Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

WOLUME 21, NUMBER 2, APRIL 2007

ADVANCED: ENGINEERING

INFORMATICS

THE SCIENCE OF SUPPORTING KNOWLEDGE-INTENSIVE ACTIVITIES

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

&5

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Advanced Engineering Informatics 21 (2007) 169179

ADVANCED ENGINEERING

INFORMATICS

www.elsevier.com/locate/aei

Classifying architectural constraints as a basis for
software quality assessment

Simon Giesecke **, Wilhelm Hasselbring #, Matthias Riebisch °

& Carl von Ossietzky University Oldenburg, Software Engineering Group, 26111 Oldenburg, Germany
® Technical University Ilmenau, Department of Software Systems!/Process Informatics, P.O. Box 10 05 65, 98684 Ilmenau, Germany

Received 10 October 2006; accepted 12 November 2006

Abstract

Architectural styles and patterns have been studied since the inception of software architecture as a discipline. We generalise archi-
tectural styles, patterns and similar concepts by introducing the notion of architectural constraints. An architectural constraint is a vehicle
for the reuse of architectural design knowledge and for the improvement of software quality. It may be used for improving architectural
analyses of quality characteristics of the software system to be realised. We present the method for surveying the literature on architec-
tural constraint concepts, and provide a taxonomy covering various definitions of architectural styles and patterns.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Architectural style; Architectural constraints; Software quality assessment

1. Introduction

Software architecture as a discipline within Software
Engineering has been emerging since the seminal paper
on “Foundations for the study of software architecture”
by Perry and Wolf [25] and the book by Shaw and Garlan
[29], while the term “‘software architecture’ is much older,
tracing back to Sharp [26, p. 12] in the 1960s [19].

We survey the current state of research in the field of soft-
ware architecture under a specific view. Hereby, we aim to
provide tangible results by focusing on what we call architec-
tural constraint concepts, which form part of the rationale
used to establish, maintain and employ an architectural
description. Their rationale has a strong influence on the
way of making decisions during the architectural design pro-
cess. Terms referring to architectural constraint concepts
encompass “‘architectural style”, “‘architectural pattern”,
“architectural metaphor”, and the like. The relationship

* Corresponding author. Tel.: +49 441 798 2991; fax: +49 441 798 2196.

E-mail addresses: giesecke@informatik.uni-oldenburg.de (S. Giesecke),

hasselbring@informatik.uni-oldenburg.de (W. Hasselbring), matthias.
riebisch@tu-ilmenau.de (M. Riebisch).

1474-0346/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.2ei.2006.11.002

between terms and concepts is ambiguous in this context:
often several terms are used interchangeably even by the
same authors, while other authors seem to implicitly distin-
guish multiple concepts, without providing a sufficiently rig-
orous definition. The lack of a definition causes confusion in
communication, inappropriate generalisations, and ham-
pers progress in this knowledge domain. Szyperski [30, p.
36] concludes: “As precision and richness of the vocabulary
decrease, so does the richness of expressible and distinguish-
able, yet concise, thoughts.” By establishing a coherent con-
ceptual framework, we aim to overcome these problems.

In this paper, we identify two main classes of architec-
tural constraints:

o Pattern-based concepts on the one hand, including the
work by Gamma et al. and Buschmann et al.

o Style-based concepts that include the work of Perry and
Wolf, Allen and Garlan, and Medvidovic and Taylor.

1.1. Architectural constraints in architectural design

The quality of the architectural design process and
of architectural descriptions is strongly influenced by

170 S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179

architectural constraints. Their impact on architectural
quality encompasses properties concerning the quality of
the software system under construction as well as the
design process, including its efficiency and its perspectives.

We focus on codified constraints [27] on software archi-
tecture descriptions, i.e. such constraints which have some
explicit description separable from the software architec-
ture of a specific system under consideration. Additionally,
we require that a constraint does not exist in isolation but
conforms to some generic concept. A generic concept
allows the specification of alternative constraints, which
are commensurable with each other. For example, every
software architecture conforms to some style. Therefore,
since every software system has an architecture, every soft-
ware system has a style; and styles must have existed since
the first software system was developed. However, without
a codification process, developers of other systems cannot
efficiently exploit the properties of a style. For example,
the UNIX operating system introduced a variant of the
pipe-and-filter style for the runtime architecture of pro-
cesses, which was later documented to be used by system
developers.

Codification of constraints involves a choice in the
degree of formal rigour, and the mode of inclusion of the
context. These choices determine the ability to reason
about properties of different constraints when used as the
basis for architecting a software system. Apart from serv-
ing as documentation for a constraint imposed by a chosen
implementation platform (operating system, middleware,
virtual machine, etc.) and ensuring interoperability, delib-
erate decisions for a constraint may be made. This goal
imposes additional requirements on the representation of
constraints. Architectural constraints can be viewed as cap-
turing many fine-grained design decisions, so their role in a
design process may be as follows: instead of considering a
large number of fine-grained design decisions which gener-
ate a huge design space, in which many points may be
excluded due to conflicts of the corresponding alternatives
of different decisions, a single decision is made between a
smaller number of well-known architectural constraints.
Such a process requires a certain degree of commensurabil-
ity of the alternative constraints, while it is not always
necessary to have a formal-mathematical specification of
the constraints available. This single decision may be made
more economically in a more sophisticated way than the
many fine-grained decisions it substitutes.

Formalisation of the solution’s content and representa-
tion of the problem context are two complementary aspects
of architectural constraints (see also Riehle and Ziilligho-
ven [27]). While the syntactical and semantic correctness
is addressed by the formalisation of the content, for an effi-
cient and adequate use of the constraint, understanding the
pragmatics is equally important. In fact, a trade-off
between understandability and the degree of formalisation
of the content may be required.

When an architectural constraint is selected, it restricts
the design space that needs to be further considered by cap-

turing a set of related architectural design decisions. Addi-
tionally they pre-structure the decision process of
dependent decisions, which may be regarded as options
enabled by the decision for a constraint. While these
restrictions are useful for improving the design process in
general, they particularly help less experienced designers
in reusing approved design knowledge for architecting
high-quality software systems.

