

Abstract— For the architectural design of component-based

systems, reusability, flexibility and several other non-functional
properties constitute important goals. The component design
determines if the requirements to a system can be fulfilled, if the
components can be composed easily and if they can be used in a
flexible way as it is crucial especially for mobile and distributed
applications. Due to the complexity of the design task,
architectural design methods, which solve the following four
steps, are necessary. First, a transition between problem
specification and solution has to be performed. Second, the non-
functional requirements have to be implemented by functional
solutions. Third, the components have to be defined in such a
way that they enable a high flexibility, evolvability and
reusability. Fourth, the design has to be developed in
conformance to the established component technologies.
Available architectural design methods solve some or parts of
these tasks, but methods and a process enabling an all-embracing
design methodology are missing. This paper presents the
Feature-Architecture Mapping Method (FArM) as a means for
the architectural design of well-separated components
conforming to plug-in frameworks; and it places FArM in a
process of component design especially for the needs of mobile
and distributed applications. By performing the architectural
design activities by operations on features instead on
components, the principle of separations of concerns can be
applied as well as the goals of variability and flexibility can be
achieved. The method has been evaluated through its application
in a number of domains including the mobile domain, the
Integrated Development Environment domain and in a neural
network trainer product line.

Index Terms—Architecture, Design methodology, Modeling,
Software maintenance, Software reusability,

I. INTRODUCTION

N many domains, the software systems have to fulfill
frequently changing requirements, combined with a
demand for customization and for a high efficiency of the

development. Component-based software systems are able to
satisfy this demand. However, because the systems are
frequently of a high complexity, the design of the components
and of the software architecture is a challenging task.
Component-based techniques have been on the focus of the

Manuscript received September 25th, 2008.
M. Riebisch is with the Technical University of Ilmenau, Germany (phone:

+49-3677-691459; fax: +49-3677-691220; e-mail: matthias.riebisch@tu-
ilmenau.de).

P. Sochos., was with the Technical University of Ilmenau, Germany. He is
now with a telecommunication company in Switzerland.

software engineering research during the last three decades,
because of the advantages of components for mastering the
complexity and as elements of reusability [13]. By hiding the
implementation details of the component behind their
interfaces, the dependencies between components can be
minimized; and there is a higher likelihood that a changed
requirement leads to only a local change and does not affect
wide parts of a software system. However, the latter will only
occur, if the component interfaces are not changed. Therefore,
software architectural methods and principles have been
developed to design robust structures of components with
stable interfaces.

The software architecture plays a very critical role for
different aspects that are important for a successful
development of software systems. As a very basic aspect, the
architecture assigns the responsibilities to the parts of the
realization, e.g. to the components. To mention a very
important aspect, an architecture has to guarantee that the non-
functional requirements can be fulfilled by the later
implementation built on it, e.g. efficiency and response time,
scalability, reliability and safety. Bosch has described a very
fundamental principle for solving the last aspect: for non-
functional requirements, functional solutions are elaborated,
which can be implemented easily [3]. Since non-functional
requirements are often vague, incomplete and competing,
methods for architectural decision-making have to be applied,
e.g. [16].

For customizability and an ease of change, a system has to
be variable and flexible. Components—and the architecture
they are based—on can be prepared for a later adaptation, as
well as for reusability and evolvability. In software product
lines, measures for the preparation of future product variants
are taken, to enable later changes with a low effort. To obtain
information about possible future changes of requirements,
domain analysis methods have been developed, e.g. [8].
Information about common and variable features of
applications within a domain is represented by feature models
(FM). UML models are not able to express variants, but
through traceability links to FMs, variable aspects in different
views can be described [12]. A feature model represents the
properties of all systems in a domain structured by refinement
relations in a tree-like structure, with additional relations
between features in different subtrees. There is a distinction
between features which are part of all systems in the
domain—the so-called mandatory features—and ones which
are only covered by some of the systems—the so-called

A Component Design Process based on Feature
Model Transformations

Matthias Riebisch, Periklis Sochos, Technical University Ilmenau

I

Proceedings of the thirteenth International Workshop on Component-Oriented Programming (WCOP 2008)

45

variable features. Fig. 3 shows an example.
For software product lines and highly evolvable systems it

is very important to apply the principle Separation of
Concerns during the architectural design for an extended
alignment of software elements according to features. This is
essential because features are usually requested completely,
and in this case a particular element is just added or removed
without the need for further changes.

