Architecting for Evolvability by Means of Traceability and Features

Robert Brcina, Matthias Riebisch
Technical University of Imenau
robert.brcingmatthias.riebisch@tu-ilmenau.de

Abstract erties related to the ability of being changed with a low
effort, especially in terms of a low impact of changes [7].

The frequent changes during the development and usagdeven if the evolvability is partly influenced by other factor
of large software systems often lead to a loss of architec-too, we consider architectural quality as the main criterio
tural quality which hampers the implementation of further In our research we focus on evaluations with respect to ar-
changes and thus the systems’ evolution. To maintain thechitectural principles in order to discover deficiencieg, e
evolvability of such software systems, their architechas the separation of concerns principle and criteria on depen-
to fulfil particular quality criteria. Available metrics ah dencies in architectural models. These evaluations are ap-
rigour approaches do not provide sufficient means to eval- plied during design decisions, for early feedback and s par
uate architectures regarding these criteria, and revieerss r of architectural assessments.

quire a high effort. This paper presents an approach for The evolution of complex systems can be facilitated by
an evaluation of architectural models during design deci- modelling traceability. Traceabilitg the degree to which a
sions, for early feedback and as part of architectural as- relationship can be established between two or more prod-
sessments. As the quality criteria for evolvability, madel ycts of the development process ... for example, the degree
lations in terms of traceability links between feature mpde g which the requirements and design of a given software
design and implementation are evaluated. Indicators are component matcft]. By linking artefacts of analysis, de-
introduced to assess these model relations, similar to met-sign and implementation, they support the changes by im-
rics, but accompanied by problem resolution actions. The proving e.g. the understandability of the design, the impac

indicators are defined forma”y to enable a tool-based eval- ana|ysis and the verification of Changes_ Hidden dependen_
uation. The approach has been developed within a large cies can be considered or even minimized.

software project for an IT infrastructure. Features constitute important criteria for structuring-sy

tems towards a minimized impact of changes, since the ma-

jority of changes affect features. Feature models [13]] [23
1 Introduction are used, e.g. to structure the common assets of a soft-

ware product line architectures [19] and variable compo-

During their usage, large software systems have to benents, which implement new features for new products. If
changed frequently. After a number of changes the deve|op_features are applied as the main criteria of system modular-
ers often have to notice a loss of architectural qualitysThi ization, any changes of feature configurations can be per-
effect is called architectural decay or architecturaltdeind ~ formed by changes of whole components thus minimizing
inhibits the implementation of further changes. However, a the effort for source code manipulations. Experiences with
business-critical system cannot be used if it is not possibl Software product lines and IT infrastructure approachgs e.
to change or adapt it according to new or changed require-[22] have shown the advantages for both a short time-to-
ments or platforms. High risks arise, if products and ser- market for new features and a long-term system evolution.
vices cannot be provided anymore, or if a new system has In this paper, the means for assessing the architectural
to be developed as a replacement. Due to these risks and duguality are accompanied by actions for resolving the iden-
to the high development costs of such a system, a long life-tified problems. The presented approach is intended for a
span is required, and all changes have to be performed in amsage within an evolutionary process of software develop-
evolutionary way - with keeping the possibility of further ment and redesign. It aims at the prevention of the effect of
changes by preventing negative impact on the architecturalarchitectural decay. In contrast to works on quality metric
quality. our approach provides actions for the resolution of the ar-

The evolvability of a software system characterizes prop- chitectural deficiencies which are discovered using indica

tors (others would call them metrics) for a system’s evolv- issues of software development processes, e.g. the avail-
ability. The approach has been developed in an industrialability of a proper set of documentation, of an appropriate
project for an IT infrastructure. However, due to the space tool support for changes and of a support for tests.

limitations, only a small case example of such a system can The relevant architectural quality properties are sirtyilar
be used to illustrate the application of the approach. to ones for maintainability e.g. analysability, changégbi
Contributions by other state of the art works are inves- 5nq stability — influenced by an appropriate use of the con-
tigated in section 2. Section 3 introduces the traceability cepts of abstraction, delegation, modularisation [15h-co
links and model relations relevant for evolvability. Based ceptual integrity [5] and separation of concerns [14]. The
on those, in section 4 the indicators and the corresponding|ast concept influences the impact of a change twofold: by
resolution actions are introduced. In section 5 the applica 5 redquced scattering the changes affect a lower number of
tion of the approach in an evolutionary development processcomponents, and many changes can be performed by re-

is illustrated by an example. placing whole components instead of changing them inside.

