
Optimizing Design for Variability Using Traceability Links

Matthias Riebisch, Robert Brcina
Technical University of Ilmenau, Germany

matthias.riebisch|robert.brcina@tu-ilmenau.de

Abstract

Software systems have to provide flexibility by imple-
menting variability. Existing design methodologies do not
support means for optimizing the design for variability and
for measuring the overhead effort. Therefore, the solutions
cannot be optimized regarding a minimal overhead for vari-
ability. Other methods are lacking of a traceability for vari-
ability mechanisms, or do not provide means for measuring
and optimizing solutions. The paper introduces traceability
links for variability with a special emphasis on support for
implementation, build and deployment, and presents guide-
lines for optimizing the design with indicators for evaluat-
ing the results. The feasibility of the approach is shown by
a case study from an industrial setting.

1 Introduction

Software systems in most domains have to provide a
high capability for being changed, e.g. for mobile phones
or business information systems. Changes are frequently
caused by changed customer requirements or by evolving
technical platforms and environments. Such a demand for
flexibility and changes has lead to the development of soft-
ware product lines [10]. A product line consists of a com-
mon core which is extended by components to configure
new products quickly. Due to hard time and cost constraints
there is a high pressure to use existing components from the
market. These components are largely heterogeneous, e.g.
from different providers or designed in different styles. Fur-
thermore, most of these components are black boxes, which
means that a developer can only access the interfaces and
not the internal structure of a component. Usually, a com-
ponent does not ideally fit to the features of a currently de-
signed product, e.g. concerning its interfaces, its features
or its structure. Therefore, the configuration of software
systems constitutes a challenging and success-critical task.
A configuration activity is especially critical, if it was not
intended by design. Problems can be caused by e.g. miss-
ing variability points (sometimes called hot spots) of com-

ponents or unknown side effects. If such problems are not
solved in the architectural design, they have negative effects
on the quality attributes of a system. Furthermore, the high
complexity of the configuration task increases the probabil-
ity of mistakes, especially in the case of large systems with a
high number of components and constraints between them.
Different versions of the components increase the complex-
ity of the configuration task.

Following the ideas of model-driven development, we
have developed a method for supporting the activities of
configuration and deployment by utilizing traceability be-
tween requirements, features and implementation artefacts.
The method helps to resolve variability constraints intro-
duced by third party components. It facilitates the system
configuration by providing a better guidance and tool sup-
port. In this paper, we apply traceability links to map fea-
tures to implementation components and artefacts – used
during build and deployment activities. Using these links
we evaluate constraints between artefacts of each phase and
map them to the feature model. They facilitate the feature
configuration, the architectural design driven by features,
and the component implementation. In this way possible
conflicts for the configuration activities are represented in
models. By applying rules for a good design, the method
uses indicators and evaluations to provide guidance for im-
proving development activities.

2 Build and Deployment Related Design
Goals

We want to support the design process in terms of vari-
ability, with a special emphasis on support for build and
deployment. Therefore, the general goals for a high-quality
design had to be fulfilled. Firstly, a design method has to
implement the functional requirements completely. Sec-
ondly, all variability and quality requirements have to be
fulfilled by the resulting solution. Furthermore, all criteria
for a good design have to be met, e.g. modularity, abstrac-
tion, encapsulation, separation of concerns and conceptual
integrity. To achieve an efficient design process, the method
has to possess quality attributes like simplicity, comprehen-

sibility, and tool independence.
In addition to the previous goals, the method has to lead

to highly flexible solutions. High flexibility means vari-
ability with a low extra effort, both for achieving a set of
options, and for adaptation by activating one option instead
of a previous one. For all changes regarding features a min-
imal effort is achieved, if a change of a feature can be imple-
mented by a pure insertion or substitution of a component,
without any impact on other parts of a system. In terms
of relations between features and implementation compo-
nents an architecture with only 1:1 relations between them
leads to a minimal effort and thus a maximal flexibility. In
such an architecture, just component replacements without
any additional code changes are necessary if features are
changed. The architectural style of plug-in components pro-
vides one solution for an appropriate variability infrastruc-
ture for changes at start-up time or at runtime. Other ex-
amples for solutions for runtime variability are the design
patterns Strategy, Abstract Factory or Template Method [7].
An example solution for variability at compile time is con-
ditional compilation.