In this paper, the Feature-Architecture Mapping Method
(FArM) is presented as a design method for developing
independent components according to the principle Separation
of Concerns. This method uses the FMs resulting from a
domain analysis. The FMs are transformed similarly to the
FAD method mentioned above until independent features
have been developed which are ready for an implementation.
The FArM method is briefly described in section II.

Furthermore, the paper presents a design process for
components fulfilling the requirements mentioned above.
Within the FArM method, other methods are integrated e.g.
for the resolution of feature interactions and for the
determination of the communication relations between the
later components. Later in that process, a plug-in component
is developed according to each feature. The design by contract
principle [9] can be applied as a later design step in the
process. This process is contained in section IV of the paper.
The FArM method has been evaluated through its application
in a number of domains including the mobile domain, the
Integrated Development Environment domain and in a larger
neural network trainer product line [15]. Some of the
illustrating examples are taken from the MobilePL project
which was described in an earlier publication, together with
more information about the evaluation [14].

The contribution of this paper is seen in the presentation of
a new design process based on the FArM method, and in the
explanation of the correspondences between the different
principles and methods during the architectural design. As a
position paper, its intention is to inspire the discussion about
the architectural design process and about the constraints to
this process in terms of target implementation platform, design
methodology, domain, and project complexity and size. It
addresses several workshop topics, e.g. development
processes, relating architectural methods to components,
design for variability and extensibility.

II. RELATED WORKS

There are some related design methods which are based on
feature modeling and which are considering reusability. The
two most important examples are FeaturRSEB [5] and KobrA
[1]. Both have been developed for the development of
software product lines, and both exploit use cases to develop
architectural components. In order to establish a mapping
between features and architectural components, FeatuRSEB
introduces traces while KobrA uses a so-called decision model
in a very similar way. However, through the derivation of
components from use cases the effect of feature scattering and

tangling occurs. Since a feature usually affects more than one
use case, several components are related to it. Furthermore,
the implementation of one component is frequently
contributing to several features. Both effects lead to a reduced
flexibility and a higher impact of feature changes to other
components. Nevertheless, the use case-driven approaches for
component design result in a high encapsulation and a low
coupling, and they enable an application in domains with
medium complexity. Since a growing number of features lead
to an exponential increase in the number of traces and
decision models, the maintainability becomes a critical factor
for complex systems. In our approach we relate the
components to features instead of use cases to overcome this
problem.

Generative programming techniques [10] aim at a
composition of systems from elements, which are built
according to the principle separation of concerns. If features
are applied as the criteria of the separation, one element
contains only those code parts that belong to one feature. If
applying usual programming languages, these elements
represent rather fragments than complete components. For a
composition, the needed elements are weaved together using a
generator. However, the resulting evolvability is limited
because of hidden dependencies between the elements. The
development of a generator requires a very high effort; it is
only feasible for stable, mature domains. Furthermore, these
technologies are not available on every programming
platform, which is of special significance for mobile and
distributed applications. Compared to the weaving of
Generative programming approaches, plug-in components
offer advantages in terms of the composition.

Among the several architectural design approaches the
method Functionality-based Architectural Design (FAD) [3]
which is part of the Quality-oriented Software Architecture
Design method (QASAR) is mentioned here as a strongly
related one. FAD uses core abstractions of functional concepts
– the so-called archetypes – to derive architectural
components. During the implementation, architectural styles
and patterns are applied. For the implementation of non-
functional properties, archetypes with functional solutions are
introduced, which we consider as a very powerful principle.
For the important step of the archetypes’ identification FAD
provides several hints, however, FAD considers it as a mainly
intuitive, creative step. Hence there is no mapping mechanism
the missing guidance is a challenge for the developers while
developing complex systems. We embed the elaboration of
functional elements for non-functional requirements into our
method, and introduce a strong mapping between components
and features instead of use cases.