2 Related Work
2.2 Traceability Links Usage

2.1 Evolutionary Development Processes

and Evolvability From the engineering point of viewaceability links

. are used to trace design decisions during the development
Evolutionary development processes have been devel- g g P

. . : process. They facilitate system comprehension by storing
I?J?/\?de}'fc:):? Cm,gatse? i?qcuirl]ecse gfcr?itz?/ggefhgl?vgglI”felz(sirlld the required information about relations between artefact
: ' <y . . and entities. For example, the scenario based approach de-
while each cycle contributes functional changes, architec __ . . . :
. . scribed in [10] aims to capture traces by executing testscase
tural improvements or both. Later, we will call such a cy-

cle anevolution stepThe most development processes fail of the source code. &kaceability models used to define the
Pl lopment p required entities and relations during the software deyelo
to preserve the architectural quality during the sequence

of changes. and the effect called architectural deca Oc_ment, e.g. in [21]. Traceability links in different tracélab
ges, . Y ity models are often named differently in the context of the
curs preventing further changes. To prevent this effeet, th

; . projects vocabulary or domain. This leads to a high number

Staged Model [20] empha3|ze_s the evolution by structur- Pf traceability type definitions, as for example in [18], J17
ing the so-called software maintenance phase into several [21]
stages. Evolutionary changes are enabled by maintaining o o
the architectural quality of a system in the stage evolution The definition of a standard set of traceability link types
The evolvability of a software system as the ability of being 1S Still an unresolved issue, however for a tool support of
changed is depending mostly on two issues, first of all on .des.|gn evolut.|on a semantic differentiation of the tradeab_
architectural quality properties of the system and seagnda 1ty link types is needed. In the proposed approach we will
on the ability of the development process to keep it. mainly use the “implementedBy” traceability link type in-

The Extreme Programming technique XP [3] addressestrOdUCEd_ in [23]. In order to minimize the overall numl_)er
both issues by focusing on simplicity and flexibility. The ©f used link types, we apply existing dependency relations
refactoring techniques [12] extend XP to discover archi- Of several modelling languages: the provided dependency
tectural deficiencies — so-called Bad Smells — and to re-'elations within a component or class model of the UML2
improve the architectural quality by a sequence of simple [25] and the “require” relation between feature elements in
changes without affecting the overall behaviour of a sys- feature models [13].
tem. Both techniques are less suitable for large systems, In theory the creation and evolution of traceability links
because of 1) the missing usage of models and other meansan be separated by three activities [16], the definitioa, th
of abstraction, necessary for mastering a high system com-production and extraction of traceability links. But in pra
plexity, and 2) their limitation to small teams and shortsie tice the proper realization of these activities is still aleh
projects. lenge. Additionally, the more traceability links have to be

The method Test Driven Development [3] as another ex- considered manually the higher the effort for its mainte-
ample attempts to prevent the introduction of mistakes dur- nance. Thus, the support by tools is necessary in order to be
ing changes. Unfortunately, automated tests are unable table to disburden the development team as much as possi-
discover deficiencies in terms of architectural quality. ble. The development of a framework based on a knowledge

Other approaches dealing with the process issue arebase for the support of these activities and for the evaloati
mentioned in section 2.4. Additional aspects influencing of our approach was already started by the work of [29] and
the evolvability of a software system are related to generalmeanwhile used and extended during case studies.

2.3 Feature Modeling defined asny consideration that can impact the implemen-
tation of a program[11]. Unfortunately, the ternconcern

Feature models were introduced in the Feature Drivenis often used in a too general form and is equated to dif-
Domain Analysis (FODA) [13]. They are a well-established ferent artefacts such as all existing requirements of a soft
instrument for expressing variability, e.g. to distindquise- ~ ware system, which leads to misinteprations [9]. At this
tween requirements for different and common properties stage the definitions of concern measures, as stated by [11],
for a family of systems in a domain. In this sense a fea- do not make clear either the level of abstraction, such as
ture implies functional and non-functional propertiestt ~ implementation-related metrics, nor the modularity prop-
system, which will be implemented according to the con- erty of the target concern.
solidated requirements. The properties are relevant to end Generally speaking, metrics provide statistical informa-
users. Since they constitute an abstraction and generalisation rather than instructions for concrete actions, comiogr
tion of requirements, feature models enable a bridging of e.g. refactoring measures, concern scattering [9, 28] and
the abstraction gap [27] between requirements and designtangling [28], problem solutions or design decisions. We
Furthermore, traceability links can be used to relate featu have chosen the term indicators instead of metrics because
to design elements [23] in order to guide developers duringwe propose actions for solving the recognised problems as
their design decisions. In this paper traceability linka-co enhancements of the architectural process. We argue that
nected to features are evaluated by indicators as critéria o scattering and tangling of functionality is not only rethte
evolvability. program code or limited to concerns in the sense of aspect-

oriented development. Instead, requirements or featares i
2.4 Evaluation of Architectural Quality software product lines [19], and their properties (see €hap
by Metrics and Reviews ter 2.3) have to be considered and evaluated top down from
the beginning of their definition, their architectural deco

Since no property can be controlled that cannot be mea_positiqn and up to their implemgntation, and finall)_/ their
sured, the measurement of evolvability constitutes an im- €volution. To be able to do this we suggest, unlike [9]
portant issue. Two aspects have been considered by recerft” overall traceability and evaluation approach based on
works, the ways of assessing software systems and the influlraceability links. Regard to the development phase our
ence factors on evolvability. For assessing software tyali @PProach is scalable by considering different levels of ab-

properties such as evolvability, there are two fundamentaIStrac_tiO”- Features for example can be first connected to
approaches in the field of software quality management _architectural components and in a second phase structured
metrics and reviews. by sub-components such as classes.