Knowledge on properties of single architectural con-
straints is not sufficient to be helpful in an architecture-
based process of software design. To make a decision on
which constraint(s) to use for a certain software system, a
catalogue of architectural constraints must be available.
Different architectural constraints address different archi-
tectural concerns. Therefore, such a catalogue should pro-
vide information on the relationships between constraints
and concerns. A catalogue of architectural constraints
should not be built entirely from scratch but should incor-
porate the existing body of knowledge.

1.2. Characteristics of architectural constraints

The concepts underlying codified architectural con-
straints vary. These concepts may be clustered, e.g., by dis-
tinguishing the properties of their instances: the scope is
distinguished into global or local, and their level of obliga-
tion into obligatory or tentative. For example, global and
obligatory constraints are often referred to as “architec-
tural styles”. In order to effectively establish a catalogue,
constraints conforming to the same cluster of concepts
should be represented within a single meta-model to ensure
their commensurability. A thorough understanding of the
relationships among the concepts within each cluster is a
prerequisite for establishing a useful meta-model, which
does not prevail yet. Furthermore, an understanding of
the relationships between different clusters is important
for enabling architectural decisions. Our work provides a
significant contribution to this goal.

1.3. Research context

The work presented here is embedded in a research pro-
ject that develops and validates the MIDARCH method
for migrating software systems which exploits a special
kind of architectural styles [15]. We understand architec-
tural styles in the way that is elaborated in this paper
and see the need to distinguish them from architectural pat-
terns in a precise way. The special type of architectural
styles we consider are MINT Styles (Middleware INTegra-
tion Styles), which are architectural styles induced or
endorsed by middleware platforms. The study reported
on in this paper is accompanied by a study creating a
taxonomy of the different usage types of architectural styles
as proposed in the literature. These two taxonomies
provide the conceptual foundation for the use of styles
within the MIDARCH method. The MIDARCH method
improves the reuse of architectural design knowledge in

S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179 171

software migration projects. Candidate target architectures
are based on explicitly defined MINT Styles, instead of an
ad-hoc development of candidate architectures. The know-
ledge gained in one project by evaluating candidate archi-
tectures can be linked to appropriate architectural styles.
By making this kind of architectural design knowledge
more tangible, the quality of the developed software is
improved in the end as well.

1.4. Overview

The remainder of the paper is structured as follows: in
Section 2, fundamental terms are introduced and the
employed research method is described. Section 3 discusses
the relation of architectural constraints and architectural
quality. Afterwards the general definition of an “architec-
tural constraint concept™ is introduced in Section 4. Soft-
ware architecture concepts are discussed in Section 5 and
the application to engineering processes and artefacts in
general in Section 6. Finally, related work is discussed in
Section 7. The paper concludes with Section 8 and indicates
future work in Section 9.

2. Foundations

First, our view of software architecture is briefly intro-
duced in Section 2.1, since still no common view of soft-
ware architecture has established. A central notion within
this study is that of a (architectural constraint) concept.
The notion of a “concept” and related notions are
explained in Section 2.2. The specific research method used
is presented in Section 2.3.

The object of this study are research results from
research on Software Architecture. In this sense, our study
is a meta-study. It is empirical in the sense that it is based
upon research results that are assumed to have been empir-
ically validated, but theoretical in the sense that its propo-
sitions are obtained deductively. Our research also has a
creative aspect [21].

2.1. Software architecture

The literature on architectural constraint concepts refers
to a variety of definitions of software architecture. Several
of these definitions may be viewed as mutually incompati-
ble, and concrete architectures modelled with reference to
diverse definitions of software architecture will probably
be incommensurable. Therefore, we decided to select the
definition of software architecture in the IEEE Recom-
mended Practice for Architectural Description of Soft-
ware-Intensive Systems [16,20] as an approved reference
definition:

Software Architecture: “The fundamental organization
of a system embodied in its components, their relation-
ships to each other, and to the environment, and the
principles guiding its design and evolution™. [16]

Architectural decisions are reflected in this definition
through the reference to underlying ‘““principles” which
capture architectural decisions. What is meant by ““princi-
ples” comes close to our understanding of architectural
constraints, while we additionally require that constraints
have an explicit representation. Within the decomposition
of the conceptual model defined in the standard (see
Fig. 1), such principles are found in the rationale of an
architectural description.

Two distinctions made in the conceptual model are
highly relevant here: the (software) system is distinct from
the architecture. Additionally, the architecture of a system
is distinguished from its architectural description. Every sys-
tem has an architecture, but it is not necessarily documented
explicitly in an architectural description. If there is an archi-
tectural description, it may be incomplete, outdated or sim-
ply incorrect with respect to the actual architecture.

The architecture itself is intangible, and may only be
modified by changing the system. Modifications to the
architectural description may be regarded as a mandate to
adapting the system to reestablish consistency of architec-
tural description and the actual architecture, and vice versa.

A viewpoint represents related concerns that are deter-
mined by stakeholder interests. A viewpoint also deter-
mines modelling techniques and notations to use in views
that correspond to the viewpoint. A view describes a (con-
crete) system from a certain (abstract) viewpoint. Views
structure the overall architectural description. The actual
information is contained in models that are related to views
in a m:n relationship: A view refers to information that may
be distributed over multiple models, and a model may
contain information for multiple views.

2.2. Fundamental terms

A Concept, as defined in ISO standard 1087 [17], is a
cognitive construct that represents the properties of a
group of individual objects (note that “Object” is to be
understood in a general sense here, and may refer to intan-
gible, abstract objects such as elements of software archi-
tecture descriptions). Employing a stricter notion than
that of general terminology theory, we use the term
“concept” as a shorthand for ‘‘architectural constraints
concept” in the remainder of the present paper. A Concept
instance then is a particular architectural constraint, e.g.,
one specific architectural style. Every Concept and every
Concept instance is denominated by a Term. Terms are dis-
tinguished here into Generic terms and Names.

