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Abstract. The development and the evolution of large, complex soft-
ware systems bear several risks. Traceability links can help to master
the complexity of these tasks. Currently, they are not used in a large
scale, because tool support is necessary to reduce the overhead effort.
At present, tools for handling traceability links cannot be effectively de-
veloped, because the syntax and the semantics of the traceability links
are not sufficiently defined. In this paper we present a set of traceability
link types together with a definition of their semantics. The set of link
types was developed by analyzing the link evaluation and exploitation.
The presented link types are customized for the support of architectural
design decisions in regard to a set of non-functional design goals. The
extension of the results to a wider scope is discussed. The work was
performed within a large industrial project.

1 Introduction

Large, business critical software systems have to perform a tough succession of
changes in order to maintain their value for a company. Changes of complex
software systems bear several risks. Design decisions have to be made under un-
certain conditions, because the consequences of different alternatives cannot be
determined precisely. Traceability can support the decision making by facilitating
the software comprehension, the change impact analysis, and the minimization
of risks. However, the accuracy of the traceability links constitutes a critical is-
sue to achieve the expected benefit. If the information provided by these links
is wrong, bad decisions and the introduction of errors are a consequence.

For maintaining the accuracy of the traceability links, tool support during
the establishment, the adaptation and the evaluation of the links is necessary.
Furthermore, the link maintenance by humans requires a high effort and in-
troduces new risks of mistakes. Currently, an effective tool support can hardly
be provided because the semantics of the artefacts and models used, and of the
traceability links themselves is not defined precisely enough. Guidelines and rules
for link modifications during changes and for evaluations are only provided as far
as the semantics of the links and of the linked artefacts are defined. Furthermore,
there is a broad variety of proposals for link types, but little attention has been
paid on the definition of the link semantics. The semantics has to support the
link utilization in order to be of practical value. A pure categorization of links
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constitutes an important step, but it does not lead to the required preconditions
for a tool support.

In this paper we present a traceability link definition framework for support-
ing architectural design decisions. Traceability links have to represent relations
between artefacts in different phases of the development process. Depending on
the goal of the decision, different types of artefacts and relations have to be
considered. Due to space limitations, we focus on architectural design decisions
regarding the non-functional design goal evolvability. We start from a subset
of the currently used link types and define their semantics by the way of their
utilization. Even if the results of this work are applicable only to these decisions,
we expect that the discussion about link types and semantics is driven forward
and that they lead to a significant support for the tool development.

After a brief discussion of related work, section 3 introduces the traceability
approach. Based on them, in section 3.3 the indicators and the corresponding
resolution actions are introduced. In section 3.4 the application of the approach
in an iterative development process is illustrated by an example. In section 4 we
introduce the link meta model and the link semantics.

2 Related Work and Traceability Link Utilization

From the engineering point of view traceability links are used to trace design
decisions during the development process. Both, functional and non functional

tracing allow following functional and non functional issues of the system devel-
opment [10]. They facilitate system comprehension by providing the required in-
formation about relations between artefacts and entities, e.g. the scenario based
approach described in [7]. A traceability model is used to define the required
entities and relations during the software development, e.g. in [8]. The definition
of relations as traceability link types is important for the utilization of the model
information. Unfortunately, the definition of a standard set of traceability link
types is still an unresolved issue. However, for a tool support of design evolution
a semantic differentiation of the traceability link types is needed. Due to differ-
ent research goals, a high number of traceability link type definitions has been
established, e.g. in [9] or [8]. As a step toward simplification and abstraction, we
will later restrict ourselves mostly on the implementedBy traceability link type
plus the dependency relations of the modelling language UML2.

Traceability Link Utilization. Link types should be defined in a way suitable for
the intended usage. In the following we list a set of activities in which the links
are used, together with the goals of using them.

Verification of (forward) engineering activities: identification of the input to
an engineering activity (e.g. requirements, goals, models, risks); understanding
and making a decision; verification of the completeness of an activity; verification
of the design rules applied.