3 Traceability Approach Integrating Imple-
mentation Artefacts for Variability

Artefact Categories. For the design optimization con-
cerning variability, the relations between requirements, ar-
chitectural elements and implementation have to be consid-
ered. The key idea is to trace all software development arte-
facts back to its requirements. For the further investigation,
the linked artefacts are grouped and categorized in levels.
Within a feature driven development process for software
product lines we have to consider the artefacts of the whole
process. The levels are distinguished by different types of
artefacts and dependencies between them. In the following
we categorize them to a feature level (F-Level), architec-
tural component level (A-Level), class level (C-Level) and
implementation artefact level (I-Level). Examples for arte-
facts of the I-Level are configuration units or sections.

a0f0 c0 i0

F-Level A-Level C-Level I-Level

Figure 1. Ideal case of 1:1 relations

Typical effects. From a changeability and complexity
point of view the relations in figure 1 represent an ideal case
because 1:1 relations between the artefacts of the different
levels lead to a minimal effort for changes. In the case of a
change of feature f0 only a change of the component a0 is

required. In this ideal case each artefact does not have more
than two traceability links to other artefacts.

a1f1 c1 i1

c2 i2

i3

a2

F-Level A-Level C-Level I-Level

Figure 2. The case of feature scattering

In reality more dependencies have to be considered. A
higher number of dependencies means that more artefacts
are affected by a change resulting in a higher maintenance
effort and a reduction of the variability. Two types of ef-
fects are discussed here. Feature scattering (figure 2) means
that one feature f1 is implemented by more than one archi-
tectural components – in this case the components a1 and
a2. The addition of this feature to a product requires the
integration of more than one component.

a3f2 c3 i4

c4 i5

i6

f3

F-Level A-Level C-Level I-Level

Figure 3. The case of feature tangling

In the case of feature tangling, an architectural compo-
nent is responsible for more than one feature, (figure 3) e.g.
the implementation of feature f2 and f3 is tangled in com-
ponent a3. If one of these features has to be removed, the
component a3 has to be analyzed and split into appropriate
parts, with a much higher effort than just the removal of one
component. From the variability point of view both cases
should be avoided. As also stated in [14] feature tangling
and scattering have negative impacts on the system’s main-
tainability. In order to improve the flexibility of a system
concerning feature variability, all variability points should
be aligned in a way that each of them is related to exactly
one optional feature. Tangling and scattering again leads
to a higher number of dependencies which have to be con-
sidered during all kinds of change activities, like program
comprehension or impact analysis.

In this paper, all artefacts with relevance to variability
are considered, e.g. system components, classes and im-
plementation artefacts. These relations enable an evalua-
tion and optimization of the system architecture concerning
variability. In the case of figure 3 the determination of the
artefacts relevant for an implementation of the feature f2

would not be possible without traceability links between i4

to c3 and f2 (solid line). The same holds for the analysis
of the impact of a change of feature f3 (dashed line). Fur-
thermore, a comprehensive analysis of artefacts from sev-
eral categories and their relations is necessary in order to be
able to evaluate the degree of variability, to forecast a pos-
sible configuration overhead, and to verify the consistency
between feature model and architectural models.

Types of relations. It is necessary to describe additional
relations between artefacts as e.g. the relation between
classes and features and to determine several sets of arte-
facts used in the current traceability approach. For the illus-
tration of this approach we will use a small example (figure
7) out of a Home Automation System (HAS) used in [10].

The set of features F and two considered subsets F ⊆ F ,
Fo ⊆ F are all contained in feature models. Note that
Fo ⊆ F is a set of optional features. The set of architectural
software components A and the considered subset A ⊆ A,
part of the architecture models. The set of classes C and
the considered subset C ⊆ C, part of the realisation models.
The set of implementation artefacts I and the considered
subset I ⊆ I , part of the realisation models. In the follow-
ing the traceability links and relations are defined, which
are required for the later evaluation by the indicators (see
section 4):

Component Traceability. Each component contributes
to a set of requirements. Such a relationship is expressed
by the “implementedBy” traceability link pointing to com-
ponents that implement a set of features.

Definition: Component Traceability
We use the symbol f � A as “implementedBy” traceability
link expressed as follows:

f � A :⇔ f ∈ F,A ⊆ A : implementedBy(f,A). (1)

If considering exactly one feature and one component the
same traceability link type is used.

The number of components that implement the feature f is
countable with nco(f) which is defined as:

nco (f) := |{a ∈ A : f � a}| . (2)

Component Require Relation. The “use” traceability
link describes the relationship between two components in
which one component needs the other component to imple-
ment the related feature. Formally, this is expressed by the
following definition:

Definition: Component Require Relation
The symbol a �→ A expresses the “use” traceability link

between source component a and a set of other components
A, but a source component a may not use itself (a /∈ A).

a �→ A :⇔ a ∈ A,A ⊆ A, a /∈ A : require(a,A). (3)

The same traceability link type is used if only a relationship
between two components is considered.

Class Traceability. Software components consist of a set
of classes and vice versa a class c is related to exactly one
software component in order to implement at least one part
of a feature. The same traceability link type (and also
the same symbol) defined for components is also used for
classes: f � C. The number of classes that implement the
feature f is countable with ncl(f) and is defined as:

ncl (f) := |{c ∈ C : f � c}|. (4)

Implementation Artefact Usage. It is necessary to trace
interactions between classes and implementation artefacts
within architectural components that are related to a feature.
We denote an Implementation Artefact Usage if at least one
class needs an implementation artefact in order to adapt as-
pects of the feature implementations.

