Usability-Focused Architectural Design
for Graphical User Interface Components

Stephan Bode, Matthias Riebisch
Technical University of Ilmenau
{stephan.bode, matthias.riebisch} @tu-ilmenau.de

Abstract

Although in recent years some progress in software en-
gineering (SE) and human-computer interaction (HCI) has
been made, there is still a gap between the two research
areas and their methodologies. Today, from the engineer-
ing point of view, the specification and design of graphical
user interfaces and their corresponding software architec-
tural components is still a challenging task. The advanced
component design methods are not yet integrated with HCI
design methodologies to bridge the two fields. This paper
presents a methodology, which extends a category-based
software architectural design method by integrating HCI
approaches. The methodology aims at a better design of
Graphical User Interface (GUI) components in terms of
both the architectural quality and usability. The method-
ology has been successfully evaluated in the development
and partial reengineering of an e-commerce system.

1. Introduction

During the last years, the requirements for flexibility and
usability of software systems have increased significantly,
for example because of their bigger value for businesses
and service. On the other hand, the systems’ complexity
has grown dramatically. As a consequence, the demand for
software architectures and especially for architectural qual-
ity has intensified. Concerning the quality of software archi-
tectures several non-functional properties have to be consid-
ered, e.g. maintainability, efficiency, reliability, security, or
usability [10]. Since the acceptance by the users is critical
for the success of many business-critical software systems,
usability has got more and more attention. Unfortunately,
the software engineering research has not focused enough
on usability.

Usability is defined as a property describing the ease-of-
use of systems. In the research field of human-computer in-
teraction (HCI) several methods for improving this property
during the design process have been developed. Already in

the early 1990s Nielsen and Shneiderman decomposed us-
ability into several subgoals—Ilearnability, task efficiency,
memorability, low error rate, and user satisfaction—and
gave advice for a high quality user interface design [16, 17].
Nevertheless, many existing interactive software systems
fail to provide good user interfaces and the way they work is
unpleasant for their users. Usability engineering as an inte-
grated methodology becomes more and more important. In
this paper, we develop contributions to usability engineer-
ing, which are related to the field of software architectural
design.

Current software engineering (SE) methods consider use
cases as the primary artifacts representing user require-
ments. However, regarding usability they insufficiently rep-
resent the design data for user interfaces. Furthermore,
the user interface design is regarded as a secondary activ-
ity, separated from object-oriented analysis [4, 21]. Design
methods of the HCI field, on the other hand, focus on us-
ability. However, they are not well integrated into SE meth-
ods addressing a high architectural quality, entitled as gap
between object-oriented (OO) and HCI methods; see [21].

Software architectures for systems with high complex-
ity and a strong demand for flexibility are mostly built
according to the component-based software engineering
(CBSE) approach [20]. In this approach components are
the main building blocks of the software architecture. The
CBSE approach has superseded pure OO development tech-
niques, but still has shortcomings in addressing user con-
cerns for interactive systems. There are no widespread
CBSE methodologies that deal with both, building high
quality software systems, and also concentrate on the us-
ability of a software system—which mainly depends on a
good user interface design. Quasar [19, 18] can serve as
an example, because it is an advanced method for building
component-based software architectures, which assures im-
portant architectural quality criteria like separation of con-
cerns, high cohesion, and low coupling. However, Quasar
gives insufficient assistance for the GUI design. In this pa-
per we introduce an integrated approach for the specifica-
tion of GUI components as an extension of Quasar. For the

integration of HCI approaches to a comprehensive method-
ology, usability goals and GUI design principles have to be
considered, for example the addition of user interface pro-
totypes into the development life cycle.

For the evaluation of our approach we applied it in the
development of an e-commerce trading system. The system
named Vendorbase manages vendors, contracts with them
including discounts, controlling and calculation. The sys-
tem is of a middle size and is based on a framework for
providing services for different architectural layers. Herpel
[9] performed a reengineering of the business logic layer,
while the GUI components were developed by Bode [1], to-
gether with an evaluation of our methodology. In this paper,
parts of this project are used as a case study for illustration
purposes.