For example, ‘“‘architectural style” is a generic term
which denotes a concept, and ‘“pipe-and-filter style is a
name of an instance of that concept.

A concept is never conceived in isolation, but in relation
to other concepts, therefore forming a system of concepts;
the relationships within such a system may be separated into
explicit and implicit relationships. Previously, architectural
constraint concepts were only implicitly related within a
system of concepts that structures the universe of discourse

172 S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179

Conceptual model of architectural description)

Mission

Tx

+fulfills

Environment System

+influences

+has |Architecture

+inhabits

1." +has

1..* #described by

. Architectural Description Rationale
+isimportant 1o | Stakeholder + provides
+identifies
1
articipates in
+is addressed to | 1..* P P
1. ¥ has 1.% 1.0 1..* forganized by
. 4 selects
+ identifie: - . i
Concern +used to cover Viewpoint +conforms to View
1
+ viewpoint + participates in | 1..*
0..1 } has source 1.* consists of #aggregates

<< generic >>
Library Viewpoint

+ establighes methods for Model

1.

Fig. 1. Conceptual framework for architectural description [16].

of software architecture. The goal of our research is to define
explicit relationships for these concepts.

2.3. Research method

To start with, we explicitly cover characteristics of archi-
tectural constraint concepts in a general definition of an
“architectural constraint concept’’ consisting of several ele-
ments that we synthesised from our implicit knowledge of
architectural constraint concepts. Then, we check for each
individual architectural constraint concept whether it
matches the general definition. In this case, we describe it
as a specialisation of the general definition, i.e. we describe
where each element of the definition is specialised and
where additional definition elements must be added. If it
does not match the general definition, the respective con-
cept is not considered an architectural constraint concept.

This approach is non-trivial due to the fact that for most
individual architectural constraint concepts, no explicit
definition is given, and even if one is given, it does not
relate directly to the structure of our definition. Conse-
quently, it may not even be possible to determine in all
cases whether the general definition fits at all, since the
characterisation given by the respective authors is too
fuzzy. However, this problem is part of the motivation
for conducting this study, and this study will help in solving
the problem, even if it cannot resolve all ambiguities.

As a result of our study, relationships between the exam-
ined architectural constraint concepts established by their
respective contribution to the characterisation within the
elements of the general definition are obtained. Based on
these results, the adequacy of the original general definition
can be determined, and the definition may be revised.

Additionally, a classification with respect to different
properties of the instances is imposed on the constraint
concepts:

Level of rigour. Architectural descriptions may exhibit
different levels of formality, ranging from unstructured
or structured natural-language descriptions and informal
box-and-line diagrams, over semi-formal diagrams, such
as the UML, to formal notations, which may even pro-
vide executable specifications. Each of these notations
may be adequate for its intended purpose.

Level of obligation. Architectural constraints may differ in
the level of obligation they demand from the affected soft-
ware artifacts. This may range from suggestions (loose)
over recommendations to restrictions (strict). Whether it
is possible to check/enforce them or provide tool support
for the semi-automatic generation of compliant architec-
tural descriptions, depends both on the level of rigour of
the constraint and of the architectural description.

The obligation does not extend to revisions of an archi-
tectural decision, i.e. we assume that—regardless of the

S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179 173

level of obligation—any decision for a constraint may
later be revoked, which also removes the obligation.
Scope. The scope of the constraint can be local or global
within the architectural description it is applied to.
Local constraints constrain only an explicitly specified
set of description elements, while global constraints
apply to all current and future eclements, possibly
restricted by some application condition. The character-
isation depends on the regarded system scope: any
constraint imposed globally on a subsystem may be
regarded as local to the subsystem in a system-level view
(see also Gamma et al. [9, p. 3]). In any case, the scope is
expressed relative to the system under review.

3. Architectural quality and quality assessment

The use of architectural constraints in architectural
design is an important contribution to achieving architec-
tural quality [7]. Adequate properties of the software archi-
tecture enable the resulting software system to meet the
requirements on behaviour, quality and life cycle [4]. The
use of architectural constraints is meant to contribute to
all these aspects of architectural quality.

The support for architectural quality in the development
life cycle of a software system is central to this contribution.
During the analysis and design phase, a software architec-
ture helps to make appropriate decisions and to reduce risks
related to a specific set of requirements. Architectural con-
straints enhance these effects by providing well-established
solutions. Furthermore, they reduce the complexity of a
solution by improving the conceptual integrity and consis-
tency of an architecture [5, p. 95]. Concerning validation
and verification, architectural quality encompasses both
the internal consistency of the architectural description
(architectural consistency) and the external compliance of
a system’s implementation with its architectural description
(architectural compliance). The use of architectural con-
straints contributes to these aspects of architectural quality
as well. It reduces the effort necessary to create and main-
tain an architectural description, and to maintain architec-
tural compliance. Architectural compliance is attained
through traceability. Traceability includes requirements
traceability, i.e. the possibility to relate software artefacts
(at any level) to the requirements they contribute to, as well
as architectural traceability, i.e. the possibility to relate
implementation artefacts to architectural artefacts. A
proper level of architectural compliance is a prerequisite
for useful architecture-based predictions of system quality
attributes [18], concerning the internal and external soft-
ware quality. Tool support for these activities is desirable.

3.1. Architectural constraints in software
design processes

Additionally, architectural constraints have a strong
impact on the decision-making process: they help to reduce

the number of alternatives for design decisions and there-
fore, they improve the efficiency of the design process.

First, they ease design decisions. For a single decision,
architectural constraint concepts reduce the set of available
alternatives by excluding the ones that are not applicable.
In this way, they reduce the complexity of the decision
and thus, they ease the work of the developer. Further-
more, architectural constraints introduce well-established
solutions. Such a solution has already proved its trade-
off; its benefits and properties are known. The particular
design decision can be based on an analysis; it can be per-
formed methodically. In this way, the architectural con-
straint helps to reduce redundant revision work and to
improve the efficiency of the design process.

