
Architecting for Evolvability by Means of Traceability and Features

Robert Brcina, Matthias Riebisch
Technical University of Ilmenau

robert.brcina|matthias.riebisch@tu-ilmenau.de

Abstract

The frequent changes during the development and usage
of large software systems often lead to a loss of architec-
tural quality which hampers the implementation of further
changes and thus the systems’ evolution. To maintain the
evolvability of such software systems, their architecturehas
to fulfil particular quality criteria. Available metrics and
rigour approaches do not provide sufficient means to eval-
uate architectures regarding these criteria, and reviews re-
quire a high effort. This paper presents an approach for
an evaluation of architectural models during design deci-
sions, for early feedback and as part of architectural as-
sessments. As the quality criteria for evolvability, modelre-
lations in terms of traceability links between feature model,
design and implementation are evaluated. Indicators are
introduced to assess these model relations, similar to met-
rics, but accompanied by problem resolution actions. The
indicators are defined formally to enable a tool-based eval-
uation. The approach has been developed within a large
software project for an IT infrastructure.

1 Introduction

During their usage, large software systems have to be
changed frequently. After a number of changes the develop-
ers often have to notice a loss of architectural quality. This
effect is called architectural decay or architectural drift, and
inhibits the implementation of further changes. However, a
business-critical system cannot be used if it is not possible
to change or adapt it according to new or changed require-
ments or platforms. High risks arise, if products and ser-
vices cannot be provided anymore, or if a new system has
to be developed as a replacement. Due to these risks and due
to the high development costs of such a system, a long life-
span is required, and all changes have to be performed in an
evolutionary way - with keeping the possibility of further
changes by preventing negative impact on the architectural
quality.

The evolvability of a software system characterizes prop-

erties related to the ability of being changed with a low
effort, especially in terms of a low impact of changes [7].
Even if the evolvability is partly influenced by other factors
too, we consider architectural quality as the main criterion.
In our research we focus on evaluations with respect to ar-
chitectural principles in order to discover deficiencies, e.g.
the separation of concerns principle and criteria on depen-
dencies in architectural models. These evaluations are ap-
plied during design decisions, for early feedback and as part
of architectural assessments.

The evolution of complex systems can be facilitated by
modelling traceability. Traceabilityis the degree to which a
relationship can be established between two or more prod-
ucts of the development process ... for example, the degree
to which the requirements and design of a given software
component match[1]. By linking artefacts of analysis, de-
sign and implementation, they support the changes by im-
proving e.g. the understandability of the design, the impact
analysis and the verification of changes. Hidden dependen-
cies can be considered or even minimized.

Features constitute important criteria for structuring sys-
tems towards a minimized impact of changes, since the ma-
jority of changes affect features. Feature models [13], [23]
are used, e.g. to structure the common assets of a soft-
ware product line architectures [19] and variable compo-
nents, which implement new features for new products. If
features are applied as the main criteria of system modular-
ization, any changes of feature configurations can be per-
formed by changes of whole components thus minimizing
the effort for source code manipulations. Experiences with
software product lines and IT infrastructure approaches e.g.
[22] have shown the advantages for both a short time-to-
market for new features and a long-term system evolution.

In this paper, the means for assessing the architectural
quality are accompanied by actions for resolving the iden-
tified problems. The presented approach is intended for a
usage within an evolutionary process of software develop-
ment and redesign. It aims at the prevention of the effect of
architectural decay. In contrast to works on quality metrics,
our approach provides actions for the resolution of the ar-
chitectural deficiencies which are discovered using indica-

tors (others would call them metrics) for a system’s evolv-
ability. The approach has been developed in an industrial
project for an IT infrastructure. However, due to the space
limitations, only a small case example of such a system can
be used to illustrate the application of the approach.

Contributions by other state of the art works are inves-
tigated in section 2. Section 3 introduces the traceability
links and model relations relevant for evolvability. Based
on those, in section 4 the indicators and the corresponding
resolution actions are introduced. In section 5 the applica-
tion of the approach in an evolutionary development process
is illustrated by an example.