Metrics constitute quantitative indicators of properties. ~ The metrics related to our approach address the scatter-
Quantitative evaluations lead to clear results if the synta ing and tangling of features from the point of view of trace-
and semantics of the subject are defined formally, e.g. inability related to [28]. Unlike [28, 8] it values the degree
the case of a programming languages. Existing metrics forof dependency by considering the ideal case of a 1.1 trace-
maintainability like complexity or cohesion are easy to ap- ability relation between two objects, such as features and
ply, but they do not consider the architectural aspects, tha architectural components (see chapter 3 for detailed-infor
a proper component structure affects the impact of changegnation). In addition to [8] we consider feature tangling, as
much stronger. Furthermore, they can be used much later irin the case of Feature Driven Development it is essential to
the development process and only on code level. Thereforgmeasure the degree of feature tangling indicating the need
they can hardly be used e.g. for the design decisions andor an architectural reconstruction.

for the architectural development. In contrast to the rostri Reviews and inspectionsconstitute another important
mentioned above, our approach is exploiting models and theway of assessing for software quality properties. Experts
relations within. inspect a piece of software regarding a checklist. They an-

Only a few works deal with evolvability, but the related alyze the solutions and record all defects, deficiencies and
property maintainability has been a subject of several in- faults. This way of assessing software quality is very ef-
vestigations. For the determination of the relevant infagen fective concerning the so-called ilities, e.g. maintaikab
factors, utility trees or the Goal Question Metric method ity and portability, because necessary actions are dyrectl
GQM are applied, or both. A good overview about works determined. Unfortunately, this positive effect depends o
on metrics for maintainability is given, e.g. by an SEl répor the human experts and their comprehension, which limits
[2], by Coleman et al. [6]. the usage of tools and the applicability to systems. An ex-

Aspects of evolvability are often considered within the ample architecture assessment method is the scenarid-base
field of aspect-oriented development, in whiclt@cern method Achitecture Level Modifyability Analysis ALMA
can be scattered into several code areas of the program. Iti$4]. Our approach using indicators is similar to metrics;

however, it is also includable in reviews, especially as it lead to a higher number of dependencies which have to be
proposes actions to solve indicated problems and deficienconsidered during all kinds of change activities, like pro-
cies integrated into design steps. gram comprehension or impact analysis.

This approach focuses on relations which enable an eval-

3 Relations between Feature Models. Archi- uation of all artefacts depending on the evolution of one fea
’ ture. Such artefacts include system components and classes

tectures and Realizations Reflecting Evolv- The right part of Fig. 1 shows an example: as without

ability the application of class traceability (following the linkttv

the solid line and starting from the feature to the class) the
Artefact Categories. In order to achieve or improve assignment betweery and f, is not possible. The same
evolvability, relations between requirements, architeadt ~ holds for the analysis of the impact of a change of feature
elements and implementation have to be considered. Thefs (dashed line). Furthermore, a comprehensive analysis
key idea is to keep the trace of all software elements back toof artefacts from several categories (e.g. features and com
the requirements. For the further investigation, the lthke ponents) and their relations (e.g. require or use relations
artefacts are grouped and categorized in levels (Fig. 1).is necessary in order to be able to evaluate the variability
According to the method used for the system developmentof the architecture and the consistence between feature and
different artefacts are actually involved. Within a featur architectural models, as part of an architectural assegsme
driven development we have at least four levels of artefacts
feature level (F-Level), architectural component level (A Types of relations. Unlike Fig.1 it is necessary to de-
Level), class level (C-Level) and implementation artefact scribe additional relations between artefacts as e.gethe r
level (I-Level). Examples for artefacts of the I-Level are tion between classes and features. For the illustrationisf t
configuration units or sections. approach we use a small part of the case study of an IT in-

frastructure approach. For this example it is not necessary
Typical effects. From a changeability and complexity to consider imp_lementation artefacts. The set o.f feaFures
point of view an 1:1 traceability relation between two ob- F and the considered subsEtc F.bOth are contained in
jects is the most traceable and simplest one (illustrated inthe feature model. The set of architectural software compo-
Fig. 1 left). In such a case the change of a featfyree- ne_ntsA and the considered subsétC A are part of the ar-
quires only the change of the precisely related componentCh'teCture model. The sets of clgsﬁéand th(_a considered
ao. Following all related objects, the ideal but usually not SUPSEL S C are part of the realization (design) model. In

realistic case is that each object does not have more thaﬁﬂe rollowmglwe.defgne ;he. redl_atlons Wh'Ch, are4reqU|red for
two traceability link connections. the later evaluation by the indicators (section 4).