Second, by repeatedly considering (selecting some and
rejecting others) architectural constraints in different
projects, the body of knowledge associated with these con-
straints grows, and knowledge on the relationship between
constraints and the quality characteristics of the resulting
software systems can be collected. Software design meth-
ods such as the MIDARCH method [15] explicitly exploit
this aspect of architectural constraints to improve reuse
of architectural design knowledge.

Third, the efficiency of the communication between the
stakeholders is improved by the usage of architectural con-
straints as parts of a solution. Their application leads to an
increased degree of formality and to an improved degree of
conceptual integrity of the design description. Thus, the
communication effort as well as the probability of mis-
understandings is reduced.

4. Architectural constraint concepts

We start with the following definition of an architectural
constraint concept:

Definition 1 (Architectural constraint concept). An archi-
tectural constraint concept is a concept, which refers to the
universe of discourse of software architecture, representing
instances (called architectural constraints) which

(1) refer to a meta-model for architectural models that is
defined by some viewpoint,

(2) contribute to the architectural rationale by capturing
a set of meaningful design decisions,

(3) should define a vocabulary for constituents of an
architectural model,

(4) do not apply only to isolated constituents of a model,
and

(5) should have an explicit representation.

The first two criteria establish the link to the conceptual
framework of software architecture as defined by the IEEE
1471-2000 standard: An architectural constraint is part of
the architectural rationale and refers to a meta-model,
which are defined—Dby convention of the standard—within

174 S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179

a viewpoint. The instances of such a meta-model are archi-
tectural models. The intention is to enable reuse of architec-
tural constraints for multiple systems, i.e. an architectural
constraint may be imported into the rationale of a specific
software architecture description from some catalogue of
reusable architectural constraints.

The first criterion particularly excludes constraints that
define a meta-model themselves (e.g., “architectural design
styles’ [28]). The second criterion excludes purely syntacti-
cal or semantic constructs. The third criterion is particularly
important for aspects concerning the use of architectural
constraints for stakeholder communication. The fourth cri-
terion excludes concepts such as component and connector
types (see, e.g., Allen and Garlan [3]). These may be defined
by or referred to by an architectural constraint, but do not
form an architectural constraint as such.

The fifth criterion excludes architectural constraints that
are merely implied or assumed by specific approaches to
architectural description, by specific component and con-
nector types, etc. Nonetheless we regard the analysis of
such implicit assumptions with the goal of representing
them explicitly worthwhile, but outside the scope of our
current work. Analogous to the distinction of architecture
and architectural description in the IEEE Standard 1471,
we distinguish a constraint and its constraint description.

5. Taxonomy of architectural constraints

Important specialised architectural constraint concepts
defined in the Software Architecture literature will be char-
acterised as specialisations of the general definition given in
Section 4.

Architectural constraints can be formalised to a varying
extent, which is not completely determined by the concept
definitions as discussed in the following, i.e. the instances of
each concept may be described in a more formal or a less
formal way. The reason for this variance is that we do
not discuss the architectural constraint concepts at a tech-
nical, but at a conceptual level; we do not explicitly
consider the language in which constraints should be
expressed. Still, some concepts’ instances are more apt to
formalisation than others.

However, as Riehle and Ziillighoven [27] emphasise con-
cerning “patterns”, the “form” describing the pattern can
be formalised, but its “context” may not. This statement
applies to architectural constraints in general. In our terms,
a constraint description comprises both form and context,
and can thus not be completely formalised.

In the following, first pattern-based concepts are dis-
cussed, followed by style-based concepts.

5.1. Pattern-based concepts

5.1.1. “Gang of Four” patterns
The idea of ““design patterns’ as expressed by the “Gang
of Four” [9, Chapter 1.1] s close to Alexander’s idea of a

pattern [2]. A pattern is a “‘solution to a problem in a con-
text” [9, p. 3], and consists of a name and the description of
the problem, solution and consequences.

Although Gamma et al. are not concerned with archi-
tecture-level patterns, but with “descriptions of communi-
cating objects and classes that are customized to solve a
general design problem in a particular context” [9, p. 3],
many of their patterns can also be interpreted from an
architectural point of view, e.g., Composite, Mediator,
or Observer. The presentation in Gamma et al. [9] pro-
vides code examples and relies on certain properties of
the object-oriented programming languages used (C++
and Smalltalk). On the implementation-level it is a preva-
lent question which language features are available and
how they are used. When regarding the same patterns
from an architectural point of view, only the question
whether the design pattern may be implemented using
some implementation technology (a question to which
the answer will in virtually any case be yes due to the
inherent flexibility of software) and how far the effort of
implementation is. The nature of the architectural per-
spective essentially is the abstraction from the details of
the mapping of architectural artifacts to implementation
artifacts.

With respect to the general architectural constraint con-
cept definition, we can infer that a design pattern from an
architectural perspective

(1) refers to some meta-model, specifically an object-
oriented class or object hierarchy,

(2) contributes to the architectural rationale, which is
embodied both in its name and the problem
description,

(3) defines a vocabulary in the form of a solution “tem-
plate” describing ‘“‘the elements that make up the
design, their relationships, responsibilities, and
collaborations”,

(4) does therefore apply to multiple elements of a model,

(5) has an explicit representation, which is organised in a
structured pattern description.

As a consequence, we conclude that design patterns in
their architectural interpretation can be regarded as an
architectural constraint concept.

Classification: The patterns described by Gamma et al.
are clearly local in scope, since they specify an explicitly
enumerated set of design elements.

The level of rigour is semi-formal, since natural lan-
guage combined with OMT diagrams (essentially the
precursor of UML class and object diagrams) is used for
documentation. The level of obligation is only moderate
because of two aspects: First, many variations are allowed
for each pattern which are not exhaustively enumerated in
the pattern description. Second, a pattern implementation
is often intermixed with other implementation fragments.
However, an obligation is expected to follow the commit-
ment to a pattern.

S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179 175

5.1.2. Buschmann et al. patterns
Buschmann et al. [6] define the concept of architectural
patterns as their central architectural constraint concept:

An architectural pattern expresses a fundamental struc-
tural organization schema for software systems. It pro-
vides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for
organizing the relationships between them. [6, section
1.3]

By now, there exists a series of books describing patterns
in this sense. In the original book, [6] consider patterns
such as Broker, Model-View-Controller and Presentation-
Abstraction-Control.