2 Related Work

2.1 Evolutionary Development Processes
and Evolvability

Evolutionary development processes have been devel-
oped to facilitate a sequence of changes with low risk and
low effort. A set of cycles achieves the overall result
while each cycle contributes functional changes, architec-
tural improvements or both. Later, we will call such a cy-
cle anevolution step. The most development processes fail
to preserve the architectural quality during the sequence
of changes, and the effect called architectural decay oc-
curs preventing further changes. To prevent this effect, the
Staged Model [20] emphasizes the evolution by structur-
ing the so-called software maintenance phase into several
stages. Evolutionary changes are enabled by maintaining
the architectural quality of a system in the stage evolution.
The evolvability of a software system as the ability of being
changed is depending mostly on two issues, first of all on
architectural quality properties of the system and secondary
on the ability of the development process to keep it.

The Extreme Programming technique XP [3] addresses
both issues by focusing on simplicity and flexibility. The
refactoring techniques [12] extend XP to discover archi-
tectural deficiencies – so-called Bad Smells – and to re-
improve the architectural quality by a sequence of simple
changes without affecting the overall behaviour of a sys-
tem. Both techniques are less suitable for large systems,
because of 1) the missing usage of models and other means
of abstraction, necessary for mastering a high system com-
plexity, and 2) their limitation to small teams and short-term
projects.

The method Test Driven Development [3] as another ex-
ample attempts to prevent the introduction of mistakes dur-
ing changes. Unfortunately, automated tests are unable to
discover deficiencies in terms of architectural quality.

Other approaches dealing with the process issue are
mentioned in section 2.4. Additional aspects influencing
the evolvability of a software system are related to general

issues of software development processes, e.g. the avail-
ability of a proper set of documentation, of an appropriate
tool support for changes and of a support for tests.

The relevant architectural quality properties are similarly
to ones for maintainability e.g. analysability, changeability
and stability – influenced by an appropriate use of the con-
cepts of abstraction, delegation, modularisation [15], con-
ceptual integrity [5] and separation of concerns [14]. The
last concept influences the impact of a change twofold: by
a reduced scattering the changes affect a lower number of
components, and many changes can be performed by re-
placing whole components instead of changing them inside.

2.2 Traceability Links Usage

From the engineering point of viewtraceability links
are used to trace design decisions during the development
process. They facilitate system comprehension by storing
the required information about relations between artefacts
and entities. For example, the scenario based approach de-
scribed in [10] aims to capture traces by executing test cases
of the source code. Atraceability modelis used to define the
required entities and relations during the software develop-
ment, e.g. in [21]. Traceability links in different traceabil-
ity models are often named differently in the context of the
projects vocabulary or domain. This leads to a high number
of traceability type definitions, as for example in [18], [17]
or [21].

The definition of a standard set of traceability link types
is still an unresolved issue, however for a tool support of
design evolution a semantic differentiation of the traceabil-
ity link types is needed. In the proposed approach we will
mainly use the “implementedBy” traceability link type in-
troduced in [23]. In order to minimize the overall number
of used link types, we apply existing dependency relations
of several modelling languages: the provided dependency
relations within a component or class model of the UML2
[25] and the “require” relation between feature elements in
feature models [13].

In theory the creation and evolution of traceability links
can be separated by three activities [16], the definition, the
production and extraction of traceability links. But in prac-
tice the proper realization of these activities is still a chal-
lenge. Additionally, the more traceability links have to be
considered manually the higher the effort for its mainte-
nance. Thus, the support by tools is necessary in order to be
able to disburden the development team as much as possi-
ble. The development of a framework based on a knowledge
base for the support of these activities and for the evaluation
of our approach was already started by the work of [29] and
meanwhile used and extended during case studies.