In reality more dependencies have to be considered. A -)
higher number of dependencies means that more artefact§omponent Traceability. Each component contributes
are affected by a change resulting in a higher maintenancd® & set_ of requirements. Such a rel_atlons_hlp is expressed
effort and a reduction of the variability. Two types of efiec ~ PY the “implementedBy” traceability link pointing to com-
are discussed here. Feature scattering (illustrated inFig Ponents thatimplement a set of features.
middle) means that one featufe is implemented by more Definition: Component Traceability
than one architectural components - in this case the compoWe use the symbagl ~ A as “implementedBy” traceability
nentsa; anday. The addition of this feature to a product link expressed as
requires the integration of more than one component.) .

In the case of feature tangling, an architectural compo- fAre fEFIACAimplementedBy(f,A) (1)
nent is responsible for more than one feature (in Fig. 1 If considering exactly one feature and one architectural
right) e.g. the implementation of featufeandfs istangled ~ component the same traceability link type is used.
in component;. If one of these features has to be removed,
the components has to be analyzed and split into appro- Class Traceability. Software components consist of a set
priate parts, with a much higher effort than just the removal of classes and vice versa a clasis related to exactly one
of one component. From the changeability point of view software component in order to implement at least one part
both cases should be avoided. Feature tangling and scattemf a feature.
ing also havg negative impacts on system maintgingbiﬁty, @ Definition: Class Traceability
also stated in [26]. In order to improve the flexibility of @ o jasses the same traceability link type is used as fer fea
system concerning feature variability, all vanab_llltylpts tures and components:
should be aligned in a way that each of them is related to
exactly one optional feature. Tangling and scatteringragai [~ € 1< f € F 3€ C C : implementedBy(f,C). (2)

fo 2 Co o f a, c, iy f, N a ~ Cs s
7 ~)
-~ ——
f4 a, Cs lZ \ a, — C, e I, f3 /I Cs ~ > s
~ >
fg ag Cq ig iy 6

Figure 1. Ideal case (left), feature scattering (middle), feature tangling (right).

Class Usage. As already discussed in section 3 it is nec- 4 Indicators and Resulting Actions

essary to trace class interactions within architecturat-co

ponents that are related to a feature. As for example a class The approach presented in this paper supports the archi-
c; uses a method of an other class tectural assessment for evolvability, both, by indicafors
problem situations — often called metrics — and by corre-
sponding actions for problem resolution. The traceability
Sink based indicators defined here, together with a variety
of other indicators [24] are applied for design decision-sup
port and architectural evaluation. This section provides f
cr— Cisce CICCC:uselc,C). ©) mal definitions of the indicators and the resolution actjons
whereas section 5 illustrates their application duringwevo
tionary development.

Definition: Class Usage

In order to support the analysis of class usage we use th
symbolc¢ —— € for the traceability link type “use”, for-
mally expressed as follows:

Component Require Relation. Similar to the “use”
traceability link between two classes the “require” trdiika
ity link describes the relationship between two components

in which one component needs the other components to im- A giscussed earlier in this paper feature scattering and

plement the related feature. Formally, this is expressed by, jing constitute major deficiencies with respect toevol
the following definition: ability

4.1 Feature Scattering

Definition: Component Require Relation

The symboh — A expresses the“require” traceability link: Insulated Features. Before feature scattering can be
evaluated, insulated features have to be resolved. More

a— A a€ AIAC ANa ¢ A:require(a, A). (4) precisely, a feature must have a traceability link to attleas

one architectural component. This is an important condi-

tion which contributes to the consistency between features

and their related components. An example of an insulated

) . .) featurefs is depicted schematically in Fig. 2.
Feature Model Relation. During requirements engineer-

ing it is important to emphasise the relations between fea- insulated Feature Class Cross-Usage
tures. Some development methods as FODA [13] or the

work of [27] support the use of constraints between fea-

tures, which are expressed by e.g. “requires” relationg. Th F a
usage of constraints is described in the following. The fact -
that one feature requires another feature is representad by =z
composition of functionality. Selecting one feature irtss

the selection of the required features.

The same traceability link type is used if only a relatiopshi
between two components is considered.