Definition: Implementation Artefact Usage
In order to support the analysis of the usage of implemen-
tation artefacts by classes C we use the symbol C �−→ I for
this kind of traceability link type named as “use”, formally
expressed as follows:

c �−→ I :⇔ c ∈ C, I ⊆ I : use(c, I). (5)

Implementation Artefact Traceability. An implementa-
tion artefact is usable for different purposes. In this paper
an implementation artefact is a section of a configuration
database or a node of a configuration tree in a configura-
tion file (e.g. the structure known from a registry), which is
used to adapt the feature, e.g. switching off a feature before
the deployment of the component. Such a relationship is
expressed by the “isAdaptedBy” traceability link:

Definition: Implementation Artefact Traceability
We use the symbol f

ia→ I as “isAdaptedBy” traceability
link expressed as follows for c ∈ C. Note that this defi-
nition considers two conditions, firstly classes must use an
implementation artefact C �−→ I and secondly, these classes
are used to implement a feature f � C. Only if these con-
ditions are valid, an adaption of a feature is possible; this is
expressed as follows:

f
ia→ I :⇔ f ∈ F, I ⊆ I, f � C, (6)

C �−→ I : isAdaptedBy(f, I).

If considering exactly one feature and one implementation
artefact the same traceability link type is used.

The number of implementation artefacts that adapt the fea-
ture f is countable with nia(f) and is defined as:

nia (f) := |{i ∈ I : f
ia→ i}|. (7)

4 Indicators for Evaluation of the Goals

4.1 Feature Scattering

As discussed earlier in this paper feature scattering and
tangling constitute major deficiencies with respect to soft-
ware maintenance, variability or reducing configuration and
implementation overhead. Before feature scattering can be
evaluated, insulated features have to be resolved.

Insulated Features. A feature must have a traceability
link to at least one architectural component. This is an im-
portant condition which contributes to the consistency be-
tween features and their related components. An example

f1
f2

f3

F

c1
c2

c3

a1

Traceability Link

Figure 4. Example of an insulated feature

of an insulated feature f3 is depicted schematically in figure
4. The indicator if(F) is defined as follows:

Definition: Insulated Feature Indicator
Each feature f must be implemented by at least one compo-
nent otherwise (�A) this feature is an insulated feature and
countable with if(F).

if(F) := |{f ∈ F : �A ⊆ A : f � A}| . (8)

From the engineering point of view insulated features could
exist for several reasons: The feature’s realisation is post-
poned, as during domain analysis not all information could
be gathered. This often happens in the case of low prior-
ity features. Additionally, in the case of non-functional re-
quirements it is often hard to determine how to map their
implementation to elements of the existing system.

Resolution: All insulated features have to be resolved

A resolution step is necessary to remove an insulated fea-
ture by (a) postponing such features to later releases, by
(b) mapping it to proper architectural components.

Feature Scattering. After removing all insulated features
the feature scattering indicator is applicable. On the archi-
tectural level, feature scattering refers to a relation between
one feature and more than one component. Feature scatter-
ing affects the maintenance or the implementation overhead
of a system because it is not always easily possible to adapt
the implementation of a feature in order to fulfill the cus-
tomers’ requirements considering variability. A high im-
plementation overhead leads to higher effort and to a higher
probability of mistakes.

Definition: Feature Scattering Indicator
The indicator sca(f) is used to determine the number of
components (a ∈ A) that are needed to implement the fea-
ture f ∈ F . Additionally, fsca(F) is used to analyse all
features and to provide an overall measurement result.

sca (f) := |{a : f � a}| − 1. (9)

Note that sca(f) considers the ideal case where no feature
scattering exists (by the subtraction of 1).

fsca (F) :=

∑
f∈F

sca (f)

|F | · |A| , fsca ∈ [0, 1) . (10)

The more features are scattered into components, the worse
the maintainability of the software gets and the closer the
result of the indicator moves to 1. The maximum value 1
is reached if |a| approaches infinity and each feature f is
implemented by all a. For figure 4 fsca(F) is 1/6, if the
insulated feature f3 is resolved before (|A| = 3, |F | = 2).

Resolution: Reducing feature scattering

Reducing feature scattering could be done by (a) splitting
up the features into several features starting with the fea-
ture with the highest sca (f) value, (b) try to merge com-
ponents reducing the number of involved components.

4.2 Feature Tangling

Insulated Components. Similar to section 4.1 we iden-
tify the removal of insulated components a ∈ A as a precon-
dition for the use of the Feature Tangling Indicator. More
precisely, at least one traceability link must exist from a
feature f pointing to an existing architectural component
a ∈ A. It is important to achieve a complete realisation
in order to ensure the consistent evaluation of the system’s
engineering approach. An insulated component has a simi-
lar structure as an insulated feature; this is already depicted
schematically in figure 4.