2.3 Feature Modeling

Feature models were introduced in the Feature Driven
Domain Analysis (FODA) [13]. They are a well-established
instrument for expressing variability, e.g. to distinguish be-
tween requirements for different and common properties
for a family of systems in a domain. In this sense a fea-
ture implies functional and non-functional properties of the
system, which will be implemented according to the con-
solidated requirements. The properties are relevant to end
users. Since they constitute an abstraction and generalisa-
tion of requirements, feature models enable a bridging of
the abstraction gap [27] between requirements and design.
Furthermore, traceability links can be used to relate features
to design elements [23] in order to guide developers during
their design decisions. In this paper traceability links con-
nected to features are evaluated by indicators as criteria of
evolvability.

2.4 Evaluation of Architectural Quality
by Metrics and Reviews

Since no property can be controlled that cannot be mea-
sured, the measurement of evolvability constitutes an im-
portant issue. Two aspects have been considered by recent
works, the ways of assessing software systems and the influ-
ence factors on evolvability. For assessing software quality
properties such as evolvability, there are two fundamental
approaches in the field of software quality management –
metrics and reviews.

Metrics constitute quantitative indicators of properties.
Quantitative evaluations lead to clear results if the syntax
and semantics of the subject are defined formally, e.g. in
the case of a programming languages. Existing metrics for
maintainability like complexity or cohesion are easy to ap-
ply, but they do not consider the architectural aspects, that
a proper component structure affects the impact of changes
much stronger. Furthermore, they can be used much later in
the development process and only on code level. Therefore
they can hardly be used e.g. for the design decisions and
for the architectural development. In contrast to the metrics
mentioned above, our approach is exploiting models and the
relations within.

Only a few works deal with evolvability, but the related
property maintainability has been a subject of several in-
vestigations. For the determination of the relevant influence
factors, utility trees or the Goal Question Metric method
GQM are applied, or both. A good overview about works
on metrics for maintainability is given, e.g. by an SEI report
[2], by Coleman et al. [6].

Aspects of evolvability are often considered within the
field of aspect-oriented development, in which aconcern
can be scattered into several code areas of the program. It is

defined asany consideration that can impact the implemen-
tation of a program[11]. Unfortunately, the termconcern
is often used in a too general form and is equated to dif-
ferent artefacts such as all existing requirements of a soft-
ware system, which leads to misinteprations [9]. At this
stage the definitions of concern measures, as stated by [11],
do not make clear either the level of abstraction, such as
implementation-related metrics, nor the modularity prop-
erty of the target concern.

Generally speaking, metrics provide statistical informa-
tion rather than instructions for concrete actions, concerning
e.g. refactoring measures, concern scattering [9, 28] and
tangling [28], problem solutions or design decisions. We
have chosen the term indicators instead of metrics because
we propose actions for solving the recognised problems as
enhancements of the architectural process. We argue that
scattering and tangling of functionality is not only related to
program code or limited to concerns in the sense of aspect-
oriented development. Instead, requirements or features in
software product lines [19], and their properties (see chap-
ter 2.3) have to be considered and evaluated top down from
the beginning of their definition, their architectural decom-
position and up to their implementation, and finally their
evolution. To be able to do this we suggest, unlike [9]
an overall traceability and evaluation approach based on
traceability links. Regard to the development phase our
approach is scalable by considering different levels of ab-
straction. Features for example can be first connected to
architectural components and in a second phase structured
by sub-components such as classes.

The metrics related to our approach address the scatter-
ing and tangling of features from the point of view of trace-
ability related to [28]. Unlike [28, 8] it values the degree
of dependency by considering the ideal case of a 1:1 trace-
ability relation between two objects, such as features and
architectural components (see chapter 3 for detailed infor-
mation). In addition to [8] we consider feature tangling, as
in the case of Feature Driven Development it is essential to
measure the degree of feature tangling indicating the need
for an architectural reconstruction.

Reviews and inspectionsconstitute another important
way of assessing for software quality properties. Experts
inspect a piece of software regarding a checklist. They an-
alyze the solutions and record all defects, deficiencies and
faults. This way of assessing software quality is very ef-
fective concerning the so-called ilities, e.g. maintainabil-
ity and portability, because necessary actions are directly
determined. Unfortunately, this positive effect depends on
the human experts and their comprehension, which limits
the usage of tools and the applicability to systems. An ex-
ample architecture assessment method is the scenario-based
method Achitecture Level Modifyability Analysis ALMA
[4]. Our approach using indicators is similar to metrics;

however, it is also includable in reviews, especially as it
proposes actions to solve indicated problems and deficien-
cies integrated into design steps.