Change impact analysis: identification of all entities depending on the changed
one; understanding the type of dependency to a related entity in order to identify
the necessary way of changing it, accordingly.
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Software comprehension and reverse engineering: identification of all related
entities to the one in focus; understanding the type of relation between the entity
in focus and a related one; identification of abstractions, e.g. design patterns,
architectural styles, principles.

Identification of the source of a decision or requirement: identification of
the stakeholder who demanded a particular property; justification of a decision
effort; resolution of a set of contradicting requirements.

Decision support: understanding the influence factors and the goals of a deci-
sion; establishment of proposals for solutions; evaluation of alternative solutions.

System configuration and versioning: identification of constraints between
components; identification of necessary changes to resolve a constraint; identifi-
cation of differences between two versions of the same artefact and their impact
on other ones.

3 Traceability Approach for Design Decision Support

3.1 Architectural Design Decisions for Evolvability

Decision-making and assessment are both critical activities for the success of de-
velopment processes because they apply the success criteria. They are performed
during and after work on artefacts. Assessments have to be performed as early as
possible to provide early feedback for developers and to minimize rework. They
provide the means to control iterative development processes.

Elaboration of the criteria for the assessments. In the following, we will ap-
ply evolvability as one criteria for architectural quality in long-term development
projects. It is influenced by an appropriate use of the concepts of abstraction,
delegation, modularization [4], conceptual integrity [5] and separation of con-
cerns [6]. Beside these aspects, there are additional ones related to general issues
of software development processes, such as the availability of a proper set of doc-
umentation. We will focus on the concepts of modularization, encapsulation and
separation of concerns for the assessment of the goal evolvability. Additionally,
the ease of change at architectural level is an important criterion. Problems arise
from effects called scattering, tangling and insulated artefacts, which hamper the
above mentioned criteria and the quality attributes. Based on a traceability ap-
proach and on the set of defined traceability links we introduce indicators (see
section 3.3), which enable us to analyze, reveal and reduce these effects.

Artefact Categories. In our approach, we consider relations between require-
ments, architectural elements and implementation. The key idea is to enable
a tracing of all software elements back to the requirements. According to the
method used for the system development, different artefacts are involved. Within
a feature driven development we consider four types of artefacts: features (F),
architectural components (A), classes (C) and implementation artefacts (I). Ex-
amples for I type artefacts are configuration units.

Typical effects. From a point of view of changeability, a 1:1 relation between
dependent objects is the most effective one (Fig. 1 left). In such a case the change
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of a feature f0 requires only the change of the precisely related component a0.
Following all related objects, the ideal but usually not realistic case is that each
object does not have more than two traceability link connections. In this case
the alignment of components to features is possible. It enables minimal invasive
changes, as the features can be exchanged by code composition.

a0f0 c0 i0

F A C I

a1f1 c1 i1

c2 i2

i3

a2

a3f2 c3 i4

c4 i5

i6

f3a4f4 c5 i7

a5f5 c6 i8

F A C I F A C I

... ...

Fig. 1. Ideal case (left), feature scattering (center), feature tangling (right).

In practice, more dependencies have to be considered. A high number of de-
pendencies means that more artefacts are affected by a change resulting in a
higher maintenance effort and a reduction of the variability. The two important
types of effects are discussed using Fig. 1. Feature scattering (Fig. 1 center)
means that one feature f1 is implemented by more than one architectural com-
ponent – in this case the components a1, a2 and others. In the case of feature
tangling, an architectural component is responsible for more than one feature
(Fig. 1 right) e.g. the implementation of feature f2, f3 and others is tangled in
component a3. If one of these features has to be removed, the component a3

has to be analyzed and split into appropriate parts, with a much higher effort
than just the removal of one component. In order to improve the flexibility of a
system concerning feature variability, all variability points should be aligned in
a way that each of them is related to exactly one optional feature.

Corresponding artefacts depending on the evolution of one feature, e.g., sys-
tem components and classes are related by traceability links. The right part of
Fig. 1 shows an example: the class traceability enables a discrimination between
the relation of c3 and f2 (indicated by a solid arrow) from the one between c4 and
f3 (dashed arrow). An impact analysis for feature-related changes is facilitated
by this discrimination.