The contribution of this paper consists in the integration
of a high quality design method for software architectures
with steps and models regarding the HCI design. The re-
sulting extensions to the method represent the architectural
principle of implementing non-functional requirements by
functional solution elements. From the point of view of us-
ability engineering, the resulting methodology constitutes
a contribution related to the field of software architectural
design.

The rest of the paper is organized as follows: The next
section introduces the design methodology Quasar. Section
3 discusses some related HCI approaches. Section 4 in de-
tail illustrates the steps of our methodology with the case
study of the e-commerce system. Finally the last section
states some conclusions and issues for future work.

2. The design methodology Quasar

The architectural design methodology Quasar—an
acronym for QUAlity Software ARchitecture—was devel-
oped in industrial practice and combines Best Practices
and principles for a good component-based software archi-
tectural design. We consider the Quasar architectural de-
sign methodology as the best one for component-based sys-
tems. It integrates the contributions of all preceding OO
design methods. Beyond this, it achieves an improved de-
composition of the software into components, because so-
called software categories are introduced to reduce depen-
dencies by a separation according to the responsibilities and
the knowledge covered by the components [19, 18]. The
improved properties regarding modularization, decoupling
and separation of concerns increase a system’s architec-
tural quality. Quasar’s design methodology contributes to
evolvability, maintainability and robustness. It uses the cat-
egories to structure components according the requirements
and thus to bridge the gap between analysis and architec-
tural design [1, 22].

According to Quasar, all components are based on the

standard categories 0, A, T, and R. For a concrete applica-
tion design, these categories are therefore refined in a cat-
egory model. Software of the 0-category is neutral con-
cerning the application’s functionality and independent of
technical aspects. Modules, classes and interfaces with uni-
versal applicability belong to it, e.g. class libraries like
the Java Runtime Environment. O-software has a high de-
gree of reusability, a low probability of changes and it cre-
ates no undesired dependencies. A-components are appli-
cation specific but independent of technical issues. They
contain the application logic and entity classes for the real-
ization of the domain functionality. T-components deal with
the technical aspects of the system, for example the imple-
mentation of an application programming interface (API)
for database connectivity or an API for the GUI. They are
independent of concrete application functions. R-software
refers to representation; it establishes a connection between
A- and T-components, however, minimizing the dependen-
cies between them. This is achieved by transformation, for
example to external data presentation formats like XML.
Other ways of mixing A and T, e.g. the so-called AT-
software, are prohibited, because they would re-introduce
stronger dependencies.

The Quasar methodology defines a sequence of steps
for the design of components and their interfaces. In [1]
we have developed it further to establish three basic steps:
component identification, interface specification and in-
ner structuring. For the design of the components’ inter-
faces, their dependencies are analyzed to distinguish be-
tween loose and tight coupling. However, the methodology
does not provide enough guidance for designers and devel-
opers for the implementation of non-functional, quality fea-
tures.

For user interface design, Quasar provides a client ar-
chitecture as reference architecture for graphical user inter-
faces [18, 6, 7, 8], which is the basis for the technical spec-
ification of the GUI components and their programming
interfaces. Although this client architecture simplifies the
GUI development by providing a framework for GUI com-
ponents, there are some deficiencies concerning the GUI
component identification. Therefore, in this paper we apply
the Quasar methodology and extend its component design
steps by usability engineering for user interface design.

3. Related user interface design approaches

In the field of HCI several excellent methods and tech-
niques regarding usability have been developed. The ones
based on use cases offer the highest potential for a seamless
integration within widely accepted SE approaches.

Use case storyboards are part of the GUI design method
of Kruchten et al. [13] used in the Rational Unified Process

(RUP). This design method is use case-based and thus fits
well into our methodology. It consists of the two activities
user interface modeling and user interface prototyping. For
user interface modeling the designer uses the artifact named
use case storyboard.

A use case storyboard describes a logical and concep-
tual view of how the user interface provides a use case and
which interactions occur between the software system and
its users. Such a use case storyboard consists of several
parts: a flow of events-storyboard as a high-level textual
description of the user-system interaction, as well as inter-
action and structure diagrams, and further usability require-
ments. A user interface prototype is an initial model of the
user interface and is expressed by paper sketches, pictures,
bitmaps from a drawing tool, or even an interactive exe-
cutable prototype. We use this approach for our component-
based methodology because it allows a consideration of user
needs and usability requirements early in the development
life cycle. However, we had to adjust the method for the use
of components instead of RUP’s boundary classes.