III. COMPONENT DESIGN BY FEATURE

MODEL TRANSFORMATIONS IN THE
METHOD FARM

The Feature-Architecture Mapping Method (FArM) aims at
a high flexibility regarding changing requirements and a low

Proceedings of the thirteenth International Workshop on Component-Oriented Programming (WCOP 2008)

46

impact of such changes to the software architecture. Because
many changes of requirements concern complete features, the
method increases the mapping between features and the
software architecture. The method supports the design of
components, which ideally depend on only one feature. It
therefore emphasizes the principle separation of concerns. If a
feature is introduced or changed, the only change to the
implementation consists in an insertion or replacement of one
or a few components related to this feature. The method
FArM is developed for component-based systems using a
component model with plug-in interfaces, which are
frequently used for example in mobile and distributed
applications. FArM’s advantages in comparison to generative
programming approaches consist in an improved evolvability

and in availability for a broad variety of programming
languages and platforms.

FArM is performed as an iterative process with four phases
as shown in Fig. 1. It starts with an initial FM (see Fig. 3
below) which is produced as a result of a usual domain
analysis method, e.g. FODA. Each feature in the FM
represents one or a set of requirements which are usually
specified by other UML models, for example in form of use
cases, behavioural model or domain model. The relations
between the features and the elements of the requirements
models are represented by traceability links. Since features are
related to each other by refinement relations, the FM
represents a functional decomposition of the requirements
from a customer’s point of view.

Transformation 1: NAR & quality features

Transformation 2: Architectural requirements

Transformation 3: Feature interaction

Architecture development

Fig. 1. FArM Phases

The first FArM transformation deals with two aspects, the

so-called Non-Architecture-Related (NAR) and the Quality
features. Examples for NAR features in a mobile handheld
project are Weight as a physical feature or Competitive Market
Price1 as a business feature (see Fig. 3). Physical features are
implemented directly by hardware solutions, and business
features by managerial solutions. After resolution the NAR
features are not present in the resulting transformed FM.

Quality features represent quality requirements which are
important for the project’s stakeholders. Examples for quality
features are Efficiency and Security. Quality features have
usually a broad impact on a software system. Since the
method aims at a strong mapping between features and
components, the goal of this first transformation is the
production of a FM with only functional features whose
responsibilities can be expressed as some sort of function and
are thus implementable. For many quality features, functional
solutions can be identified or created, in a very similar way as
described by the FAD method [3] mentioned in section II.
These quality features are not present in the resulting
transformed FM. As an example, Security is satisfied as set of
subfeatures including the feature Firewall, which can be
implemented later by a functional solution. All remaining
quality features are resolved by establishing profiles and then

1 Both examples and all following ones are taken from the MobilePL

project, which was performed as a product line case study in the domain of
mobile phones. The product line is based on an API [14] and on Symbian OS.
Data are exchanged between a handheld and a MobilePL enterprise server
with a Push feature as a key element.

assigning quantitatively defined responsibilities to other
features in a very similar way to the QASAR method [3]
mentioned in section II. According to that method, the
Efficiency feature from our example is refined by a
quantitatively specified profile for time behavior and memory
usage. Based on this profile, quantitative responsibilities are
defined for other functional features. The resulting FM after
this first transformation contains only functional features,
which are later implementable to components.

The second transformation handles Architectural
requirements. These requirements are not visible from the
customer perspective, however they are important for a
conformity to the architectural style or for architectural
quality, e.g. for a robust and maintainable architecture. The
goal of this transformation consists in the addition of new
functional features or the extension of existing ones to satisfy
these requirements. An examples for illustration is the
introduction of a feature HTTP Authentication that can be
integrated into the pre-existing feature Web Browser. This
transformation therefore introduces aspects important to the
system architects. They are added to the customer-related
aspects stemming which are already contained in the initial
FM. This second transformation contributes to a balanced mix
between both aspects.

These first two transformations deal with the identification
of most of the features needed to implement an architecture
that tightly maps to the functional features. For each of these
features a respective architectural component can be
developed, matching the feature’s specification. The next

Proceedings of the thirteenth International Workshop on Component-Oriented Programming (WCOP 2008)

47

transformation further prepares the implementation of these
components by defining and optimizing their interfaces.