With respect to the general architectural constraint con-
cept definition, we can infer:

(1) an architectural pattern refers to some meta-model,
which is not specified explicitly (“expresses a funda-
mental structural organisation schema”),

(2) contributes to the architectural rationale implicitly, in
that it represents codified architectural design
knowledge,

(3) defines a vocabulary (“predefined subsystems”, ““their
responsibilities”, “rules and guidelines”),

(4) usually applies to multiple elements of a model (““a set
of ...”),

(5) has an explicit representation (which is what the book
Buschmann et al. [6] is about).

Buschmann et al. also recognise the prevalence of a
different architectural constraint concept, architectural
styles. However, they refer to colloquial uses of the term,
and thus the distinction remains fuzzy. However, they
assume that architectural styles are a special case of archi-
tecture patterns, but “every architectural style can be
described as an architectural pattern” [6, Section 6.2]. They
allege that styles lack interdependencies with other styles
and that the viewpoint of architectural styles is not prob-
lem-oriented, but “independent of an actual design
situation”.

Classification: Due to the fact that Buschmann et al.
subsume styles under their pattern concept, some of their
patterns apply to a global scope, but essentially Busch-
mann patterns are local in scope since they make no state-
ment about the system outside the scope targeted by the
explicit elements of the pattern. Still, Buschmann patterns
are more global than the Gang-of-Four patterns since
Gamma et al. [9, p. 3] explicitly exclude patterns that deter-
mine the overall architectural organisation of a software
system.

Since the POSA series of books provides a large number
of instances, statements regarding the typical level of rigour
and obligation can be made with a certain confidence. The
level of rigour that is employed is semi-formal throughout
the presented patterns. The level of obligation can only be
described on a less formal basis: On the one hand, the

coarse structure of a pattern should be followed, but usu-
ally many variations to a pattern exist, and, in practise,
even after choosing a variant of a pattern, deviations
may be made in implementing a pattern as long as the gen-
eral idea of the pattern is still obeyed.

5.2. Style-based concepts

5.2.1. PerrylWolf styles

The seminal paper by Perry and Wolf [25] already men-
tions “‘style” as one important justification for introducing
the “architecture” metaphor. Besides the use of multiple
views, style is also used to create the major analogies to
building architecture: These are related to the descriptive
and prescriptive effects of architectural style. The inter-
actions of the style with engineering principles and material
properties are transferred to software architecture. As
examples, they name a “distributed” or a “multi-process”
style.

Perry and Wolf assume a uniformity of architecture and
architectural style: “We have a continuum in which one
person’s architecture may be another’s architectural style”
[25, Section 3.2]. This is due to the fact that they define
both concepts only vaguely as constraints for the lower-
level realisation of a system.

Due to the vague definition, ““style” is seen primarily as
an organisational rather than a technical instrument: “An
emphasis on style as a constraint on the architecture
provides a visibility of those aspects and insensitivity to
them will be more obvious.” As a consequence, we do not
consider Perry/Wolf’s “architectural style” as an architec-
tural constraint concept. However, their work significantly
inspired several more rigorous architectural constraint con-
cepts, such as the SEI styles (see Section 5.2.2).

5.2.2. SEI styles (Allen, Garlan)

Allen and Garlan define architectural styles in several
papers, notably in Abowd et al. [1] and in Garlan [12].
The underlying ideas were already indicated in Garlan
and Shaw [11]. Examples of the structuring principles they
describe as styles include Pipes and Filters, Data Abstrac-
tion, Event-based, Layered and other rather generic archi-
tectural styles.

Garlan [12] discusses several different approaches to the
definition and use of architectural styles, but assumes sev-
eral common properties of any view of architectural style:

(a) The provision of a vocabulary of design elements,
which are component and connector types.

(b) The definition of a set of configuration rules.

(¢) The definition of a semantic interpretation, which
gives some well-defined meaning to all configurations
of design elements that satisfy the configuration rules.

(d) The definition of analyses for configurations of that
style. Examples include schedulability analysis, dead-
lock analysis, code generation, and conformance
checking.

176 S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179

With respect to the general architectural constraint con-
cept definition, we can infer that an architectural style:

(1) refers to some meta-model, in which the vocabulary is
defined (see (a)),

(2) contributes to the architectural rationale in that it
represents codified architectural design knowledge,
which is given by the semantic interpretation (see (c)),

(3) defines a vocabulary (see (a)),

(4) applies to multiple elements of a model, which is
implicitly expressed in the idea of a configuration
(see (b)),

(5) has an explicit representation, which is implicitly
assumed by the definition.

The idea of analyses, which are style-specific and can be
applied to configurations (allegedly) conforming to a style,
is an issue that is notable in addition to the items contained
in the general definition. This idea builds upon the assump-
tion that a styleis applied globally to the system under review.

Classification: The scope of the SEI styles is clearly glo-
bal, the authors refer explicitly to whole architectures that
are expected to follow a style.

Based on the SEI approach, varying degrees of rigour are
conceivable and have been proposed. Sometime, they
employ a rigorous formal approach in Abowd et al. [1]. In
the Aesop system [10], which is used to generate style-based
architectural design environments, a less formal approach is
used. Here the style is not explicitly specified, but implicitly
implemented in code extensions to the Aesop system. The
expected level of commitment is high in both cases.

5.2.3. Medvidovicl Taylor styles

While Taylor et al. [31] only describe a single style, the
Chiron-2 or C2 style, an underlying generic concept may
be inferred from their description, which, in principle,
could be used to specify other styles as well.

With respect to the general architectural constraint con-
cept definition, we can infer that an architectural style

(1) refers to some meta-model: the authors explicitly
refer to a decomposition of a system into components
and connectors,

(2) contributes to the architectural rationale (they are
“key design idioms”, “provide a rationale for the
desired properties of the components and connectors,
as well as for the choice of principles” [31]),

(3) defines a vocabulary: C2-specific components and
connectors are proposed,

(4) does apply to multiple elements of a model (“a net-
work of concurrent components”, “configuration”
[31)),

(5) has an explicit representation (which is, in the case of
the C2 style, published in Medvidovic [22]).