User Interface Modeling (UIM) is a user-centered de-
sign method developed by Gulliksen et al. [5] that empha-
sizes user participation stronger than pure use case-based
approaches. UIM specifies an actor model, a goal model,
and a work model as extension to the use case model. It is
based on the workspace metaphor stated by Lif et al. [15].
The basic idea of the metaphor is a one-to-one mapping be-
tween work situations of actors and a workspace in the user
interface. So an actor has access to all necessary informa-
tion needed in one work situation to achieve his goals. We
use this workspace metaphor in our methodology because it
is as an important tool to effectively tailor the hierarchy of
GUI components according to user needs. However, UIM
does not describe steps for creating interfaces, because GUI
design is seen as a creative process that cannot be described
in a method.

Virtual Windows are a way to design user interfaces
presented by Lauesen [14]. His comprehensive method-
ology helps to overcome the semantic gap between soft-
ware engineering and HCI. Lauesen shows a systematic
way to design the GUI and is very concerned with usabil-
ity. Unfortunately, this holistic methodology does not con-
sider high-quality component-based software architecture
design. However, Lauesen states some valuable rules and
guidelines for the design of his Virtual Windows. These are
[14]:

1. Few window templates.

2. Few window instances per task.

3. Data in one window instance only.
4. Rooted in one thing.

5. Virtual windows close to final screen size.
6. Necessary overview of data.

7. Things—not actions.

8. All data accessible.

These rules and some further principles for control ele-
ments in user interfaces can perfectly be used for the design
of GUI components, too. This is the reason why we adopted
them for the UI design of our methodology.

4. Designing GUI components

In this section we describe the design activities for com-
ponents and their programming interfaces of the GUI. Be-
cause not covered by Quasar, we introduce the identifica-
tion of GUI components. Quasar defines a fundamental se-
quence of the three design steps for business logic compo-
nents: component identification—interface specification—
inner structuring. For the GUI related components we adopt
both, these steps and the UI modeling approaches presented
in the last section. This extension for GUI components rep-
resents a contribution of this work for supporting a system-
atic implementation of usability in component-based qual-
ity software architectures.

Preceding design activities. In advance to the GUI de-
sign steps the designer must perform some activities ac-
cording to the Quasar method. First of all, he specifies a
use case model with textual use case descriptions, which
for example can be achieved via the use case templates of
Cockburn [3]. After the specification of the use cases the
architectural design follows. The GUI design can be ac-
complished parallel to or after the design of the application
kernel. Only the programming interfaces between both have
to be specified before or in parallel. One constraint for the
identification of GUI components consists in the following
rule: Every concrete use case that is connected with an ac-
tor must be assigned to a particular user interface, but one
user interface can handle multiple use cases. To support the
establishment of this mapping and, thus, the identification
of the right GUI components, the following steps are per-
formed. Starting from the use cases the software designer
decomposes the systems functionality by building a func-
tion tree or feature model [12]. Then, the designer builds
the category model to separate the concerns [18, 9, 1]. All
artifacts—the use case model, the function tree, and the cat-
egory model—serve as input for the following GUI design
steps.

4.1. GUI component identification

For the identification of the GUI components according
to the client architecture of Quasar, the dialogs representing

the user interface have to be identified. Therefore, the func-
tional decomposition of the software system constitutes a
first point of reference. As explained above, the criteria for
GUI component identification are not defined by Quasar.
So we introduce here the use case storyboard approach by
Kruchten et al. [13] to enable a consideration of the us-
ability goals. Thus, the textual use case descriptions from
the use case model are extended by usability requirements
building a so-called flow of events-storyboard, which covers
user needs and user-system interactions. Then, the flow-of-
events storyboard is analyzed for information concerning
the visualization. As an example, each entity object in an
information system that is mentioned in the flow of events-
storyboard must be visualized via a dialog. In order to fulfil
the usability subgoals fask efficiency and learnability the to-
tal number of dialogs should be minimized. For that reason,
common dialogs have to be identified for reuse in several
use cases. In the case study we identified the MainDialog
that serves as a root for all other GUI components and is
reused in all use case storyboards. This issue shows the
integration of Lauesen’s rules listed in section 3.