We call the indicator for such a component situation In-
sulated Component Indicator and define it as follows:

Definition: Insulated Component Indicator

co(A) := |{a ∈ A : �f ⊆ F : f � a}| . (11)

From the engineering point of view, insulated compo-
nents constitute a mistake. Nevertheless, they could occur
if e.g. an architecture contains components without a direct
relation to customer needs.

Resolution: All insulated components must be resolved

A resolution step is necessary in order to remove the in-
sulated component e.g. by (a) creating a dummy feature,
by (b) introducing internal features or by (c) removing
the insulated component. This step helps to avoid or at
least to reduce the quite common effect so-called “Bells
and Whistles” features, which are implemented by devel-
opers but are not wanted or paid for by customers.

Feature Tangling. Feature tangling refers to relations be-
tween one feature and more than one component.

Definition: Feature Tangling Indicator
The indicator tang(a) is used to determine the number of
features f ∈ F that are implemented by a component c ∈
C. Additionally, ftang(A) is used to analyse all features
and to provide an overall measurement result.

tang (a) := |{f : f � a}| − 1. (12)

Note that tang(a) considers the ideal case where no feature
tangling exists (by the subtraction of 1).

ftang (A) :=

∑
a∈A

tang (a)

|F | · |A| , ftang ∈ [0, 1) . (13)

The more features are tangled to one component, the more
difficult is the adaption of this component and the closer
is the result of the indicator to 1. The maximum value 1
is reached if |f | approaches infinity and each component
a ∈ A implements all features f ∈ F .

Resolution: Reducing feature tangling

Reducing the relations between more than one feature
and a component could be done by (a) splitting up the
component starting with the highest number of tang (a)
into several components, by (b) trying to merge features
in order to reduce the number of features involved.

4.3 Design of Implementation Artefacts

As discussed earlier in this paper feature scattering and
tangling constitute major deficiencies with respect to vari-
ability or the configuration overhead. Implementation arte-
facts have the role of endpoints of a feature’s realisation as

they are often used to adjust the implementation, e.g. to
switch off or on a feature’s implementation in relation to
its defined variation points in the feature model. Addition-
ally, if a lot of the feature’s parameters have to be adapted
e.g. time restrictions that are scattered to several config-
uration locations (we call them implementation artefacts)
typical activities like testing or deployment often fail. Es-
pecially within the customer’s environments such a problem
situation requires expensive development support. The rea-
son for such an expensive support is quite simple, important
settings are overseen by the engineer due to scattered con-
figuration units and settings.

Insulated Implementation Artefacts. Before Implemen-
tation Artefact Scattering or Tangling can be evaluated, in-
sulated features (already discussed in section 4.1) and Insu-
lated Implementation Artefacts have to be resolved. More
precisely, an implementation artefact must have a direct re-
lation to at least one class whereas this class is linked by
a traceability link to at least one feature as well. This is
an important condition which contributes to the consistency
between features and their related implementation artefacts.
An insulated implementation artefact has a similar structure
as an insulated feature, which is already shown in figure 4.

Definition: Insulated Implementation Artefact Indica-
tor

ia(I) := |{i ∈ I : �f ⊆ F : f
ia→ i}|. (14)

From the engineering point of view an insulated imple-
mentation artefact could exist in the case of dead code in
which the implementation artefact still has no role anymore.
Such a situation occurs if the feature’s realisation is post-
poned, as during the domain analysis phase not all informa-
tion are collected, but the prototype realisation still exists.

Resolution: All cases of insulated implementation arte-
facts must be resolved

A resolution step is necessary in order to remove an insu-
lated implementation artefacts for example by (a) remov-
ing such dead code, by (b) reawaken such an implemen-
tation artefact through mapping it to proper architectural
components and the related feature.

Implementation Artefact Scattering. We consider situ-
ations in which features have to be configured by several
implementation artefacts, but hamper the activities during
deployment and error diagnostics of an application. This is
often the case e.g. in a configuration tree (xml-configuration
files) in which each configuration unit is scattered to several
not grouped sections, locations or nodes.

The misconfiguration of feature related runtime param-
eters is quite a serious problem, as often a program error
occurs only at specific runtime situations and requires high
analysis efforts in the customer’s environment. Such an ex-
pensive problem situation is often caused due to a lack of
traceability. The Implementation Artefact Scattering Indi-
cator is used to evaluate the realisation in order to achieve
an effective configuration of the system. An example of
implementation artefact scattering is shown in figure 7, the
configuration of feature Control Center is scattered into
implementation artefact Configuration and Settings.

Definition: Implementation Artefact Scattering Indica-
tor
The indicator iasca(f) is used to determine the number of
implementation artefact i ∈ I that are used to adapt the fea-
ture f ∈ F . Additionally, fiasca(F) is used to analyse all
features and to provide an overall measurement result.

iasca (f) := |{i : f
ia→ i}| − 1. (15)

Note that iasca(f) considers the ideal case where no imple-
mentation artefact scattering exists (by the subtraction of 1).

fiasca (F) :=

∑
f∈F

iasca (f)

|F | · |I| , fiasca ∈ [0, 1) . (16)

For the development of systems concerning variability it
is important to pay attention to the design and to reduce the
number of possible misconfigurations.