Thus, Medvidovic and Taylor’s styles can be considered
an architectural constraint concept.

Classification: The scope of a Medvidovic/Taylor style is
clearly global. While they explicitly recognise that it might
be applied in the UI subsystem of a larger system only, this
subsystem constitutes the system under review.

The example of the architectural style concept provided
by Medvidovic [22] employs the Z notation for specifying
the C2 style, thus a rigorous formal mathematical level of
rigour is employed. The level of obligation to the style is
also very high, as their primary concern is the achievement
of technical interoperability, which does not allow for devi-
ations from specified properties.

5.3. Summary

Throughout the software engineering literature, the
terms “style” and ‘“‘pattern” are used in various contexts,
in most cases in a purely informal manner. Many uses
come close to architectural constraints, other uses do not.
It is probably infeasible to analyse all uses of these terms
in the way we did before, and we are sceptical whether such
an analysis would lead to interesting results. However,
there are certainly several more elaborated and more rigor-
ous constraint concepts published, which could be included
in the future. So far, we focused on the most “popular”
concepts.

These concepts can be organised into a taxonomy in
various ways. Essentially, a top-down and a bottom-up
approach can be applied. Our top-down approach is based
on the two classification dimensions scope and level of
rigour.

To summarise: Buschmann’s and the Gang of Four’s
Patterns and the SEI and Medvidovic/Taylor Styles can
be considered architectural constraint concepts in the sense
of our general definition. Not included are the Perry/Wolf
Styles, which we consider too vague to be architectural
constraints.

The concepts of patterns and styles differ in the type of
instantiation of its instances within a software system. The
choice of a pattern already involves the enumeration of the
participating elements. Even if the pattern specification
allows variants, the variation is resolved as part of the
choice. Tool support for instantiation of the pattern then
is concerned with the mapping to implementation-level
artifacts (i.e. code generation). The choice of a style, on
the other hand, merely prepares the design of the architec-
ture itself. As part of the choice, not the concrete elements
are chosen, but only their types are chosen or constrained.
To give an example for this difference: when choosing the
Singleton pattern [9], the choice of this pattern and the
identification of the class which should be made a singleton
cannot be separated but constitute a single atomic design
decision. However, for a style, patterns may be defined that
can be instantiated once the style has been selected (see
below).

Additionally, instantiation is related to different design
activities: For pattern-based concepts, instantiation is tar-
geted at the implementation process, while for style-based

S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179 177

concepts the focus is on guiding the further design process.
As a consequence, requirements on tool support for apply-
ing patterns and styles differ.

Tools should be able to guide the further selection of
concrete elements based on the selected style. Concurrently
to architectural design, a tool should be able to check
whether the architecture conforms to the selected style.
The architecture of a system cannot automatically be gen-
erated from the style alone.

To establish a technical relationship of styles and
patterns, style-specific patterns can be defined, similarly to
domain-specific patterns that have been discussed by many
authors. In fact, many so-called domain-specific patterns
(such as Java EE patterns) are not specific to an application
domain, but to the style imposed by some implementation
technology (e.g., the Java EE platform), which determines
a technical domain. Then, a style contains or refers to a set
of patterns.

6. Application to engineering processes and artefacts in
general

For any large, complex system, the design of the overall
system structure (the architecture) is a central problem.
This is a recurring problem in any engineering discipline.
The architecture of a system defines that system in terms
of components and connections among those components.
It is not the design of that system which is more detailed.
The architecture shows the correspondence between the
requirements and the constructed system, thereby provid-
ing some rationale for the design decisions.

In the civil engineering discipline, the engineer knows
that a house includes a roof at the top and a cellar at the
bottom, etc. Similarly, using the example of compiler con-
struction, the software engineer knows that a compiler con-
tains a pipeline including lexical analysis, parsing, semantic
analysis, and code generation. Up to now, this is not the
case for all areas of software and systems development:
e.g., the discipline of software architecture is still an emerg-
ing discipline. For building architecture, the idea of encod-
ing design knowledge in a pattern form has been devised by
Alexander [2]. The transfer to computer-based systems is
discussed in the following Section 6.1. A case study for
the application of architectural styles in software system
engineering is then presented in Section 6.2.

6.1. Patterns in computer-based engineering systems

In this contribution, architectural styles and patterns are
discussed in a software engineering context. They are
applied in a very similar way in many other engineering
processes, and they act as architectural constraint concepts
there by influencing design decisions. As an illustration, the
architectural style Layer—as used in software architec-
tures—is compared to similar styles in the design of auto-
matic control solutions for large systems and in network
design for building automation systems.

Automatic control of large systems is usually structured
in a hierarchical way. For managing the complexity of
large systems and for simplifying their models, systems
are decomposed to modules or units. Hierarchical struc-
tures occur not only for system models but for control
structures and control tasks as well. This way of structuring
has been established as a basic style by Ogata [24]. Further-
more, hierarchies can represent different aspects [33].

Hierarchical layering is widely accepted as a typical style
in the network design of building automation systems. By
decomposing network parts into levels, different require-
ments in terms of reliability, time behaviour and perfor-
mance can be fulfilled. As an example, an emergency
notification system as part of a building automation system
usually consists of sub-networks at different levels to man-
age alarms and failures effectively [23].

If we compare these examples to the field of software
engineering, a uniform influence on the resulting design
can be recognised: there are hierarchically structured units
with specific responsibilities. The architectural style Layer
is applied in the different engineering disciplines in a very
similar way, since identical engineering principles apply:
abstraction, encapsulation and modularisation. The uni-
form role of the Layer style for the engineering decisions
in the different engineering disciplines is caused by similar
problem solving strategies.