The third transformation identifies and resolves feature
interactions. The identification of feature interactions is based
both on the domain specific feature communication needs, as
well as on the hierarchy relations between the features in the
FM. The identified feature interactions are then resolved and
optimized. In this transformation, the various feature
interaction resolution techniques are adapted [4]. This
transformation effectively contributes to the decoupling of the
respective architectural components and the enhancement of
the system maintainability. The optimization of the feature
interactions has also a positive impact on the communication
between the respective architectural components, because the
interfaces are derived from the feature interactions. It
contributes to the encapsulation of components and the
enhancement of the system's variability.

After the three transformations the architecture
development phase follows next. The system components
have been derived together with their interfaces. If not
previously done, the developers have to decide for a specific
reference architecture, a component model or an architectural
style as the architectural context. Examples are the Layers,
Microkernel or Blackboard architectural style. This step will
extend some of the components regarding architecture related
interfaces, too, for example if a Microkernel architectural style
is chosen, the components’ interfaces are extended by
methods for dynamic loading and termination.

IV. DESIGN PROCESS FOR PLUG-IN COMPONENTS
Component-based composition techniques using plug-in

mechanisms contribute to a high flexibility, evolvability and
variability of the resulting systems. Since they are well-
suitable for mobile and distributed applications they are
chosen as the target composition technique for the process
presented here. However, the presented method can easily be
adapted to other composition technologies as well.

Generally, the design process is very similar to those of
many product line approaches since there is the common goal
of a planned reusability (see Fig. 2). It consists of two main
parts, one for the design of the reusable assets and the
reference architecture, and the other for the development of a
concrete product by composition and adaptation. Focusing on
component design, we care about the first part, shown in the
upper row of Fig. 2.

In the first phase of the process, the requirements to the
components and the architecture are elaborated. State of the
Art domain analysis techniques can be applied in this phase,
e.g. FODA [8]. A FM is developed as a result, expressing a
stepwise refinement of the features with their variability, for
the applications in the domain. Fig. 3 shows an example from
the MobilePL project. A proper consideration of non-
functional properties has to be especially emphasized. UML
diagrams for requirements modeling are related to the features
to provide more detailed information about structure and
behavior.

Domain Analysis
e.g. FODA

Component Design
FArM

Component Design
FArM

Component
Implementation

Requirements
Analysis

System
Design

System
Implementation

Featuremodel Reference Architecture Components

Product Line
Engineering

Product
Engineering

Repository

Fig. 2. Process Overview

Fig. 3. Initial Featuremodel of MobilePL (partly)

Proceedings of the thirteenth International Workshop on Component-Oriented Programming (WCOP 2008)

48

Fig. 4. Featuremodel of MobilePL after the FArM Transformations (partly)

In the next phase the three FArM transformations are

performed as described in the previous section. New features
are introduced; others are just copied or not taken over into
the resulting FM of each step. In Fig. 4 parts of the resulting
FM are shown. For details of the transformations we refer to
other works [14][15] due to the space limitations.

From a more abstract point of view, the performed
architectural design steps are strongly corresponding to those
of other architectural design methods, e.g.

– the elaboration of functional solutions for non-
functional requirements – similar to FAD,

– the resolution of component interdependencies – here
performed by feature interaction resolution methods,
and

– the definition of the components’ interfaces – here by
analyzing the communication relations between the
features.

Since all these steps are performed by manipulating features
despite of concrete components, the components can be
designed and implemented afterwards considering the
constraints of an actual component model, an existing system
architecture and other sources. These design and
implementation steps follow the principle of design by
contract.

The design decisions are stored as traceability links relating
the input and the result of each development activity. These
links can provide the connection between UML models for
design activities and the feature models. For the MobilePL, a
prototype tool for FArM was built based on the DOmain
Modeling Environment tool DOME. In other projects within
an industrial environment we have successfully used a
commercial requirements engineering tool, e.g. IBM’s
RequisitePro, for managing the linkage between features and
design models.