Resolution: Reducing implementation artefact acattering

Reducing implementation artefact scattering could be
done by (a) splitting up the features into several features
starting with the feature with the highest iasca (f) value,
(b) trying to merge or group implementation artefacts in
order to reduce the number of implementation artefacts
involved in different sections.

There are cases where a resolution is not possible if e.g.
external components or products are used. In these cases
the role of an architectural decision is important. Because it
documents alternatives and is also the base for an appropri-
ate installation and deployment documentation.

Implementation Artefact Tangling. We identify the re-
moval of insulated features in section 4.1 and insulated im-
plementation artefacts in section 4.3 as a precondition for
the use of the Implementation Artefact Tangling Indicator.

Situations in which features have to be adapted by the
same implementation artefact hamper implementation and
deployment activities and error diagnostics as it is not easy

to keep track of the used variation points in the config-
uration file. Additionally, it is often a symptom indi-
cating less flexibility considering variability as it is not
possible to plug out a component with its implementa-
tion artefact as it contains the configuration of other fea-
tures, too. An example of implementation artefact tan-
gling is shown in figure 7, the features Control Center
and Modul Management are adaptable by the same im-
plementation artefact Configuration.

Definition: Implementation Artefact Tangling Indicator
The indicator iatan(i) is used to determine the number of
features f ∈ F that are adapted by one implementation
artefact i ∈ I . Additionally, fiatan(I) is used to anal-
yse all implementation artefacts and to provide an overall
measurement result.

iatan (i) := |{f : f
ia→ i}| − 1. (17)

Note that iatan(i) considers the ideal case where no imple-
mentation artefact tangling exists (by subtraction of 1).

fiatan (I) :=

∑
i∈I

iatan (i)

|F | · |I| , fiatan ∈ [0, 1) . (18)

Resolution: Implementation artefact tangling

Reducing the relations between more than one feature
and one implementation artefact could be done by (a)
splitting up the implementation artefact, starting with the
highest number of iatan (i) into several implementation
artefacts, referencing to the appropriate feature, by (b)
trying to merge features in order to reduce the number of
features involved.

There are cases where a resolution is not possible be-
cause external components (black box components) or
products are used. The main problem here is that the doc-
umentation of black box components lacks due to missing
information about their interface concerning feature realisa-
tion and variability configuration’s aspects.

4.4 Variability-Related Implementation
Overhead

In real projects several possibilities exist how the design
of a system could be structured considering variability. The
use of configuration properties in order to be able to set
runtime parameters for customers’ applications before de-
ployment or build is a simple way to adapt features in their
related components e.g. to switch off or on a feature for an
application variant. But such a solution often leads to a im-
plementation and configuration overhead which is hard to
forecast. Additionally, the resolution of the identified over-
head is the more difficult, the more dependencies to features

are constructed. The Implementation Overhead Indicator is
able to measure the implementation overhead of such a so-
lution as it measures the elements that are needed to imple-
ment an optional feature fo ∈ F .

Definition: Implementation Overhead Indicator
If no tangling (tang(ao) = 0) and no scattering (sca(fo) =
0) exist the optional feature is build upon elements of ex-
actly one component. This leads to an implementation over-
head of 0 (defined through iov(fo)) as such a component
could be used as a plugin component obtaining full flexibil-
ity concerning variability. In the other cases the implemen-
tation overhead is measurable in average using iov(fo).

iov(fo) =




0, if sca(fo) = 0 ∧ tang(ao) = 0
∧ fo � ao

ov(fo) ∈ (0, 1] , otherwise.

(19)

In this equation the implementation overhead of an optional
feature consists of three parts, measuring the involved com-
ponents, their classes and the used implementation arte-
facts. The higher the number of artefacts compared to the
total number of artefacts is, the higher the implementa-
tion overhead (we reuse the definitions nco(f), nia(f) and
ncl(f) out of section 3).

ov(fo) =
nco(fo)
|3A| +

nia(fo)
|3I| +

ncl(fo)
|3C| . (20)

The more elements are involved in each summand, the
higher the implementation overhead gets and the closer the
result of the indicator moves to 1. The maximum value 1
is reached if each summand of ov(fo) is 1/3, in this case
the whole optional feature is implemented through all exist-
ing elements and feature tangling exists. An example of the
application is given in section 4.6.

Resolution: Reducing implementation overhead

Reducing implementation overhead could be done by (a)
splitting up elements (classes and implementation arte-
facts valued by ov(fo)) of the component implementing
tangled features into new separated components or by (b)
trying to merge the tangled and optional features to one
optional feature in order to resolve the tangling or by (c),
trying to merge components that implement parts of the
scattered optional feature.

As a consequence the implementation overhead has to be
seen in contrast to the ideal case where an 1:1 relation be-
tween an optional feature and a component exists and there-
fore no feature scattering or tangling exists.