e T
O

| VendorDialog il |

Y

| VendorDataDialog il |

| ContractDialog il |

| ContractDﬂtaDialogil |

1. Choose Vendor Display

6. Change Display {l
S > MainDialog

2. Choose Vendor
‘L 1.1 Show Dialog

3. Change Scale of Discount
VendorDialog il

i' 2.1 Show Vendor Data

4. Edit Vendor Data

5. Create Vendor [
— —> |

VendorDataDialog {l |

Figure 1. Use case storyboard diagrams.

Next, the dialogs are arranged within a hierarchy of
dialogs. Originally, the use case storyboards dealt with
boundary classes in its diagrams due to the use in the RUP.
Instead of Kruchten’s classes we introduce components,
which can handle similar responsibilities. In this way the
approach fits well in the component-based methodology.
A component diagram is created for showing a structural
view with aggregations of subdialogs (Figure 1, top). As
a next step, the communication between the dialogs is de-
fined based on the sequence of events of the flow of events-
storyboard. The resulting communication diagram is used
for the assignment of the responsibilities to the GUI com-

ponents (Figure 1, bottom) and as a behavioral view to rep-
resent the interactions between them. All GUI components
can exist independently of each other and communicate via
a service hierarchy provided by the dialog frame of the
client architecture of Quasar. As a rule, the identified GUI
components in these diagrams have to cover all functional
features from the function tree to enable an access to every
use case.

In our case study the VendorDialog in Figure 1 is ar-
ranged as a subdialog of the MainDialog. The dialogs are
structured in a hierarchy as shown in the component dia-
gram in Figure 1. In the case study, the workspace metaphor
[15]is chosen as a principle for the usability subgoal task ef-
ficiency. Following this principle, the VendorDialog and the
ContractDialog are designed for an independent use. The
workspace metaphor causes a similar arrangement of the
ContractDialog in the dialog hierarchy, and later a similar
layout in relation to the VendorDialog (Figure 2).

4.2. Definition of the component interfaces

In this step we apply the Quasar client architecture. It
defines the style of interaction between the dialogs by ser-
vices, and a dialog frame for managing it. For the interac-
tion between the dialogs and the dialog frame special inter-
faces have to be defined—IDialog and ISession (Figure 2).

The interface design of the GUI components consists of
two activities: a) interface design to fulfill the architectural
style mentioned above; b) specification of the required inter-
faces according to the provided interfaces of the application
kernel, where the business logic is implemented.

In the case study this is illustrated in the left part of Fig-
ure 2. The interfaces IDialog and ISession are added to all
GUI components (activity a). Since the MainDialog consti-
tutes a super-dialog for the VendorDialog, the IEmbedTool-
barButtonService is added for embedding a button to the
MainDialog’s toolbar. Furthermore, services for accessing
the details of a selected vendor are introduced. The ISe-
lectedltemDisplayService and the IOverviewUpdateService
for this purpose are shown between VendorDialog and Ven-
dorDataDialog in the left part of Figure 2. Moreover, the re-
quired interface IVendorManagerService is assigned to the
GUI components as a service-oriented interface that is pro-
vided by the application kernel (activity b).

4.3. The definition of the GUI components’
inner structure

According to the client architecture of Quasar, GUI com-
ponents are separated into two parts, the dialog kernel be-
longing to category A and the presentation belonging to R.

The dialog kernel part defines user actions, dialog states,
and the data to be presented. The presentation builds the

B

GUI Components with Interfaces _ .7
IDialog -7
~ MainDialog {l
/
ISession /l
oy IEmbedToolbarButtonService PR
IDialog __,-—""
N VendorDialog E —(
./
ISession (g IVendorManagerService
1OverviewUpdateService O o ISelectedItemDisplayService
IDialog T
~N VendorDataDialog El _______
<
[Session /l\ .
' IVendorManagerService

MainDialog (9 (=)E9
S
ContractDialog E]
I VendorDialog Q
Vendor Overview
VendorID VendorName Adress Confact A
v
Vendor Data Details
Vendor D 12435 Discount Type: v
R
Name: Adress: ~
Contact v
VendorDataDialog &J [L]

Menu

Figure 2. Correspondence between component structure and the visual dialog structure.

visual layout, connects user actions with GUI framework-
events—so-called action binding—and transforms the data
of the dialog kernel to the formats used by the GUI
framework—so-called data binding.