> Traceability Link

Definition: Feature Require Relation F—> Relation
The symbolf = 7 expresses the “requires” relation as))
follows: Figure 2. Example of an insulated feature

(left) and of a class cross-usage (right).
f5F o feF3FCFAFET require(f,F), (5)

and the same relation type is used if only a relationship be- The indicatorfo(F") for this kind of feature is defined as
tween two features is considered. follows:

Definition: Insulated Feature Indicator 4.2 Feature Tangling

fo(F):=|{feF:3ACA:f~A}. (6) Insulated Components. Similar to section 4.1 we iden-
tify the removal of insulated components as a precondition
From the engineering point of view insulated features could fgr the use of the Featurg .Tar.lglmg Indlc.ator. More pre-
)) ; N cisely, at least one traceability link must exist from a feat
exist for several reasons: The feature’s realization ig-pos pointing to an existing architectural component. It is impo

porzfed, as (deurl;ng trlﬁ dog1a|_|r_1h_anallci13|shphase n(_)t ?rl: mfor—tam to achieve a complete realization in order to ensure the
Mation could be gathered. 1S often happens In e Case, ,,qiqtant evaluation of the systems engineering approach
of low priority features. Additionally, in the case of non-

functional requirements it is often hard to determine how t An insulated component has a similar structure as an in-
unctionairequirements itis often hard fo determine Now 1o ¢ .0 feature, which is already depicted schematically i
map their implementation to elements of the existing sys-

¢ Fig. 2. We call the indicator for such a component situation
em. Insulated Component Indicator.

Resolution: All insulated features must be resolved Definition: Insulated Component Indicator

A resolution step is necessary in order to remove an insu-
lated feature for example by (@) postponing such features
to a later release, by (b) mapping it to proper architectural
components.

co(A):={a € A:Pf CF: f~al. 9)

From the engineering point of view, insulated components
constitute a mistake. Nevertheless, they could occur if e.g
an architecture contains components without a direct rela-

Feature Scattering. After removing all insulated features 10N 0 customer needs.

the feature scattering indica.tor is applicable. Qn theiarch Resolution: All insulated components must be resolved
tectural level feature scattering refers to a relation eetw

one feature and more than one components. Feature scatterA resolution step is necessary in order to remove the insu-
ing affects the evolvability of a system because the change lated component by (a) creating a dummy feature, by (b)
of a feature leads to changes of more than one components,introducing internal features or by (c) removing the insu-
thus leading to higher effort and to a higher probability of lated component. Besides, this step helps to avoid or at

mistakes. least to reduce the quite common effect so-called “Bells
and Whistles” features, which are implemented but are
Definition: Feature Scattering Indicator not wanted or paid for by customers.

fscais based om € A, f € F and is defined as follows:
Feature Tangling. Feature tangling refers to relations be-

sca(f):=H{a: f~ a}|—1,and @) tween more than one features and one component.
Definition: Feature Tangling Indicator
> sca(f) The Feature Tangling Indicatgtang is defined as follows
feF
fsca(F):= W:f5006[071)~ (8 fora € A:

tang (a) :=|{f € F: f~a}|—1,and (20)
The more features are scattered into components, the worse
the maintainability of the software gets and the closer the > tang (a)
result of the indicator moves to 1. The maximum value 1 is ftang (A) := €4 ftang € [0,1). (11)
reached ifa| approaches infinity and each featyre F'is |- |A]
implemented by alk € A. For Fig. 2 (left example)sca

: . A AL A The more features are tangled to one component, the more
is 1/6, if the necessary resolution step (eliminatifig is

difficult is the adaption of this component and the closer
done. is the result of the indicator to one. The maximum value
1 is reached if f| approaches infinity and each component
a € A implements all featureg € F. An example for
Reducing feature scattering could be done by (a) splitting ftang is illustrated in section 5.

up the features into several features starting with the fea-
ture with the highestca (f) value, (b) trying to merge
components reducing the number of involved compo- Reducing the relations between more than one features
nents. and a component could be done by (a) splitting up the

Resolution: Reducing feature scattering

Resolution: Reducing feature tangling

component starting with the highest numbetrt@fg (a) Resolution: Removing Component Implementation
into several components, referencing to the appropriate Cross-Usage
feature by (b) try to merge features reducing the number

! If an component implementation cross-usage exists, the
of involved features.

necessary resolution action is to extend the feature model
by the proper “require” relations between the affected

4.3 Cross-Usage features.

The Class Cross-Usage Indicaiar € N takes “use”
traceability links between two classes into account that ar 5 Maintaining Evolvability During Evolu-
part of different components. A cross-usage leads to a cou- tionary Changes
pling on class and component level. In some cases such
coupling is necessary, but in other cases the only justifica- | this paper we introduce means for maintaining the
tion lies in a design decision, which could point to other not evolvability of large software systems. In the previous sec

yet determined design alternatives. tion, the formal definition of the indicators for several de-
Definition: Class Cross-Usage Indicator ficiencies concerning evolvability were described togethe
The indicatorcc is defined fora;,as € A A a1 # ay as with the corresponding resolution actions. These measures
follows: have to be applied during the cycles of an evolutionary de-
velopment procedure. Since the space limitations inHileit t
cc:i=[fceCicea NI €ay:er—). (12) description of the complete existifgiministrationSystem