3 Relations between Feature Models, Archi-
tectures and Realizations Reflecting Evolv-
ability

Artefact Categories. In order to achieve or improve
evolvability, relations between requirements, architectural
elements and implementation have to be considered. The
key idea is to keep the trace of all software elements back to
the requirements. For the further investigation, the linked
artefacts are grouped and categorized in levels (Fig. 1).
According to the method used for the system development
different artefacts are actually involved. Within a feature
driven development we have at least four levels of artefacts:
feature level (F-Level), architectural component level (A-
Level), class level (C-Level) and implementation artefact
level (I-Level). Examples for artefacts of the I-Level are
configuration units or sections.

Typical effects. From a changeability and complexity
point of view an 1:1 traceability relation between two ob-
jects is the most traceable and simplest one (illustrated in
Fig. 1 left). In such a case the change of a featuref0 re-
quires only the change of the precisely related component
a0. Following all related objects, the ideal but usually not
realistic case is that each object does not have more than
two traceability link connections.

In reality more dependencies have to be considered. A
higher number of dependencies means that more artefacts
are affected by a change resulting in a higher maintenance
effort and a reduction of the variability. Two types of effects
are discussed here. Feature scattering (illustrated in Fig. 1
middle) means that one featuref1 is implemented by more
than one architectural components - in this case the compo-
nentsa1 anda2. The addition of this feature to a product
requires the integration of more than one component.

In the case of feature tangling, an architectural compo-
nent is responsible for more than one feature (in Fig. 1
right) e.g. the implementation of featuref2 andf3 is tangled
in componenta3. If one of these features has to be removed,
the componenta3 has to be analyzed and split into appro-
priate parts, with a much higher effort than just the removal
of one component. From the changeability point of view
both cases should be avoided. Feature tangling and scatter-
ing also have negative impacts on system maintainability, as
also stated in [26]. In order to improve the flexibility of a
system concerning feature variability, all variability points
should be aligned in a way that each of them is related to
exactly one optional feature. Tangling and scattering again

lead to a higher number of dependencies which have to be
considered during all kinds of change activities, like pro-
gram comprehension or impact analysis.

This approach focuses on relations which enable an eval-
uation of all artefacts depending on the evolution of one fea-
ture. Such artefacts include system components and classes.
The right part of Fig. 1 shows an example: as without
the application of class traceability (following the link with
the solid line and starting from the feature to the class) the
assignment betweenc3 andf2 is not possible. The same
holds for the analysis of the impact of a change of feature
f3 (dashed line). Furthermore, a comprehensive analysis
of artefacts from several categories (e.g. features and com-
ponents) and their relations (e.g. require or use relations)
is necessary in order to be able to evaluate the variability
of the architecture and the consistence between feature and
architectural models, as part of an architectural assessment.

Types of relations. Unlike Fig.1 it is necessary to de-
scribe additional relations between artefacts as e.g. the rela-
tion between classes and features. For the illustration of this
approach we use a small part of the case study of an IT in-
frastructure approach. For this example it is not necessary
to consider implementation artefacts. The set of features
F and the considered subsetF ⊆ F both are contained in
the feature model. The set of architectural software compo-
nentsA and the considered subsetA ⊆ A are part of the ar-
chitecture model. The sets of classesC and the considered
subsetC ⊆ C are part of the realization (design) model. In
the following we define the relations which are required for
the later evaluation by the indicators (section 4).

Component Traceability. Each component contributes
to a set of requirements. Such a relationship is expressed
by the “implementedBy” traceability link pointing to com-
ponents that implement a set of features.

Definition: Component Traceability
We use the symbolf A as “implementedBy” traceability
link expressed as

f A :⇔ f ∈ F ∃A ⊆ A : implementedBy(f,A) (1)

If considering exactly one feature and one architectural
component the same traceability link type is used.

