
A Traceability Link Model for the Unified Process

Patrick Maeder, Ilka Philippow and Matthias Riebisch
Technical University of Ilmenau, Germany

patrick.maeder|ilka.philippow|matthias.riebisch@tu-ilmenau.de

Abstract

Traceability links are widely accepted as efficient
means to support an evolutionary software develop-
ment. However, their usage in analysis and design
is effort consuming and error prone due to lacking or
missing methods and tools for their creation, update
and verification.

In this paper we analyse and classify Unified Process
artefacts to establish a traceability link model for this
process. This model defines all required links between
the artefacts. Furthermore, it provides a basis for the
(semi)-automatic establishment and the verification of
links in Unified Process development projects. We also
define a first set of rules as step towards an efficient
management of the links. In the ongoing project the
rule set is extended to establish a whole framework of
methods and rules.

1. Introduction

Business critical software systems are highly com-
plex and have to fulfil rapidly changing needs. These
changes bear high risks, such as misunderstood depen-
dencies, missing comprehension, incomplete implemen-
tation and lacking coverage. Evolutionary development
processes have been developed to support these fre-
quent changes to the system. One of these concepts
is traceability. Most development process standards
support traceability and mention it as one of its fea-
tures. Today, traceability is mostly limited to relating
requirements and poorly used in practice. But trace-
ability links are necessary for the whole development
process from requirements to the implementation of
the system. Traceability links have to be kept in a
correct and complete state and they have to be defined
at a fine-grained level to be useful. This requires a
very high number of links to be managed and main-
tained even for small systems. The maintenance and
management has currently to be carried out manually

and requires an extreme high effort. The precondition
for an effective tool support is a detailed integration
of traceability links into development methods. The
definitions of activities, relations and artefacts of most
design methods are too imprecise and vague to define
rules for traceability links based on them and to give
support for the concept of traceability.

In order to achieve results of high practical value, a
widely used design methodology is applied as base of
our work. We have chosen the Unified Process UP for
the definition of a process-specific model of traceability
links in this paper. For the Unified Process, there are
rather detailed descriptions of the design methodology.
Although, Letelier showed in [5] the application of his
metamodel for the UP, his definitions are not detailed
enough to derive rules for traceability links. There is
no detailed description of how and between which arte-
facts traceability links should be established, although
the UP description introduces traceability as one of its
features. Additionally, a syntactic and semantic defi-
nition of traceability links is necessary.

As contribution of this paper we classify and anal-
yse the UP artefacts concerning to traceability aspects.
Based on that, all required links between the arte-
facts of the UP activities of requirements engineering
and design are defined by providing a traceability link
model. Additionally, a syntactic and semantic defini-
tion of traceability links is established customized to
the UP’s methods. The analysis of the UP and the
customisation of the traceability concept are performed
during practical development projects. As results of
these works, rules for the verification of traceability
links have been established.

2. Related Work

An overview of research topics, results and open is-
sues in the field of traceability was given in a former
publication [6]. In this paper according to the specific
topic, three studies concerning traceability frameworks
have to be investigated in particular.

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.342

701

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.342

701

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.342

700

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.342

700

Letelier [5] offers a metamodel for requirements
traceability in UML-based projects. He gives an ex-
ample of the usage in a UP project. The author is fo-
cusing on a general traceability model and gives advise
on how to customize it using UML mechanisms. By
keeping the model generally usable, it is not possible
to define rules and activities for the creation, verifica-
tion and the update of links, which could be performed
(semi)automatically by a tool.

Spence and Probasco [8] discuss several alternatives
for traceability between requirements. The paper is
focused on the UP. The authors do not give answer the
question how the transition to analysis and design and
the following development steps should be traced.

Based on the analysis of industrial software develop-
ment projects Ramesh and Jarke [7] define two meta-
models for traceability. The authors differentiate low-
end and high-end users of traceability. Correspond-
ingly they provide a simplified and a full version of their
metamodel. Furthermore, they establish a predefined
standard set of link types. The authors focus especially
on project management and on organizational needs of
traceability. They do not solve the problem how trace-
ability can be established in analysis and design.