4.5 Chain of Components

Because of feature interaction and component dependen-
cies it is possible that a feature could only be used if an-
other feature is also used. In the case of multiple repeti-
tions, a chain of components would occur. However, the
more chained components are necessary the higher is the
overhead effort for analysis, changes and build. Addition-
ally, the probability of mistakes and errors increases due to
changes of features which interact with others.

A small example is shown in figure 5: by adapting a part
of the implementation of the component a3 due to a change
of feature f3 could affect the implementation of f1 by com-
ponent a1, as both components are arranged in the same
chain and a class of a1 uses classes of a3.

A similar situation could arise during the integration and
deployment of implementation artefacts. If products or vari-
ants are configured by selecting a set of features, it is im-
portant to minimise set of deployed components, in order to
decrease the effort of deployment for maintenance and for
resource consumption. The Chain Components Indicator
shows repeated dependencies and assists their resolution.

f1

f2

F

c1
c2

c3

a1

c4

c5c6

a2

use

require f3 c7

c8

use a3

Traceability Link
Relation (require, use)

Figure 5. Example of a chain of components

As it is sometimes not possible to reduce dependencies
between architectural elements completely, the indicator
helps to determine the effort arising from the linked com-
ponents. The indicator counts for each feature f ∈ F how
many components must be used if selecting f . Formally,
this is expressed by the following definitions. Note that in
the case of feature scattering of f ∈ F the components in-
volved by f � a are only counted once.

Definition: Transitive Component Chain
The chain (f) indicator includes the number of compo-
nents that are transitively required by the components that
implement the feature f . Based on the source component
a the equation rc(a) determines the number of directly or
indirectly required components a′′ ∈ A. This set of compo-
nents is called Transitive Component Chain and is defined
as follows:

rc(a) := |{a′′ ∈ A : ∃a1, ..., an ∈ A,n ∈ N0 :
a �→ a1 �→ ... �→ an �→ a′′}|. (21)

The indicator chain(f) consists of two parts, the first part
is used to determine the number of chained components
considering feature scattering by sca(f), the second part
is necessary to consider all scattered components f � a
and sum up the number of chained components by rc(a),
respectively. Additionally, cchain(F) is used to analyse all
features and to provide an overall measurement result.

Definition: Chain Components Indicator

chain (f) := sca(f) +
∑

f�a

rc(a), and (22)

cchain(F) :=

∑
f∈F

chain(f)

|F | · |A| , cchain ∈ [0, 1] . (23)

If for example f1 is involved in a product variant (see figure
5) the directly related component has to be used and transi-
tively required components, as well. In the case shown in
figure 5 a3 is transitively related to a1. Concerning all fea-
tures in this case cchain is 2/9 (with |A| = 3, |F | = 3).

Resolution: Resolution of chained components

Reducing chained components could be done by (a) try-
ing to reduce the number of rc(a) by cutting the trail of
components usage, starting with the feature having the
highest value of chain (f). This could be achieved by
dissolving a dependency between two components of the
chain. (b) merging components in order to reduce the
number of used component for the related feature, (c) cre-
ating new features that are implemented by already given
components in order to correct or refine the feature struc-
ture describing the system architecture more realistic.

4.6 Application of Indicators and Results
of the Case Study

In this paper we introduce means for optimizing the de-
sign for variability and for measuring the overhead effort.
In the previous section, the formal definition of the indi-
cators for several deficiencies were described together with
the corresponding resolution actions. These measures have
to be applied during the realisation of the system. Since the
space limitations inhibit the description of a complete home
automation system (HAS), we use a small case study out of
such a system to illustrate the application and the benefits of
the approach: the possibilities of ensuring consistency be-
tween different models, increasing the overall traceability
during the system’s realisation and evaluating the realisa-
tion solution concerning variability and overhead effort.

The case study consists of two cases, Case A (see figure
7) and Case B (see figure 8), both are used to implement two
mandatory features Modul Management, Lock Closing
and one optional feature Control Center as shown in the

Feature Model

HAS

Modul
Management

Lock
Closing

Control
Center

Mandatory Feature Optional Feature

Figure 6. Part of a HAS feature model

feature model in figure 6. Using the defined traceability
links in section 3 the realisation of the features is traced in
order to be able to map the used realisation elements to its
origin. In the figures 6, 7, and 8 each feature and related
artefacts are highlighted using the same shade of grey. In
the case of feature tangling it is possible that one imple-
mentation artefact or class is responsible for different fea-
tures. As shown in figure 7 the implementation artefact
Configuration, which is used during the deployment to
adapt the feature implementation. It contains the property
viewlimit belonging to the feature Modul Management
and the property switch to disable or enable the optional
feature Control Center in this component.