(ADS) of an IT infrastructure approach, we use a small part
Component Implementation Cross-Usage. A missing of such a system as a case study. We want to illustrate the
“requires” relation in the feature model leads to situadion application and the benefits of the approach: the possibil-
in which the customer could misunderstand the variability ities of ensuring consistency between different models, of
of a system, which could lead to misconfiguration and de- evaluating the architectural solution concerning valigbi
sign deficiency. Such a situation is here called Componentof keeping architectures alive and of increasing the oberal
Implementation Cross-Usage; in comparison to the Classunderstandability and traceability during the realizatas
Cross-Usage it is characterized by a missing “require™rela the example. In this case study the development process is

tion in the feature model. Fig. 2 gives an example: reduced to one cycle called evolution step and its rework
The appropriate feature model does not contajh & concerning evolvability. The case study covers three fea-
F (“require”) relation between the two featurgs and f5, tures that shall be developed.

whereas the necessity of this relation is represented by bot
a cross-usage between two componentsa, and by the

y . Evolution Step. In the evolution step, all three fea-
two “implementedBy” relationg; ~ a; and fo ~ as.

tures User Management, Application Management
Definition: Component Implementation Cross-Usage andDatastore Adaptability are implemented at the fea-
Indicator ture, architecture and realisation level. The featdggli-
The number off * 7 relations that should exist in the ap- cation Management allows to manage all application
propriate feature model is measured by the Component Im-specific information, whereas the featureer Manage-
plementation Cross-Usage Indicataif (F), which is de- ment allows to manage all user specific information, used

fined fora;, as € A as follows: within the IT infrastructure. Please note, that both the
’ . . Application Management andU ser Management fea-
c(f)={feF:ceanid €ancr—c ture are optional. As shown in Fig. 3, traceability links are

ANf eF f#f f~aAf~aA-f S f}. (13) used to express the dependencies between these models. In
this evolution step all features are implemented by the com-

Thf indicatqr shows for e_ach featufec F if an “require” ponentadministration.

[= 9 relation should exist. Thei(f) must be calculated The actions of each evolution step are recorded by trace-

for each feature. ability links. An example for the evolution step is shown in
Cif(F) = ZCi(f)' (14) Fig. 4 by a traceability table. It shows the relations betwee

elements with one column for each element. Feature Tan-
gling, could be effectively illustrated in a traceabilibie,

In order to determine the number of missing “require” rela- by three traceability links starting from feature U and
tions in the feature model the most simple way is to count D end at componentdm. In practice the high number of
the number of required — F and compare it with actual relations are stored in a repository using database teshnol
number measured hy f (F) in the feature model. gies. In general, there are two types of traceability links,

fer

Evolution Step

Feature Model Architecture Model Realisation Model
«implementedBy>» . «implementedByp
ADS «component»s] ‘ AKey K%Application ‘
administration /’\
0..2
‘ User HUserService‘ ‘AppService‘
Datastore User Application

Adaptability || Management | Management UserManager

|AppManager

Converter

Results: ‘ DatastoreAccess
|A| | IF| |ftang| fsca| cc |Variability v
1|3 273 0 0 limited ‘AccessProvider %—{ObjectProvider ‘

Rework of the Evolution Step
Feature Model Architecture Model Realisation Model

—_———— o — — —

ADS »
tedBy
. entedS!

ukey |
implementedB
|- ——-IMPIEMEMECBY> __ I «component» & :
I userservice | User
i |
|
|

1
i |
Datastore User Application ' - ! UserService
ili component .
Adaptability | Management | Management «a spervice» : «implementedBy>
A" require ' require ! PP F=—==5=3 P —np ===
| i ‘ R
i ' 7 userm
! «implementedBy» B 2 || UserManager i
_______________________________ T 1o M [R
| | @ : J e B A S N 2 i - I |
: A <implementedBy» Y
Resus: e v wdmp ‘ﬁb Y ‘DatastoreAccess‘ ‘Converter‘ :
|A] | |F| |ftang | fsca | cc | Variability «component» §] | !
, dataaccess I N A |
313 0 0 2 flexible :_ ‘AccessProvider %—{ObjectProvider ‘I

Figure 3. The evolution step (above) and its rework (below).