3. Traceability

Traceability is the ability to follow and recover the
development steps of a system based on the connection
between inputs or stimuli of every development step
with its products. These products, later called arte-
facts, are the inputs of next development steps. This
leads to a graph of dependencies, which shows the re-
alization of the systems requirements within the devel-
oped system.

Types of Traceability Links. There is a broad va-
riety of types and concepts related to traceability, e.g.
the concept of dependencies in UML and its extension
in SysML [9]. For categorization purposes we intro-
duce the notion of a traceability link type. A trace-
ability link type classifies the relationship between two
connected elements and/or the development activity
for the generation of the destination element from the
source element. Using types of traceability links aims
to minimize the necessary number of different rules for
establishing and checking of links. It is not necessary
to find rules for every possible combination of source
and destination elements, type-based rules can be ap-
plied instead. Based on our research we establish the
following four types of traceability links as the basic
ones:

• Refinement (�refine�) – in accordance with the
level of detail of the connected objects (e.g. be-
tween an analysis and a design object),

• Realization (�realize�) – the dependent object rep-
resents a part of the solution to the problem de-
scribed with the independent object (e.g. between
a use case and an analysis class),

• Verification (�verify�) – of behaviour and prop-
erties of the developed solution or its parts (e.g.
between a use case and a test case) and

• Definition (�define�) – of objects (e.g. between a
glossary item and its usage in one of the models).

Traceability Link Representation. In the UML
traces are defined as a special kind of dependency.
Therefore, the same graphical representation is used:
a unidirectional arrow, enhanced with the stereotype
�trace�. For a simple dependency the arrow is directed
from the dependent (destination) to the independent
(source) element e.g. an analysis object is connected
toward a use case. The graphical direction of the trace-
ability link does not exclude its usage in both direc-
tions, forwards and backwards.

4. The Unified Process UP

Software development processes consist of activities
and artefacts leading from requirements to the systems
implementation. The handling of traceability links can
be the more tool supported the more the acts of a de-
veloper correspond to the activities of a method. It
is possible to apply traceability rules to these activi-
ties. The better and the more fine-grained the pro-
cess description is the easier is the definition of rules
for creating and updating traceability links. Therefore,
the approach for traceability proposed in this paper is
presently focused on the Unified Process, because it is
concrete, widely used and well described.

In the UP several ancestor methods like Object-
Oriented Software Engineering OOSE [4] have been
combined based on best practices and experiences. The
UP is available as commercial and as open-source ver-
sion. The UP process model, the activities of the
method and the composition of the artefacts are de-
scribed detailed enough for the aimed level of support.
The UP can be customized and concretised to partic-
ular projects and companies needs. The UP is an in-
cremental and iterative process; it is based on use case
and architecture centric development of software. The
incremental, iterative approach can be seen as a two-
dimensional scheme as described in [1].

702702701701

Define Feature

Create Glossary Item Create Domain ObjectCreate Use Case

Identify Analysis Classes

Describe InterfaceDefine Test Case

Create Use Case Realization-Design

Capture Non-Functional Requirements/Contraints

Create Design Classes

Create Use Case Realization-Analysis

Refine Analysis Relations

Vision Document

Supplementary SpecificationInterface ModelUse Case Model Test Model Domain Object ModelGlossary

Use Case Realization-AnalysisAnalysis Model

Design Model Use Case Realization-Design

Create Subsystem/Component

Figure 1. Development Activities of the UP Workflows: Requirements and Analysis/Design

4.1. Development Activities and Relations
Between Model Elements

In this section a model of useful traceability links
for the UP is proposed. At first each of the UP de-
velopment activities is briefly explained and necessary
traceability links between the involved artefacts are es-
tablished. To give an overview, the major traceability
related development activities of the UP are shown in
Fig. 1 by an activity diagram. It has to be pointed out
that a sequential representation of activities is used for
better visualisation. However, in practice the activities
are carried out incrementally in several iterations.

4.1.1 Development Activities during the Re-
quirements Workflow.

Elaboration of the Vision Document. Based on a
natural-language text document of stakeholder require-
ments (needs), the system features have to be defined.
The needs and the realizing features are connected by
explicit traceability links of the type �realize�.

