Prentice Hall, 1979.

8