“use” between components and “implementedBy” links be- through feature tangling in its variability, as a customer
tween features and components. In addition to the traceabil would have to deploy two featurésser M anagement and
ity links relations between classes are considered. Application M anagement even though he would need
The results of the evaluation by the indicators intro- only one (componentdministration in Fig. 3 consists
duced in section 4 are summarized for each step (see Figof classes from both features, highlighted using the same
3 below the models). As indicated by thféang = 2/3 shade of grey). With the defined resolution actions these
tangling between the features and the architectural Com_limita’[ions will be resolved by a rework of this evolution
ponent exists, which hampers the evolvability of the ADS step, described in the following paragraph.
system (discussed in section 3). Beside the already dis-
cussed issues of evolvability support, it is important to Rework of the evolution step. To achieve a high flex-
achieve a high flexibility regarding changes of features ibility regarding changes of the features, the measured
and feature variants. An architecture for example is flex- tangling must be eliminated by splitting the component
ible if it supports variability, so that a feature and the re- administration into three separated architectural compo-
lated component could be independently used in the sys-nents. The traceability links (highlighted using the same
tem. From a logical point of view, customers have the shade of grey as relating to different features) and the tan-
choice to use the two featurd$ser Management or gling measurement point out that the decomposition into
Application Management and their combination, as ad- feature related components is fairly possible. The result
ditional variant (visualised in the feature model by at- of the resolution actions is presented in Fig. 3. Compar-
tribute 0..2). The system (depicted in Fig. 3) is limited ing the measurements results of the evolution step and its

A | U | D |Adn As |/Am |[Ap |Ak | Us |Um | Ur | Uk | Da | Co | Ob| Ac
Fo——————4>
N e
i JE:::::>'::::?___>
N
! ' \ ——
(2SN [
N R N
F?E’:'::::::::::::::?::?__ =
S Bt e B e e e B
i =
i - \ o
F1B) |
N _______________________._______>
_______________________.____________>
E::::::::::::::::::::::::::::;:::::il--;
ST
F-> implementedBy COomponents:
I use-relation Adm administration uUm UserManager
~—m : : Ur User
<1y Tanglin Classes:
ging As ApplicationService Uk Ukey
Features: Am ApplicationManager Da DatastoreAccess
A Application M. Ap Application Co Converter
U User M. Ak AKey Ob ObjectProvider
D Datastore A. Us UserService Ac AccessProvider

Figure 4. Traceability table of the evolution step.

rework shown in Fig. 3, commit the resolution of feature for improving the life-span of business-critical software
tangling (ftang = 2/3 in the evolution step was reduced to systems. Since maintainability and evolvability are hard t
ftang = 0 by the rework of the evolution step). be measured by state-of-the-art metrics quantifying sourc

The additional effort for the elimination of feature code, model relations are evaluated. Several software de-
tangling leads to a chain (componenterservice and sign principles e.g. abstraction, modularisation and isepa
appservice US€S componentiataaccess), this is ex- tion of concerns are applied as the major criteria for evolv-
pressed by the Class Cross-Usage Indicator, increasingbility.

from 0 to 2. I.t |nd|cat.es a “use” relation betwe.e'n two Based on these principles, several situations of model re-
classes belonging to different components. Addltlo_nally, lations have been determined, e.g. tangling and scattering
as e.g. componeniserservice Needsdataaccess, it 4qincreasing the impact of a change to the remaining parts
follows that featurgUser Management requires featu_re of a system. Traceability links between requirements, fea-
DatastoreAdap tablllty'. A component |m_plementat|on_ tures, design elements and implementation artefacts are th
cross-usage could p053|bl‘)‘/ be rec’f)gn|s§d if the respensibl subjects of the analysis, because they constitute thearglev

architect fails to create a “require” relation between hes model relations representing deficiencies both for the de-

feature_s in the feature ”700'9'- The descr_|bed reyvork makessign and for the implementation phase of the development
it possible to use all optional feature variants without-con

figuration effort. However the achievement of this variabil

ity goal leads to a situation of dependency between compo- In the paper, traceability relations are investigated and
nents. typical architectural situations with influence on evoli:ab

ity and flexibility are discussed. For the evaluation of such
situations, indicators (similar to metrics in the field ofdu
ity management) have been defined formally, and actions
for resolving these situations have been presented. These
In this paper we have introduced a model-based ap-actions make use of model relations in a similar way. The
proach for evaluating, improving software systems regard- resolution actions are embedded into an evolutionary devel
ing evolvability and keeping software systems’ architec- opment procedure. By their formal definition, the indica-
tures alive and refreshed, which is part of research effortstors provide the base for tool-supported quality assestmen

6 Conclusion and Future Work

and for decision support during architectural design and re [14] H. Ossher and P. TarSoftware Architectures and Compo-
design.

The research results this paper is presenting have been
achieved within an industrial project of the IT infrastruet
domain. After establishing the indicators and the actidns o (15]
problem resolution we would like to continue our work in
this field. One of the next tasks consists in the application [16]
of the indicators in decision assistance tools to reduce the
overhead effort and the error proneness of architectural de
cisions. Another task is the development of rules for the
validity of traceability links based on the indicators, and
their integration into other research projects on tradeabi
ity maintaining methods, which aim at the effort reduction
for the link management.

References

(1]
(2]

(3]
(4]

(5]
(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

IEEE standard glossary of software engineering terminol-
ogy. Technical report, 1990.