3.2 Types of traceability links and artefacts

In the following, we will show a cutout from an industrial IT infrastructure
project for illustration purposes. For the chosen cutout it is not necessary to
consider implementation artefacts. The set of features F and the considered
subset F ⊆ F both are contained in the feature model. The set of architectural
software components A and the considered subset A ⊆ A are part of the archi-
tecture model. The set of classes C and the considered subset C ⊆ C are part of
the realization (design) model. The traceability links, which are required for the
later evaluation by the indicators (section 3.3) are defined in Table 1.
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Traceability Cat-
egory

Traceability-Link-
Type

Link-Source Link-
Destination

Link-Symbol

Component
Traceability

implementedBy Feature Component f  A

Class Traceabil-
ity

implementedBy Feature Classes f  C

Component Re-
quire Relation

use Component Component a 7→ A

Table 1. The used set of traceability links.

Component Traceability. Each component contributes to a set of require-
ments. Such a relationship is expressed by the implementedBy traceability link
pointing to components that implement a set of features.

Class Traceability. Software components consist of a set of classes and vice
versa a class c is related to exactly one software component in order to imple-
ment at least one part of a feature. For classes the same traceability link type
implementedBy is used as for features and components.

Component Require Relation. Similar to class traceability this kind of use of
traceability links describes the relationship between two components in which
one component needs the others to implement the related feature.

3.3 Metrics for evaluation: Scattering and Tangling

The above defined traceability links are used to establish indicators – often called
metrics – which enable us to evaluate architectural design decisions regarding
the quality attributes for evolvability. The indicators are accompanied by actions
for problem resolution and explained in the following, whereas section 3.4 illus-
trates their application during the evolutionary development. Due to the space
limitation, the insulated features effect cannot be discussed here. The traceabil-
ity link based indicators defined here, together with a variety of other indicators
[11] are applied for design decision support and architectural evaluation.

Feature Scattering. Feature scattering affects the evolvability of a system
because the change of one feature demands changes of more than one compo-
nents, thus leading to higher effort and to a higher probability of mistakes than
in the ideal case. On the architectural level, feature scattering refers to a rela-
tion between one feature and more than one components. In order to avoid a
division by zero while calculating the feature scattering indicator, all insulated
features and insulated components have to be removed before. The traceability
link type necessary for the indicator is indicated within the definition using the
traceability link symbol defined in Table 1.

Definition: Feature Scattering Indicator

fsca is based on a ∈ A, f ∈ F and is defined as follows:

sca (f) := |{a : f  a}| − 1, and (1)
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fsca (F ) :=

∑

f∈F

sca (f)

|F | · |A|
, fsca ∈ [0, 1) . (2)

The more features are scattered into components, the worse the evolvability of
the software gets and the closer the result of the indicator moves to 1. The
maximum value of 1 is reached if |a| approaches infinity and each feature f ∈ F
is implemented by all a ∈ A.

Resolution: Reducing feature scattering

A reduction of the feature scattering could be achieved (a) by splitting up
the features into several ones starting with the feature with the highest value
for sca (f), (b) by merging components to reduce the number of involved
components.

Feature Tangling. Feature tangling refers to relations between more than
one feature and one component. In order to avoid a division by zero while cal-
culating the feature tangling indicator, all insulated features and insulated com-
ponents have to be removed before.

Definition: Feature Tangling Indicator

The Feature Tangling Indicator ftang is defined as follows for a ∈ A:

tang (a) := |{f ∈ F : f  a}| − 1, and (3)

ftang (A) :=

∑

a∈A

tang (a)

|F | · |A|
, ftang ∈ [0, 1) . (4)

The more features are tangled to one component, the more difficult is the adap-
tation of this component and the closer is the result of the indicator to one. The
maximum value of 1 would be reached if |f | would approach infinity and each
component a ∈ A would implement all features f ∈ F . An example for ftang is
shown in section 3.4.

Resolution: Reducing feature tangling

A reduction to the feature tangling effect could be achieved by (i) splitting
up the component starting with the highest number of tang (a) into several
components, each with a reference to the corresponding feature, or (ii) by
merging features to reduce the number of involved features.