In the case study, the presentation as the second part of
the VendorDialog manages a Create button, among others.
This means it has to connect the button to the corresponding
user action; this is action binding. An example for data
binding is to connect the name of the vendor, held in the
dialog kernel, with the corresponding text field.

The application of the client architecture improves the
architectural quality by separating the concerns while spec-
ifying the components and their categories precisely, and by
using loose coupling through services. This for example en-
ables the developer to easily exchange the GUI framework
by modifying the presentation parts of the GUI components;
while the dialog kernel parts with their application specific
structure and behavior are preserved.

4.4. Developing the visual representation

In the last step, the designer decides about the visual lay-
out and the control elements used. In this step usability is of
particular importance. Therefore, several aspects of quality
requirements as well as aesthetics, style and fashion have to
be considered.

While designing the layout of the GUI many deci-
sions have to be made on the arrangement of GUI ele-
ments and dialogs. To achieve the usability subgoals, the
GUI design principles have to be weighed against each
other. For the principles, which represent non-functional re-
quirements, suitable functional solutions have to be found,

thus, Bosch’s architectural design method [2] is applied.
All those usability-engineering decisions about solutions
are traced back to the considered principles and further
to the main goals. In the following the usability princi-
ples workspace metaphor, consistency, clarity, aesthetically
pleasing, balance, and symmetry are considered.

A way to elaborate a good visual layout is to build proto-
types and to discuss them with prospective customers and
users. This is intended by the use case storyboards ap-
proach from section 3, too. While performing its user in-
terface prototyping activity all primary windows must be
identified. The identified GUI components are candidates
for the primary windows. However, the navigation path be-
tween the windows should not become too long. This again
corresponds to Lauesens rules from section 3, which can be
a helpful utility for the designer when prototyping the user
interface.

For our case study Figure 2 shows a scheme of the vi-
sual layout with its GUI elements for the GUI components
MainDialog, VendorDialog, and VendorDataDialog. In or-
der to realize a high task efficiency and learnability, the
principles workspace metaphor and consistency were im-
plemented using non-modal dialogs with a similar layout
for VendorDialog as well as ContractDialog. Furthermore,
shortcuts were included for advanced users. We decided to
visualize the VendorDataDialog as an integrated panel in-
stead of a separate subwindow as shown in Figure 2. This
supports both clarity and learnability.

The usability subgoal user satisfaction especially can
be achieved by following the HCI principles aesthetically
pleasing using balanced and symmetric dialog layouts. In
support of these principles, JGoodies [11] is utilized in the

case study as a technical component. It helps to accomplish
the principles, for example by paying special attention on
element alignment when using Java Swing.

5. Conclusion and future work

This paper presents a new design methodology for
component-based software architectures targeting both on
architectural quality and usability aspects. Its innovation is
seen in an extension of the—in the opinion of the authors—
most progressive architectural design methodology Quasar
by HCI methods and techniques. The strengths of the
Quasar method consist in the modularization, the decou-
pling and the independency achieved by distinguishing soft-
ware by categories, leading to a high architectural quality.
Furthermore, it provides an architectural style for the inter-
face design of components and a process for the architec-
tural design, summarizing other new approaches. Since it
does not sufficiently support the HCI design, the most ade-
quate design methods from this field have been integrated,
e.g. the design approach use case storyboards by Kruchten
et al. and the workspace metaphor by Lif et al. Moreover,
several principles and guidelines concerning the usability of
a GUI have been integrated, for example those of Lauesen.
As a result, the methodology assures the development of
components, which offer both a high architectural quality
and a high usability. Additionally, the detailed description
of the design activities facilitates the traceability of the de-
sign decisions.