6.2. Styles in a software system engineering process

As an example on how architectural styles can be used in
a Software System Engineering Process, we briefly sketch a
case study that we conducted [14]. The goal of the case
study was to evaluate a generic method for conducting
migration and integration of information systems (MID-
ARCH Method). The method is tailored towards so-called
Middleware-intensive systems, i.e. complex systems whose
structure is significantly influenced by the underlying
Middleware platform. The features embodying this influ-
ence form architectural constraints, which are a special
kind of the architectural styles discussed in Section 5.2.2,
which we refer to as MINT Styles (Migration and Integra-
tion Styles).

The subject system in the case study was a web-based
regional trade information system (REGIS-Online) deve-
loped by regio Institut GmbH, Oldenburg. Prior to the
migration, the architecture of the system consisted of two
distinct subsystems for querying and updating data, which
both used the Apache Cocoon middleware, however in
incoherent and differing ways. The goal of the migration
was to create a more coherent architecture which eases
future maintenance of the system.

Fig. 2 shows the activities involved in the migration pro-
cess, and the dependencies between the activities. The focus
with respect to architectural styles in the form of MINT
Styles is in the third column. MINT Styles are modelled
for two variants of using Apache Cocoon. Based on these
MINT Style descriptions, target architectures are modelled

178 S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179

Model Avalon
“=» Define Scope MINT Style P CAhr%%?tee;ir%Et
in Acme ;
—— L —

1 ! T

1 1 1

[! [

v | v
1
Determine \ Model Cocoon Model Cocoon i

Target \ MINT Style 1 MINT Style 2 ! Implement |
: \ : . | Prototype -
Requirements \ in Acme in Acme |
\ 1
Ay \\ 1 1 :
\ \ P et P | !
\ \ - . TTee-ll . :
\ A| v “~-a¥ !
\\ Model Current // Model Cocoon Model Cocoon ‘:
‘\\ Architecture [~~~ Style 1 Target Style 2 Target i
\ Architecture Architecture ','
\\ 1
\\\ \ ,/, "'
| v ;
\\ /I
s Develop Evaluate S
Project- Specific f------------ Candidate f-~"""7~
Quality Model Architectures

Fig. 2. Case study: migration process.

and evaluated. Since there is an explicit link between the
architecture and the style (the architecture is an instance
of the style), the results of the architectural evaluation
can also be linked to the MINT Style and this design
knowledge may be reused in further migration and integra-
tion projects that apply the MIDARCH method.

7. Related work

Related work includes Garzas and Piattini [32,13]. Both
approaches aim at capturing design knowledge, but their
approaches and the scope are different: they refer to more
implementation-oriented, low-level design knowledge,
while we refer to higher-level architectural design knowl-
edge. They relate different contexts to each other by implic-
itly considering their characteristics, but we explicitly
capture these characteristics within a basic definition.

Szyperski [30, Chapter 9] discusses ‘‘design-level reuse’
based on artifacts such as programme code, libraries, inter-
faces, protocols, patterns, frameworks, and system architec-
tures. These artifacts are grossly classified with respect to
programming-in-the-large and programming-in-the-small.
We did not include this dimension into our taxo-nomy, since
we only take the perspective of software architecture, which
belongs to programming-in-the-large. However, several of
the artifacts considered by Szyperski also play a role in
our taxonomy. Szyperski places (design) patterns between
message protocols and frameworks. In fact, what Szyperski

describes as frameworks comes close to the style concepts
discussed above when considering their relationship to
patterns: “A framework integrates and concretizes a num-
ber of patterns to the degree required to ensure proper inter-
leaving and interaction of the various patterns’ participants.
Indeed, a framework can be explained in terms of the pat-
terns it uses.” However, the focus set by Szyperski tends

to neglect an important difference between styles and frame-
works: frameworks are an implementation-level artifact and
consist of binary or source code, while styles are architec-
tural-level artifacts. However, a style can be inferred from
a framework, and a framework can be developed to support
the realisation of a style.

8. Conclusion

In this paper, we analysed several software architecture
concepts and put them into the context of our definition of
architectural constraint concepts. We provide a taxonomy
of the architectural constraint concepts. The taxonomy is
based on the ANSI/IEEE Standard 1471 (IEEE Recom-
mended Practice for Architectural Description of Soft-
ware-Intensive Systems). While much of the content of
architectural constraints will be found in the architectural
rationale, a refinement of the elements defined in the stan-
dard would allow a better mapping of the elements of
architectural constraints. For the considered software
architecture concepts, the working definition has proved
adequate.

The approach may be applied to additional architectural
constraint concepts. However, some evaluation of their sig-
nificance has to be applied, otherwise it is possible that the
general definition is becoming too general to be meaningful.

As emphasised in the introduction, a well-founded under-
standing of the differences between architectural constraint
concepts is necessary to rigorously define individual con-
straints and provide methods for analysing constraints and
exploiting them in order to improve the design of high-qual-
ity software systems. We will exploit the insights gained in
the study presented here, together with an accompanying
study on different usages of architectural styles, to develop
a method for selecting appropriate middleware platforms

S. Giesecke et al. | Advanced Engineering Informatics 21 (2007) 169-179 179

in Enterprise Application Integration projects based on a
taxonomy of the styles endorsed by available middleware
platforms.

9. Future work

Formal ontologies are used for modelling the universe of
discourse of information systems. In future work, our tax-
onomy of architectural constraint concepts could evolve
into a formal ontology (e.g., in the OWL). So far, the focus
of our work is not targeted towards automation of the pro-
cesses around architectural constraints. While tool support
for decision processes with respect to architectural con-
straints is an important goal of our work, it is not yet clear
whether the techniques for ontological engineering are
helpful in this context.

As a certain degree of commensurability is established
by the taxonomy, in a next step the taxonomy of the indi-
vidual instances of each concept cluster may be refined. On
the level of design patterns, in some cases the question of
equivalence of design patterns formulated in different ways
has proved to be difficult to be resolved, e.g., the contro-
versy about the equivalence of the Multicast and Observer
patterns, which could only be resolved by using the LePuS
formalism [8].

So far, we focused on constraint concepts that are found
in the literature and that have been defined and used in
practise. It would be interesting to explore additional
constraint concepts that allow new applications. This could
include, for example, constraints governing multiple
models while ensuring their consistency.