3.4 Illustrating Example

We illustrate the application of our traceability approach by evaluating the archi-
tectural solution of an Administration System (ADS) part of an IT-Infrastructure
by using the indicators defined in the previous section. We will examine one de-
velopment iteration (we call it evolution step) and its rework. The goals are
evolvability and the ease of change on architectural level in order to support
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variability. Due to space limitations only a part of the IT infrastructure project
is visible in the example.

Evolution Step. All three features User and Application Management and
Datastore Adaptability are implemented at the levels of features, architecture
and classes. The feature Application Management allows to manage all appli-
cation specific information, whereas the feature User Management allows to
manage all user specific information of the IT infrastructure. As shown in Fig.
2, traceability links are used to express the dependencies between these models.

«implementedBy»

Results:
A ftang
1 2/3

F
3

fsca

0

Architecture Model Realisation Model

«component»
administration

Feature Model

ADS

Datastore
Adaptability

«implementedBy»

Architecture Model Realisation Model

User

UserService

Feature Model

AccessProvider ObjectProvider

UKey

DatastoreAccess Converter

UserManager

«implementedBy»

«implementedBy»

ADS

«component»
userservice

«component»
appservice

«component»
dataaccess

«u
s e»

«implementedBy»

«implementedBy»

Rework of the Evolution Step

Evolution Step

Results:
A ftang

3 0

F

3

fsca

0

Application
Management

User
Management

0..2

AppService

Application

AppManager

AKey«implementedBy»

«implementedBy»

AKey Application

AppService

AppManager

UKey

UserManager

UserServiceUser

ObjectProviderAccessProvider

ConverterDatastoreAccess

ADS

Datastore
Adaptability

Application
Management

User
Management

0..2

Variability
limited

Variability

flexible

«u
se»

Optional Feature
Mandatory Feature

Traceability Link
Use-Relation

Fig. 2. The evolution step (above) and its rework (below).

Change operations within each evolution step are recorded by traceability
links. A feature tangling effect is revealed by three traceability links starting
from each feature to the component administration. As defined in Table 1 there
are two types of traceability links, use between components and implementedBy

links between features and components as well as classes. Additionally, relations
between classes are considered.

The evaluation results using the indicators are summarized in Fig. 2 in small
tables at the lower left. The result ftang = 2/3 indicates that there is a tan-
gling between the features and the architectural component, which hampers the
evolvability of the ADS system. In addition to evolvability it is important to
achieve a high flexibility regarding changes of features. To support variability
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at architectural level, the components shall be used independently; and the cus-
tomers can select a random set of optional features, e.g. User Management or
Application Management and their combination. The application of the indi-
cators reveals that the system has a limited variability because of the feature
tangling: the two features User and ApplicationManagement have to be de-
ployed even if only one is needed. In this case the component administration
consists of classes from both features, as indicated in Fig. 2 by corresponding
shades of grey. With the resolution actions these limitations will be resolved by
the following rework.
Activities for improvement. The tangling has to be eliminated by splitting the
component administration into three architectural components. The traceabil-
ity links indicate that a decomposition into components related to features is
possible. The result of the resolution actions is presented in the lower left of Fig.
2. Comparing the results of the evolution step with those of the rework shown
in the tables, we state a resolution of the feature tangling from ftang = 2/3
down to ftang = 0. As a result of the rework it is possible to use all optional
features without an overhead effort for configuration. However, the success with
this variability goal causes a dependency between the components.

4 Development of a Link Meta Model and a Link

Semantics for Design Decision Purposes

The definition of the traceability link semantics - together with the definition of
a metamodel - has a big influence on the resulting overhead effort for the link
maintenance and management. Following the goals of effort minimization, the
definitions are as lightweight as possible. This leads to link semantics with as
few as possible, but as many as necessary aspects covered.

We have discussed only a very small subset out of the bandwidth of trace-
ability link utilizations as mentioned in section 3. However, we are able to give
application details within the space limitations of this paper. Even if the es-
tablished link metamodel will have a limited scope, our procedure provides an
example for the development of traceability link frameworks based on the in-
tended ways of utilization.