Class Traceability. Software components consist of a set
of classes and vice versa a classc is related to exactly one
software component in order to implement at least one part
of a feature.

Definition: Class Traceability
For classes the same traceability link type is used as for fea-
tures and components:

f C :⇔ f ∈ F ∃C ⊆ C : implementedBy(f,C). (2)

a
0
f
0
 c
0
 i
0

F
 A
 C
 I

a
1
f
1
 c
1
 i
1

c
2
 i
2

i
3

a
2

a
3
f
2
 c
3
 i
4

c
4
 i
5

i
6

f
3
a
4
f
4
 c
5
 i
7

a
5
f
5
 c
6
 i
8

F
 A
 C
 I
 F
 A
 C
 I

...
 ...

Figure 1. Ideal case (left), feature scattering (middle), feature tangling (right).

Class Usage. As already discussed in section 3 it is nec-
essary to trace class interactions within architectural com-
ponents that are related to a feature. As for example a class
c1 uses a method of an other classc2.

Definition: Class Usage
In order to support the analysis of class usage we use the
symbol c 7−→ C for the traceability link type “use”, for-
mally expressed as follows:

c 7−→ C :⇔ c ∈ C ∃C ⊆ C : use(c,C). (3)

Component Require Relation. Similar to the “use”
traceability link between two classes the “require” traceabil-
ity link describes the relationship between two components
in which one component needs the other components to im-
plement the related feature. Formally, this is expressed by
the following definition:

Definition: Component Require Relation
The symbola 7→ A expresses the“require” traceability link:

a 7→ A :⇔ a ∈ A ∃A ⊆ A ∧ a /∈ A : require(a,A). (4)

The same traceability link type is used if only a relationship
between two components is considered.

Feature Model Relation. During requirements engineer-
ing it is important to emphasise the relations between fea-
tures. Some development methods as FODA [13] or the
work of [27] support the use of constraints between fea-
tures, which are expressed by e.g. “requires” relations. The
usage of constraints is described in the following. The fact
that one feature requires another feature is represented bya
composition of functionality. Selecting one feature includes
the selection of the required features.

Definition: Feature Require Relation
The symbolf

r
→ F expresses the “requires” relation as

follows:

f
r
→ F :⇔ f ∈ F ∃F ⊆ F ∧ f /∈ F : require(f,F), (5)

and the same relation type is used if only a relationship be-
tween two features is considered.

4 Indicators and Resulting Actions

The approach presented in this paper supports the archi-
tectural assessment for evolvability, both, by indicatorsfor
problem situations – often called metrics – and by corre-
sponding actions for problem resolution. The traceability
link based indicators defined here, together with a variety
of other indicators [24] are applied for design decision sup-
port and architectural evaluation. This section provides for-
mal definitions of the indicators and the resolution actions,
whereas section 5 illustrates their application during evolu-
tionary development.

4.1 Feature Scattering

As discussed earlier in this paper feature scattering and
tangling constitute major deficiencies with respect to evolv-
ability.

Insulated Features. Before feature scattering can be
evaluated, insulated features have to be resolved. More
precisely, a feature must have a traceability link to at least
one architectural component. This is an important condi-
tion which contributes to the consistency between features
and their related components. An example of an insulated
featuref3 is depicted schematically in Fig. 2.

f
1

f
2

f
3

F

c
1

c
2

c
3

a
1

f
1

f
2

F

c
1

c
2

c
3

a
1

c
4

c
5
c
6

a
2

use

Traceability Link

Relation

Insulated Feature
 Class Cross-Usage

Figure 2. Example of an insulated feature
(left) and of a class cross-usage (right).

The indicatorfo(F) for this kind of feature is defined as
follows:

Definition: Insulated Feature Indicator

fo(F) := |{f ∈ F : ∄A ⊆ A : f A}| . (6)

From the engineering point of view insulated features could
exist for several reasons: The feature’s realization is post-
poned, as during the domain analysis phase not all infor-
mation could be gathered. This often happens in the case
of low priority features. Additionally, in the case of non-
functional requirements it is often hard to determine how to
map their implementation to elements of the existing sys-
tem.