References

[1] G.D. Abowd, R. Allen, D. Garlan, Formalizing style to understand
descriptions of software architecture, ACM Transactions on Software
Engineering and Methodology 4 (4) (1995) 319-364.

[2] C. Alexander, S. Ishikawa, M. Silverstein, A pattern language : towns,
buildings, constructionCenter for Environmental Structure, vol. 2,
Oxford University Press, New York, 1977.

[3] R. Allen, D. Garlan, A formal basis for architectural connection,
ACM Transactions on Software Engineering and Methodology 6 (3)
(1997) 213-249.

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
second ed., Addison-Wesley, 2003.

[5] F.P. Brooks, The Mythical Man-Month: Essays on Software Engi-
neering, 20th Anniversary ed., Addison-Wesley, 1995.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, John
Wiley & Sons, 1996.

[7]J.C. Duenas, W.L. de Oliveira, J.A. de la Puente, A software
architecture evaluation model, in: Proceedings of the Second Inter-
national ESPRIT ARES Workshop on Development and Evolution
of Software Architectures for Product Families, Springer-Verlag,
London, UK, 1998, pp. 148-157.

[8] A.H. Eden, Y. Hirshfeld, A. Yehudai. Multicast — observer # typed
message. C++ Report 10 (9), 1998.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software, Addison-Wesley
Longman Publishing Co., Inc., 1995.

[10] D. Garlan, R. Allen, J. Ockerbloom, Exploiting style in architectural
design environments, in: Proceedings of SIGSOFT’94: The Second

ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ACM Press, 1994, pp. 175-188.

[11] D. Garlan, M. Shaw, An introduction to software architecture, in: V.
Ambriola, G. Tortora (Eds.), Advances in Software Engineering and
Knowledge Engineering, World Scientific Publishing Company,
Singapore, 1993, pp. 1-39.

[12] D. Garlan, What is style? in: D. Garlan (Ed.), Software Architectures,
Dagstuhl-Seminar-Report, Proceedings of the Dagstuhl Workshop
on Software Architecture, Saarbriicken, Germany, vol. 106, February
1995.

[13]J. Garzas, M. Piattini, An ontology for microarchitectural design
knowledge, IEEE Software 22 (2) (2005) 28-33.

[14] S. Giesecke, J. Bornhold, Style-based architectural analysis for
migrating a web-based regional trade information system, in: Tren-
tini, A., Marchetto, A., Bellettini, C. (Eds.), First International
Workshop on Web Maintenance and Reengineering (WMR 2006) in
conj. with CSMR 2006, Bari, Italy, CEUR Workshop Proceedings,
vol. 193, 2006, pp. 15-23.

[15] S. Giesecke, Middleware-induced styles for enterprise application
integration, in: Proc. 10th European Conference on Software Main-
tenance and Reengineering (CSMRO06), IEEE Comp. Soc., 2006, pp.
334-340.

[16] IEEE, Recommended Practice for Architectural Description of
Software-Intensive Systems, ANSI/IEEE Standard 1471-2000, 2000.

[17] ISO, Terminology work — Vocabulary — Part 1: Theory and
Application, ISO Standard 1087-1:2000, 2000.

[18] H.-W. Jung, S.-G. Kim, C.-S. Chung, Measuring software product
quality: a survey of ISO/IEC 9126, IEEE Software 21 (5) (2004) 88-92.

[19] M.S. Mahoney, Finding a history for software engineering, IEEE
Annals of the History of Computing 26 (1) (2004) 8-19.

[20] M.W. Maier, D. Emery, R. Hilliard, Software architecture: intro-
ducing IEEE Standard 1471, Computer 34 (4) (2001) 107-109.

[21]7 E. Marcos, Software engineering research versus software develop-
ment, SIGSOFT Software Engineering Notes 30 (4) (2005) 1-7.

[22] N. Medvidovic, Formal definition of the Chiron-2 architectural style,
Tech. Rep. UCI-ICS-95-24, Department of Information and Com-
puter Science, University of California, Irvine, November 1995.

[23] G. Neugschwandtner, W. Kastner, B. Erb, Fire safety alarm
transmission in networked building automation systems, in: 6th
IEEE Intl. Workshop on Factory Communication Systems
(WFCS’06), IEEE, 2006, pp. 79-82.

[24] K. Ogata, Modern Control Engineering, fourth ed., Prentice-Hall,
2002.

[25] D.E. Perry, A.L. Wolf, Foundations for the study of software
architecture, SIGSOFT Software Engineering Notes 17 (4) (1992) 40-52.

[26] B. Randell, J. Buxton (Eds.), Software Engineering Techniques:
Report of a conference sponsored by the NATO Science Committee,
Rome, Italy, 27-31 October 1969, Brussels, NATO Scientific Affairs
Division, Brussels, 1970.

[27] D. Riehle, H. Zillighoven, Understanding and using patterns in
software development, Theory and Practice of Object Systems 2 (1)
(1996) 3-13.

[28] M. Shaw, Comparing architectural design styles, IEEE Software 12
(6) (1995) 27-41.

[29] M. Shaw, D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline, Prentice-Hall, Inc., 1996.

[30] C. Szyperski, Component Software: Beyond Object-Oriented Pro-
gramming, ACM Press/Addison-Wesley Publishing Co., 1998.

[31] R.N. Taylor, N. Medvidovic, K.M. Anderson, E. James, J. White-
head, J.E. Robbins, K.A. Nies, P. Oreizy, D.L. Dubrow, A
component- and message-based architectural style for GUI software,
IEEE Transactions on Software Engineering 22 (6) (1996) 390-406.

[32] W.M. Tepfenhart, J.J. Cusick, A unified object topology, IEEE
Software 14 (1) (1997) 31-35.

[33] P. Varaiya, A question about hierarchical systems, in: T.E. Djaferis,
I.C. Schick (Eds.), System Theory: Modeling, Analysis and Control,
The International Series in Engineering and Computer Science, vol.
518, Kluwer, 1999 (Chapter 23).