Architecture Model Realisation Model

«component»

homeautomation
system

ModulControl

SystemControl

UserTerminal

DoorLock

«implementedBy»

IModulControl

«deployment»
Settings

Relation

Sensor

«deployment»
Configuration

[viewlimit]
[switch off/on]

Results of Case A:
|A| ftang Variability

1 2/3 Constricted

|F|
3

fiatan fiasca iov cchain
07/91/61/6

Traceability
Link

Figure 7. Case A: Constricted variability

The defined indicators are used to analyse this realisa-
tion step, the results for the Case A are shown in the table
presented in figure 7.

First of all feature tangling exists (ftang = 2/3) indicat-
ing a violation of the concept of separation of concerns. Ad-
ditionally, the optional feature Control Center (in the fol-
lowing abbreviated by fo) is tangled with the other features
resulting to a variability related implementation overhead
of about iov(fo) = 7/9. So, it is not possible to plug out
the elements related to Control Center concerning vari-
ability, rather the optional feature Control Center is only

switchable by a manual adaption (property switch off/on) of
the implementation artefact Configuration (therefore the
goal variability is valued as “constricted” in figure 7).

Another disadvantageous situation is given through tan-
gling of the implementation artefacts, valued by fiatan =
1/6 in figure 7, as different features use the same implemen-
tation artefact. Additionally, valued by the Implementation
Artefact Scattering Indicator fiasca = 1/6, the adaption of
the optional feature Control Center have to be done using
different configuration units, which increases the probabil-
ity of misconfiguration during the deployment (as discussed
in section 4.3).

Architecture Model Realisation Model

«component»

lockcontrol

«plugin»
 controlcenter

«u
se»

«implementedBy»

ModulControl

SystemControl

UserTerminal

DoorLock

IModulControl

«deployment»
Settings

Sensor

«deployment»
Configuration

[viewlimit]

«implementedBy»

HAS

Relation

Results of Case B:
|A| ftang Variability
2 1/6 Flexible

|F|
3

fiatan fiasca iov cchain
000

Traceability
Link

1/6

Figure 8. Case B: Flexible variability

The suggested resolution steps are now used to resolve
the indicated problem situations, starting with the resolution
of the tangled optional feature, by splitting up the related
elements into a separated component. This realisation step
together with the results of the application of the indicators
(Case B) are shown in figure 8. As indicated by iov now no
variability related implementation overhead exists anymore,
gaining full feature flexibility – as it now possible to plu-
gin/out the component implementing the optional feature.
Also, implementation artefact scattering and tangling do
not exist anymore: the implementation artefact used by the
class SystemControl was only necessary to switch off/on
the optional feature, which is not useful anymore. The ad-
ditional effort for the elimination of feature tangling and
variability related implementation overhead leads to a chain
(component controlcenter needs lockcontrol), which is
expressed by the Chain Components Indicator, increasing
from 0 to 1/6. The described re-design makes it possible to
use all feature variants without configuration effort. How-
ever the achievement of this variability goal leads to a situa-
tion of dependency, as the plugin component controlcenter
needs the component lockcontrol. As a consequence, the
component controlcenter is not applicable as standalone

component. As in this case the goal variability is the most
important requirement, a resolution of the chained compo-
nents is not useful.

5 Tool Support

The global goals of managing complex tasks with a low
overhead effort can only be solved with a efficient support
by tools. The evaluations provided by the described method
have to be integrated into the design flow. Since software
engineering environments often consist of tools from dif-
ferent providers and many of the relevant design tools are
available for the Eclipse platform, we decided for this plat-
form. In an earlier project we developed an evaluation tool
with a high flexibility of the rules and indicators [13]. The
tool accesses the XML model data in a repository. The
traceability links are managed as XML data as well. The
rules and indicators are expressed either as OCL or as Java
expressions, in different versions of the tool. The tool is cur-
rently used as an extended prototype. At the current stage
of evolution it is flexible, robust and powerful enough to be
used in industrial case studies.

6 Related Work

There are some works on artefact relations, especially
on traceability relations, for classification purposes, e.g. by
Ramesh and Jarke [11]. The problem of a high number
of different types of traceability relations has not yet been
solved [9]. In this approach we concentrate on a low num-
ber types of traceability links according to the goals of their
evaluation. The criteria for flexibility are part of the design
principles for software. From the early software engineer-
ing on there have been works in this area, starting from the
criteria for modularization by Parnas [8] through the crite-
ria for good object-oriented design [3]. These criteria can
be evaluated by a broad variety of design metrics, e.g. col-
lected by Andersson and Vestergren [1] and supported by
tools like SDMetrics. But, there is only a limited guidance
for using and interpreting these metrics.

By enhancing the flexibility and maintainability of sys-
tems, the component-based software development shifts the
emphasis from programming code to composing software
systems [5]. As an integrated approach with both com-
ponent technology and domain engineering the software
product line techniques have been developed [4, 10] with
some approaches covering traceability between features,
design artefacts and components [12], similarly to our pa-
per. Within product lines, the variability is modelled explic-
itly, in many approaches using feature models.