Creating the Glossary and the Domain Object
Model. Parallel with the vision document the glos-
sary elaboration has to be started by defining and en-

tering all domain-relevant terms. Each new term iden-
tified during an activity must be defined, before it can
be used. The developer has to ensure that there is not
already another term defined for the same issue. If the
new term has relations to other terms it has to be mod-
elled in the DOM as well. Additionally, every term has
to be categorized by one of the following types: actor,
object or process. These categories refer to the type
of term used within the before introduced templates
and for the naming of model elements. By knowing
the type of a term, it is possible to verify its correct
usage within a text template or within an identifier of
a model object.

Development of the Use Case Model. As first
step the border of the system and the interacting ac-
tors must be specified. The actors have to be defined
in the glossary as well. The next step is to find use
cases for the before defined features. Between use cases
and features m:n relations can exists, that means that
several use cases can refine one feature or that several
features are refined by one use case. Features and use
cases are connected by an explicit traceability link of
type �refine�. The association between an actor and
a triggered use case can lead to an implicit traceabil-
ity link. The use case specification should be enhanced

703703702702

with test case specifications for the verification of its
realization. Use cases and test cases have to be con-
nected by an explicit traceability link of type �verify�.
The relation is of m:n multiplicity.

Development of the Interface Description. Tex-
tual documents, GUI-prototypes or models can be used
for interface descriptions. The description of an inter-
face contains associations between actors and use cases,
in which an interface is used, represented by an explicit
traceability link of type �refine�.

4.1.2 Development Activities of OO-Analysis.

Identification of Analysis Classes. In the analysis
phase classes and packages are used for modelling the
structure of the system. In the UP analysis classes are
distinguished as interface, entity or control class. There
are different approaches for finding analysis classes.
The examination of nouns and verbs in use case de-
scriptions is a widely accepted technique. Nouns are
candidates for classes or attributes and verbs are can-
didates for responsibilities or methods. Another way to
find classes is the CRC-card method. The particular
choice for a method is determined by the project. Ev-
ery use case is connected by explicit traceability links
to the analysis classes, which realize its flow. Each class
can be connected to several or only one use case and
vice versa. That means a class can realize more than
one use case.

Performing of Use Case Realizations-Analysis.
In this step the cooperation between the different anal-
ysis classes has to be described by UML interaction
diagrams. For each use case at least one diagram is
modelled, representing communication and messages
between instances.

The interaction diagrams have to be connected with
the related use case, using an explicit traceability link
of type �realize�. It is also possible to connect them im-
plicit by using consistent diagram names. By drawing
messages between classifiers in interaction diagrams an
implicit connection between the corresponding classes
is established. This connection can be used to verify
associations in the class model between these classes.

4.1.3 Development Activities during Design.

Creation of Design Classes (Design Model).
The design model is a refinement of the analysis model.
As a first step all elements of the analysis model have
to be copied. The copied elements are considered as
initial design model. It is possible to connect analysis

and design elements automatically while copying them
by explicit traceability links of type �refine�.

During the design phase almost all elements of the
initial design model are detailed, enhanced and refined.
Doing this the traceability links between elements have
to be changed or extended. Newly added design ele-
ments have to be connected to analysis elements. Even-
tually, every analysis package has to be connected to
one or more design subsystems, each analysis class has
to be connected to one or more design classes and/or
interfaces and each use case realization-analysis hast to
be connected to a use case realization-design.

Refinement of Analysis Relations. During design
the relations established between analysis objects have
to be further refined and adopted to the chosen pro-
gramming language. It is necessary to connect the orig-
inal relation in the analysis model and the replacing
elements in the design model by explicit traceability
links of the type �refine�. If an analysis class is re-
alized in the design model by an attribute of a class
or vice versa, this activity has to be documented by a
traceability link as well.

Establishment of Subsystems and Components.
The functional decomposition of the system into pack-
ages is started in the analysis phase and completed
during the design phase. The parts of the system,
separated by subsystems and their components com-
municate only using defined interfaces. Subsystems re-
fining an analysis package are connected to this pack-
age by explicit traceability links of the type �refine�.
New introduced components and subsystems in the de-
sign model to fulfil non-functional requirements or con-
straints are connected by links of the type �realize�.