V. CONCLUSION

In this paper an architectural design method and a design
process have been presented which facilitate the goals of
component-based systems: variability, flexibility and
evolvability, furthermore the satisfaction of the non-functional
requirements, the design of robust components with stable
interfaces. These results are achieved by developing

components for plug-in platforms which are highly
independent and mostly corresponding to a single feature. The
novelty of the approach consists in performing many of the
architectural design activities by FM transformations. In this
way, FMs become an integrated part of the architectural
model. The foregoing activities for example the domain
analysis fit seamlessly into the design process, and the same
holds for the implementation and composition activities. In
comparison to well-established object-oriented design
methodologies – e.g. the Unified Process [7] – which are
characterized as use case-centered, the FArM design method
and the introduced process are feature-centered. The latter
aspect leads to an applicability of the method for projects
which focus on variability, reusability and planned pre-
fabrication of software, which are typical for component-
based development. The applicability has been proven by an
application in different domains [15].

The presented work is part of a continuous research on the
evolvability of software systems. Future works will deal with
the utilization of traceability concepts for verification and
validation purposes, as well as with effort for enhanced tool
support and automation.

REFERENCES
[1] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver

Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paech, Jurgen Wust,
Jorg Zettel: Component-based Product Line Engineering with UML.
Addison-Wesley, 2002.

[2] Barry W. Boehm; John R. Brown; Hans Kaspar; Myron Lipow; Gordon
J. MacLeod; Michael J. Merritt: Characteristics of Software Quality.
New York, NY: North-Holland Publishing Company, 1978.

[3] Jan Bosch: Design & Use of Software Architectures-Adopting and
Evolving a Product Line Approach. Addison-Wesley, 2000.

[4] Muffy Calder, Mario Kolberg; Evan H. Magill, Stephan Reiff-
Marganiec: Feature Interaction - A Critical Review and Considered
Forecast. In: Computer Networks, Elsevier, v. 41 n.1, 2003.. pp. 115 –
141.

[5] Martin Griss, John Favaro and Massimo d'Alessandro: Integrating
Feature Modeling with the RSEB. Proc. ICSR98, Victoria, BC, IEEE,
June 1998, pp. 36-45.

[6] Standard Software engineering -- Product quality -- Part 1: Quality
model (ISO 9126-1). ISO, 2001.

[7] Ivar Jacobson, Grady Booch, James Rumbaugh: The Unified Software
Development Process. Addison-Wesley, 1999.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report,
Software Engineering Institute, Carnegie Mellon University, 1990.

Proceedings of the thirteenth International Workshop on Component-Oriented Programming (WCOP 2008)

49

[9] Bertrand Meyer: Applying "Design by Contract”. In: IEEE Computer,
vol. 25, no. 10, October 1992, pp. 40-51.

[10] H. Ossher and P. Tarr. Software Architectures and Component
Technology, chapter Multi-Dimensional Separation of Concerns and the
Hyperspace Approach. Kluwer, 2001.

[11] David L. Parnas, On the criteria to be used in decomposing systems into
modules, Communications of the ACM, v.15 n.12, 1972. pp.1053-1058.

[12] Matthias Riebisch, Detlef Streitferdt, Ilian Pashov: Modeling Variability
for Object-Oriented Product Lines. In: Buschmann, Frank; Buchmann,
Alejandro P.; Cilia, Mariano (Ed.): Object-Oriented Technology.
ECOOP 2003 Workshop Reader. Springer, Lecture Notes in Computer
Science , Vol. 3013, 2004, pp. 165 - 178.

[13] Johannes Sametinger: Software Engineering with Reusable Components.
Springer, 2001.

[14] Periklis Sochos, Matthias Riebisch, Ilka Philippow: The Feature-
Architecture Mapping (FArM) Method for Feature-Oriented
Development of Software Product Lines. In: Proceedings 13th Annual
IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS06), Potsdam, Germany, March 2006,
pp. 308-316.

[15] Periklis Sochos: The Feature-Architecture Mapping Method for Feature-
Oriented Development of Software Product Lines. Doctoral Dissertation,
Technical University Ilmenau, 2007.

[16] Sven Wohlfarth, Matthias Riebisch: Evaluating Alternatives for
Architecture-Oriented Refactoring. In: Proceedings 13th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS06), Potsdam, Germany, March 2006,
pp. 73-79.

Proceedings of the thirteenth International Workshop on Component-Oriented Programming (WCOP 2008)

50