Maintenance of operational systems — an overview.
Carnegie Mellon University, SEI; published online at
http://www.sei.cmu.edu/str/descriptions/mos.html, 01 1997.
K. Beck. Extreme Programming Explained: Embrace
Change Addison-Wesley Professional, October 1999.

P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (ALMA).J. Syst.
Softw, 69(1-2):129-147, 2004.

F. P. Brooks.The Mythical Man-Month : Essays on Software
Engineering Addison-Wesley, 1995.

D. Coleman, D. Ash, B. Lowther, and P. Oman. Using met-
rics to evaluate software system maintainabil@omputer
27(8):44-49, 1994.

L. Davis and R. F. Gamble. Identifying evolvability for in-
tegration. INNICCBSS '02: Proceedings of the First Interna-
tional Conference on COTS-Based Software Systpages
65-75, London, UK, 2002. Springer-Verlag.

M. Eaddy and A. Aho. Towards assessing the impact of
crosscutting concerns on modularity. AOSD Workshop
on Assessment of Aspect Techniques (ASAT 208dg 3,
Vancouver, BC, Canada, March 12, 2007.

M. Eaddy, A. Aho, and G. C. Murphy. Identifying, assign-
ing, and quantifying crosscutting concerns. AGoM '07:
Proceedings of the First International Workshop on Assess-
ment of Contemporary Modularization Techniqupage 2,
Washington, DC, USA, 2007. IEEE Computer Society.

A. Egyed. A scenario-driven approach to traceability. IEEE,
ICSE'01, 23rd International Conference on Software Engi-
neering, 2001.

E. Figueiredo, C. Sant'’Anna, A. Garcia, T. T. Bartolomei,
W. Cazzola, and A. Marchetto. On the maintainability of
aspect-oriented software: A concern-oriented measurement
framework. INCSMR pages 183-192, 2008.

M. Fowler. Improving the design of existing cadaddison
Wesley, Longman, Inc., 1999.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-021, SEI Insti-
tute, Carnegie Mellon University, 1990.

(17]
(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

29]

nent Technologychapter Multi-Dimensional Separation of
Concerns and the Hyper- space Approach. Kluwer Aca-
demic Publishers, 2001.

D. L. Parnas. On the criteria to be used in decomposing
systems into modulesCommun. ACM15(12):1053—-1058,
1972.

F. A. C. Pinheiro. Requirements traceability. Re-
quirements traceability in Perspectives on Software Require-
ments Julio C. S. P. Leite and Jorge Doorn, Kluwer Aca-
demic Publishers, pp 91-113, 2004.

F. A. C. Pinheiro and J. Goguen. An object-oriented tool for
tracing requirements. |IEEE Software, 13(2):52-66, 1996.

K. Pohl. PRO-ART: Enabling requirements Pre-traceability.
ICRE 00:76, 1996.

K. Pohl, G. Bdckle, and F. van der Linde®oftware Product
Line Engineering;Foundations, Principles, and Techniques
Springer-Verlag Berlin Heidelberg, 2005.

V. T. Rajlich and K. H. Bennett. A staged model for the
software life cycle.Computer 33(7):66—71, 2000.

B. Ramesh and M. Jarke. Toward reference models for re-
quirements traceabilityEEE Trans. Softw. Eng27(1):58—

93, 2001.

W. Reimann. Building enterprise applications with an in-
tegrated application Platform. Erfurt, Germany, Septem-
ber.NET.ObjectDays Conference, 2004.

M. Riebisch. Supporting evolutionary development by fea-
ture models and traceability links.|IEEE International
Conference on Engineering of Computer-Based Systems
00:370, 2004.

M. Riebisch and R. Brcina. Optimizing design for variabil-
ity using traceability links. 15th IEEE International Con-
ference on Engineering of Computer-Based Systera85—
244, 2008.

J. Rumbaugh, I. Jacobson, and G. Bododhified Modeling
Language Reference Manual, The (2nd Edition) (Addison-
Wesley Object Technology Seriesddison-Wesley Profes-
sional, 2004.

P. Sochos.The Feature-Architecture Mapping Method for
Feature-Oriented Development of Software Product Lines
PhD thesis, Technical University of limenau, Germany,
2006.

D. Streitferdt, M. Riebisch, and I. Philippow. Details of for-
malized relations in feature models using OCIEEE In-
ternational Conference on Engineering of Computer-Based
Systems2003.

K. van den Berg, J. M. Conejero, and J. Hern’andez. Anal-
ysis of crosscutting across software development phases
based on traceability. |EA '06 Proceedings of the 2006
international workshop on Early aspects at IC®BEges 43—
50, New York, NY, USA, 2006. ACM.

D. Vogler. Design and implementation of an extensible java
framework based on an ontology knowledge base to support
software comprehension. Master’s thesis, Brunel University,
West London, 2007.