Establishment of Use Case Realizations-Design.
During analysis the use case realizations are used to
answer the question, what the system has to do to
realize a use case. During design these diagrams are
further refined to show how it is to do. The design
diagrams have to be connected by explicit traceability
links of type �refine�with the corresponding diagram in
the analysis model. Additionally established diagrams
have to be connected by traceability links of the type
�realize�with the related use case.

4.1.4 Activities of Implementation.

The design model is transformed into executable code
during implementation. If it is possible to generate the
source code automatically or a developer has to imple-
ment it, depends on the level of detail of the design

704704703703

Glossary

Glossary Item

Textual Glossary

Object

Domain Object ModelInterface Description

Interface Model

Need

Vision Document

Feature«realize»

Requirements Model

Software Requirement

Supplementary Specification

Actor

Use Case Model

Use Case

Software Requirement Specification

«refine»

«refine»

«refine»

«refine»

Test Case

Test Model

«verify»

Implementation Artifact

Implementation Model

Analysis Model

Analysis Object

Class

Relationship

 Package

Use Case Realization

Architecture Description

«realize» «realize»«realize» «realize»

Design Model

Design Object

Class

Relationship

 Component

Use Case Realization

«refine»«refine»

Implicit Traceability Link**

Explicit Traceability Link«realize»

*

* According to their type, glossary
items can be used within all
other artefacts, e.g. for use case
descriptions, software requirements
and the naming of classifier.

** Implicit traceability links are
references between two model
elements. They have no further
properties and no direction.

Figure 2. Traceability Link Model for the UP Workflows Requirements, OO-Analysis and Design

model. If the source code is generated automatically,
no additional traceability is necessary. The used tool
usually offers all functions necessary to follow a design
object into implementation. If a developer is doing the
transformation manually, it is possible to use implicit
traceability by consistent naming of the implementa-
tion objects otherwise explicit traceability links have
to be used. Traceability links are stored in the source
code as annotations.

4.1.5 Flow Description by Activity Diagrams
and State Machines.

Activity diagrams and state machines allow a mod-
elling of processes without a prior definition of the
structure of the system. Activity diagrams are espe-
cially used to describe flows, e.g. use cases, informa-
tion flows between use cases (as interaction diagram)
or methods and algorithms in the design model. State
machines allow to model reactive objects, like classes,
use cases, subsystems or whole systems. Both diagram
types can be used in various situations within the de-
velopment process, that’s why they are discussed sep-
arately.

If an activity diagram or a state machine is used to
describe a use case, a class or another model element,
then both, the diagram and the model element have
to be connected by an explicit traceability link of the
type �refine�. Alternatively, a consistent naming of the
diagrams and the corresponding model element can be
used for implicit traceability.

4.2. Verification of Traceability Links

The established traceability links have to be verified
for completeness and correctness. This is necessary to
ensure the usability and to avoid a decay of traceabil-
ity information after changes to the connected mod-
els. In the following, rules for a validation are defined.
Presently this set of rules as a first step covers the val-
idation of the pure existence of traceability links. For
reaching this aim the analysis of terms used in identi-
fiers, the evaluation of relations in the class model or
the analysis of use case descriptions is necessary. One
example for a rule set introduced in Table 1 is: each
use case has to be realized by at least one analysis
class. This rule verifies the existence of at least one
traceability link between both model elements. But it

705705704704

is not sufficient for the verification of correctness. Ap-
proaches for further validations offer the usage of terms
in the model and the validation of plausibility between
diagrams. For example, the analysis of terms means
to search for glossary items of type object in the use
case description and try to relate them to the identifier
of the linked analysis classes and their attributes. Dif-
ferences between both should lead to a notice for the
developer.