This paper deals with variability, which can be imple-
mented by various typical solutions. Product line technolo-
gies distinguish between solutions for different so-called

binding times, the stage of implementation at which a prod-
uct is instantiated as one choice among several options for a
product line [10]. Examples for solutions are already stated
in section 2.

There are some methods for managing the mismatch
during the integration of (existing) black box components.
Guerra et al. [6] propose wrappers covering the mismatch
between required and provided behaviour. Other approa-
ches introduce variability both into components and into the
component platform, e.g. the Kobra approach [2]. Other
component models achieve flexibility by defining a very
generalized interface but providing a kind of reflection for
information about the actual behaviour of a component, e.g.
COM with the IUnknown() interface. In this way they pre-
vent an component interface mismatch by defining a gen-
eralized interface, however the mismatch problem still re-
mains for the component behaviour. For a support for the
configuration and build of systems with black box compo-
nents there are approaches for preventing misconfiguration
and for testing using interface specifications. The cyber-
security and systems management approach STRIDER [15]
for example applies interface specifications called mani-
fests. Currently we do not know about approaches minimiz-
ing the configuration overhead with black box components.

7 Conclusions and Future Work

In the way of model-driven design this paper presents
an approach for facilitating design for variability by the uti-
lization of model relations. The work is set in the context of
software products lines, in which products are mostly built
by configuring components. The artefacts and relations rel-
evant for variability, flexibility and product configuration
are discussed. Traceability links between several artefacts
are investigated concerning their influence on design goals
related to variability. Different to many other works in that
area, this paper special emphasizes the issues of configura-
tion, build and deployment in addition to issues of archi-
tectural design. For the traceability links, a small set of
indicators (metrics) has been developed which enables an
assessment of models and provides an early feedback dur-
ing architectural decision-making and reengineering.

The application of these indicators and their integration
into a methodical development and configuration process is
then briefly illustrated by a small simplified part of a Home
Automation System as an industrial case study. The con-
tribution of this paper consists in the support for flexibility
and variability by an evaluation-driven design. By reducing
the effort for and the impact of changes the evolvability is
improved and the long-term value of software systems is in-
creased. The investigation of component relations, configu-
ration issues and the problems of third party components
give special support for the development and application

of software product lines. As future work we would like
to evolve the relations and indicators for different domains.
The integration with other works for forwarding constraints
between feature model, design, implementation and deploy-
ment [12] is planned to improve the integration with con-
figuration tools and to extend the guidance for design and
product configuration. The tool integration into decision-
making, design, configuration and build processes has to be
improved. The latter is planned with an integration of tools
with proprietary repositories on the Eclipse platform.

References

[1] M. Andersson and P. Vestergren. Object-oriented design
quality metrics. Master’s thesis, Uppsala University, 2004.

[2] C. Atkinson and O. Hummel. Towards a methodology for
component-driven design. In N. Guelfi, editor, Proc. RISE
Luxembourg, 2004, Revised Selected Papers, number 3475
in Lecture Notes in Computer Science, pages 23–33, 2005.

[3] G. Booch, R. A. Maksimchuk, and M. W. Engle. Object-
Oriented Analysis and Design with Applications. Addison-
Wesley, 3rd edition, 2007.

[4] P. Clements and L. M. Northrop. Software product lines:
practices and patterns. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2001.

[5] P. C. Clements. From subroutines to subsystems:
Component-based software development. In Component-
Based Software Engineering: Selected Papers from the Soft-
ware Engineering Institute, pages 3–6. IEEE, 1996.

[6] P. A. de C. Guerra, A. Romanovsky, R. de Lemos, and
C. M. F. Rubira. Integrating cots software components
into dependable software architectures. In Proc. ISORC03,
Japan, pages 139–142. IEEE Computer Society Press, 2003.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

[8] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Comm. ACM, 15(12):1053–58, 1972.

[9] F. A. C. Pinheiro. Requirements traceability. In Perspectives
on Software Requirements. Springer, 2003.

[10] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering;Foundations, Principles, and Techniques.
Springer-Verlag Berlin Heidelberg, 2005.

[11] B. Ramesh and M. Jarke. Toward reference models for re-
quirements traceability. IEEE Trans., 27(1):58–93, 2001.

[12] M. Riebisch. Supporting evolutionary development by fea-
ture models and traceability links. In Proc. ECBS2004,
Brno, CZ, pages 370–377, Los Alamitos, USA, 2004.

[13] D. Rohe. Plugin components for development tools (in Ger-
man: Plugin-Komponenten für Entwicklungswerkzeuge).
Master’s thesis, TU Ilmenau, 2005.

[14] P. Sochos. The Feature-Architecture Mapping Method for
Feature-Oriented Development of Software Product Lines.
PhD thesis, Technical University of Ilmenau, 2006.

[15] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J.
Wang, C. Yuan, and Z. Zhang. Strider: A black-box, state-
based approach to change and configuration management
and support. In Proc. Usenix LISA’2003, 2003.