For the design decision support regarding evolvability we only need links of
the types implementedBy and use. As explained in section 3, only links between
artefacts of the type feature, component and class are evaluated for a calculation
of the indicators. Information about the source and the destination of each link
is sufficient for this purpose. For the establishment and the evaluation of dif-
ferent alternatives for design decisions, additional traceability links are required
to evaluate the priority of competing design goals. These links connect compo-
nents and classes to features and are of the type implementedBy. As additional
information, these links carry design decisions about the way in which influence
factors are considered. During the mentioned activities for improvement, new
traceability links are established however they do not cover more information or
additional types than already mentioned.
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The necessary information for the traceability link can be represented in a
metamodel definition. Due to the limited scope we expect less information than
mentioned in works with a broader scope, e.g. our earlier work [2]. The resulting
definition is expressed using UML as a metamodel as shown in Fig. 3.

TraceabilityLink
startElement: ModelElement
endElement: ModelElement
developer: String

TraceabilityLink
startElement: ModelElement
endElement: ModelElement
developer: String

Decision
goal: NonfunctReq
Decision
goal: NonfunctReq

SolutionAlternative
solution: String
SolutionAlternative
solution: String

choice

1alternatives  *

1
decision

LinkType
name: String
LinkType
name: String

1
linkType

Fig. 3. Traceability Link Metamodel.

The semantic information is covered by the definitions of the link types and
artefact types, as well as by the rules which apply to the links. We can distin-
guish rules at different levels: regarding context-free syntax, context-sensitive
syntax, static and dynamic semantics. Rules regarding dynamic semantics are
not considered so far. As examples, we mention a few rules related to syntax:
1. Each feature is related to one or more components by an implementedBy link.

2. Each component is related to one or more classes by an implementedBy link.

3. Each component is related to one or more features by an implementedBy link.

4. Each class is related to one or more components by an implementedBy link.

The rules for link semantics express design rules. We can distinguish rules
of different categories: (a) Very general rules representing general engineering
principles, e.g. decomposition and abstraction, (b) method-specific rules, e.g. a
rule about the mapping of non-functional goals to functional solution principles
according the architectural method by Bosch [1], and (c) domain-specific rules,
e.g. a rule which type of response is valid for a certain type of event in a specific
telecommunication protocol. We have to state, that only a few rules have criteria
which are precise enough to enable clear statements. They can be implemented
in tools for an automatic evaluation and verification of models. Most of the
precise rules belong to the syntax-related ones. Unfortunately most semantic
rules cover less strict criteria; therefore they provide only degrees of fulfillment
between true and false. They can be used for human inspection only, but they
provide valuable hints and enable a reduction of the search space. Therefore they
increase the efficiency of an inspection by reducing the effort and by enabling a
concentration and an increased precision.

We just want to mention that there is another type of rules frequently called
heuristics which have even less clear criteria. They are used for other ways of
link utilization e.g. for impact analysis which are out of the scope of this paper.
They are applied e.g. for controlling how far links are tracked and to what level
of detail links are maintained, depending on an actual risk.
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5 Conclusion and Future Work

In this paper we have shown the application of traceability links for the support
of architectural design decisions. Evolvability was considered as an example of
a quality property of architectures. By an example it was shown how links have
to be defined in terms of syntax and semantics, to provide the best support for
architectural decisions. Even if the purpose is in some way specific, the procedure
can be expanded to further ways of link utilization.

The idea of model-based development behind our research aims the coverage
of all necessary information in models and the used traceability links. One could
dispute that this leads to heavy-weight development processes with a high mod-
eling effort, but a strong restriction to the necessary parts of information and
an exhaustive utilization of the models helps to increase the overall efficiency.
The next steps of our work include the investigation of the necessary adoptions
for other ways of link utilization including a refinement and a revision of the de-
fined link semantics, the evaluation of applicability of these link definitions for
the other utilization activities, and the extension of the rule set during empirical
research. The link definitions represent a prerequisite to the development of a
comprehensive tool support to provide a (partly) automated link management.
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