The assumptions and limitations of the paper are related
to an application for the design of client server systems
rather than web services. Requirements are supposed to be
specified as use cases. Addressees of the method are soft-
ware designers and HCI developers. The paper describes
especially those architectural design steps in detail that are
related to the user interface.

Based on this work researchers can also consider to in-
tegrate other HCI methods to enhance the methodology
for usability or consider its improvement for further non-
functional properties. A classification of HCI principles and
technical solutions according to their support for goals and
subgoals related to usability would be useful for a system-
atic design. Another issue of future work consists in an ex-
plicit support for the establishment of traceability links for
all design activities. For an overall traceability, the method-
ology’s detailedness facilitates a tool support for an auto-
mated establishment of traceability links.

References

[1] S.Bode. Traceability und Entwurfsentscheidungen fiir Soft-
warearchitekturen mit der Quasar-Methode. Diploma thesis,
Technical University of [lmenau, Ilmenau, Germany, 2008.

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]
[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

J. Bosch. Design and use of software architectures:
Adopting and evolving a product-line approach. ACM
Press/Addison-Wesley, New York, NY, USA, 2000.

A. Cockburn. Writing Effective Use Cases. Addison-Wesley,
Boston, MA, USA, 2000.

L. L. Constantine and L. A. D. Lockwood. Structure and
style in use cases for user interface design. In van Harmelen
[21], chapter 7, pages 245-279.

J. Gulliksen, B. Gransson, and M. Lif. A user-centered
approach to object-oriented user interface design. In van
Harmelen [21], chapter 8, pages 283-312.

M. Haft, B. Humm, and J. Siedersleben. Quasar reference
interfaces for business information systems. Technical re-
port, sd&m Research, 2004.

M. Haft, B. Humm, and J. Siedersleben. The Architect’s
Dilemma — Will Reference Architectures Help? In Proceed-
ings Quality of Software Architectures and Software Quality,
Q0oSA-SOQUA, LNCS, pages 106—122. Springer, 2005.

M. Haft and B. Olleck. Component-based client-architecture
(in German: Komponentenbasierte Client-Architektur).
Informatik-Spektrum, 30(3):143-158, 2007.

K. Herpel. Refactoring und Identifikation von Komponen-
ten. Diploma thesis, Technical University of Ilmenau, Ilme-
nau, Germany, 2007.

ISO/IEC 9126-1 International Standard. Software Engineer-
ing - Product quality - Part 1: Quality models, June 2001.
JGoodies. http://www.jgoodies.com/, 2008.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-021, SEI Insti-
tute, Carnegie Mellon University, USA, 1990.

P. Kruchten, S. Ahlqvist, and S. Bylund. User interface de-
sign in the rational unified process. In van Harmelen [21],
chapter 5, pages 161-196.

S. Lauesen. User Interface Design: A Software Engineering
Perspective. Addison-Wesley, Boston, MA, USA, 2005.

M. Lif, E. Olsson, J. Gulliksen, and B. Sandblad.
Workspaces enhance efficiency — theories, concepts and a
case study. Information Technology & People, 14(3):261-
272,2001.

J. Nielsen. Usability Engineering. Interactive Technologies.
Academic Press, Boston, USA, 1993.

B. Shneiderman. Designing the user interface: strategies
for effective human-computer interaction. Addison-Wesley,
Boston, MA, USA, 2nd edition, 1992.

J. Siedersleben. Moderne Software-Architektur: Umsichtig
planen, robust bauen mit Quasar. dpunkt.verlag, Heidel-
berg, Germany, 2004.

J. Siedersleben (ed.). Quasar: Die sd&m Standardarchitek-
tur. Parts 1 and 2. Technical report, sd&m Research, 2003.
C. Szyperski, D. Gruntz, and S. Murer. Component Software
- Beyond Object-Oriented Programming. Addison-Wesley/
ACM Press, USA, 2nd edition, 2002.

M. van Harmelen, editor. Object Modeling and User In-
terface Design: Designing Interactive Systems. Addison-
Wesley, Boston, MA, USA, 2001.

S. Wendler. Entwurfsentscheidungen bei der Entwicklung
von Software-Architekturen. Diploma thesis, Technical
University of [lmenau, Ilmenau, Germany, 2007.