Plausibility check between different diagrams
means, that for each use case triggered by an actor, an
analysis class of type interface has to be defined. An-
other case considering use case realizations, the classes
of all instances within the use case realization have to
be linked to the use case, because they realize it. In
the following the so far known rules are listed:

Table 1. Traceability Link Verification Rules

Need ←�realize�– Feature (m:n)
1. Each need is realized by at least one feature.
2. Each feature is realizing at least one need.
Feature ←�refine�– Use Case (m:n)
1. Each feature is refined by at least one use case.
2. Each use case is refining at least one feature.
Use Case/Actor-Assoc. ←�refine�– Interf. Descript. (m:n)
1. Each association between a use case and an actor is

refined by at least one interface description.
2. Each interface description is refining at least one

association between use case actor.
Actor – – – – – Use Case (m:n)
1. Each actor is associated to at least one use case.
2. The associated actor(s) are the same as the actors

used in the description of the use case.
Use Case ←�refine�– Suppl. Software Requirement (m:n)
1. Each software requirement (non-functional requirement,

constraint) is refining at least one use case.
Use Case/Suppl. Softw. Req. ←�verify�– Test Case (m:n)
1. Each software requirement is verified by at least one Test Case.
2. Each Test Case is verifying at least one use case

or software requirement.
Glossary – – – – – DOM (1:0,1)
1. Each domain object is defined in the glossary.
Use Case ←�realize�– Analysis Class (m:n)
1. Each use case is realized by at least one analysis class.
2. Each analysis class is realizing at least one use case.
Use Case ←�realize�– Use Case Realization-Analysis (1:n)
1. Each use case realization is realizing one use case.

While applying the defined rules, one has to keep
in mind that the UP is an incremental and iterative
process. That means these rules will raise warnings as
long as the model is not fully completed. However it
is possible to check all chains of artefacts to the last
existing artefact and all loose artefacts. An example
for a loose artefact is a use case, which is realized by
an analysis class, but does not refine any feature. This
should lead to a warning for the developer.

The rule set is going to be expanded during the next
steps of the project towards powerful support for de-
veloper.

5. Conclusions and Future Work

Traceability links improve the maintainability and
support evolutionary development processes e.g., by re-
covering former development activities, especially for

the case of changing requirements. In this paper the
activities of a software process model have been en-
hanced by definitions and rules for traceability links to
reduce the effort and to enable tool support. A model
for traceability links has been introduced which can be
tailored if necessary. Based on the development activ-
ities and artefacts, a set of rules for the verification of
the traceability links has been developed.

As a part of our ongoing work, the developed trace-
ability link model is currently completed and refined to-
wards a complete coverage of the methodical activities,
and to facilitate appropriate tool support for the cre-
ation, update and verification of the traceability links
with a minimum interaction with the developer.

Other development methods and processes like Fu-
sion [2] and Refactoring [3] are currently investigated
aiming towards a broader applicability of the traceabil-
ity model. To provide tool support, plug-ins for exist-
ing UML tools are currently developed. These plug-
ins will support the developer by the establishment of
traceability links in the background while modelling,
and by maintaining the consistency of existing links
during changes of artefacts.

Acknowledgments This work is partly funded
by the German Research Foundation (Deutsche
Forschungsgemeinschaft DFG) under id Ph49/7-1.

References

[1] J. Arlow and I. Neustadt. UML 2 and the Unified Pro-
cess Second Edition: Practical Object-Oriented Analysis
and Design. Addison-Wesley, 2005.

[2] D. Coleman. Object-Oriented Development: The Fusion
Method. Prentice-Hall, 1994.

[3] M. Fowler. Refactoring: Improving the Design of Exist-
ing Code. Addison Wesley, 1999.

[4] I. Jacobson. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison Wesley, Reading,
Massachusetts, June 1992.

[5] P. Letelier. A framework for requirements traceability
in UML-based projects. In Proc. of 1st TEFSE, Edin-
burgh, UK, Sept. 2002.

[6] P. Maeder, M. Riebisch, and I. Philippow. Traceabil-
ity for managing evolutionary change. In Proc. of 15th
SEDE, Los Angeles, USA, pages 1–8. ISCA, 2006.

[7] B. Ramesh and M. Jarke. Toward reference models of
requirements traceability. IEEE Trans. Software Eng,
27(1):58–93, 2001.

[8] I. Spence and L. Probasco. Traceability strategies for
managing requirements with use cases. Rational Soft-
ware White Paper TP166, IBM, 2000.

[9] T. Weilkiens. Systems Engineering mit SysML/UML.
dpunkt.verlag, 2006.

706706705705