Resolution: All insulated features must be resolved

A resolution step is necessary in order to remove an insu-
lated feature for example by (a) postponing such features
to a later release, by (b) mapping it to proper architectural
components.

Feature Scattering. After removing all insulated features
the feature scattering indicator is applicable. On the archi-
tectural level feature scattering refers to a relation between
one feature and more than one components. Feature scatter-
ing affects the evolvability of a system because the change
of a feature leads to changes of more than one components,
thus leading to higher effort and to a higher probability of
mistakes.

Definition: Feature Scattering Indicator
fsca is based ona ∈ A, f ∈ F and is defined as follows:

sca (f) := |{a : f a}| − 1, and (7)

fsca (F) :=

∑
f∈F

sca (f)

|F | · |A|
, fsca ∈ [0, 1) . (8)

The more features are scattered into components, the worse
the maintainability of the software gets and the closer the
result of the indicator moves to 1. The maximum value 1 is
reached if|a| approaches infinity and each featuref ∈ F is
implemented by alla ∈ A. For Fig. 2 (left example)fsca
is 1/6, if the necessary resolution step (eliminatingf3) is
done.

Resolution: Reducing feature scattering

Reducing feature scattering could be done by (a) splitting
up the features into several features starting with the fea-
ture with the highestsca (f) value, (b) trying to merge
components reducing the number of involved compo-
nents.

4.2 Feature Tangling

Insulated Components. Similar to section 4.1 we iden-
tify the removal of insulated components as a precondition
for the use of the Feature Tangling Indicator. More pre-
cisely, at least one traceability link must exist from a feature
pointing to an existing architectural component. It is impor-
tant to achieve a complete realization in order to ensure the
consistent evaluation of the systems engineering approach.
An insulated component has a similar structure as an in-
sulated feature, which is already depicted schematically in
Fig. 2. We call the indicator for such a component situation
Insulated Component Indicator.

Definition: Insulated Component Indicator

co(A) := |{a ∈ A : ∄f ⊆ F : f a}| . (9)

From the engineering point of view, insulated components
constitute a mistake. Nevertheless, they could occur if e.g.
an architecture contains components without a direct rela-
tion to customer needs.

Resolution: All insulated components must be resolved

A resolution step is necessary in order to remove the insu-
lated component by (a) creating a dummy feature, by (b)
introducing internal features or by (c) removing the insu-
lated component. Besides, this step helps to avoid or at
least to reduce the quite common effect so-called “Bells
and Whistles” features, which are implemented but are
not wanted or paid for by customers.

Feature Tangling. Feature tangling refers to relations be-
tween more than one features and one component.

Definition: Feature Tangling Indicator
The Feature Tangling Indicatorftang is defined as follows
for a ∈ A:

tang (a) := |{f ∈ F : f a}| − 1, and (10)

ftang (A) :=

∑
a∈A

tang (a)

|F | · |A|
, ftang ∈ [0, 1) . (11)

The more features are tangled to one component, the more
difficult is the adaption of this component and the closer
is the result of the indicator to one. The maximum value
1 is reached if|f | approaches infinity and each component
a ∈ A implements all featuresf ∈ F . An example for
ftang is illustrated in section 5.

Resolution: Reducing feature tangling

Reducing the relations between more than one features
and a component could be done by (a) splitting up the

component starting with the highest number oftang (a)
into several components, referencing to the appropriate
feature by (b) try to merge features reducing the number
of involved features.

4.3 Cross-Usage

The Class Cross-Usage Indicatorcc ∈ N takes “use”
traceability links between two classes into account that are
part of different components. A cross-usage leads to a cou-
pling on class and component level. In some cases such
coupling is necessary, but in other cases the only justifica-
tion lies in a design decision, which could point to other not
yet determined design alternatives.

Definition: Class Cross-Usage Indicator
The indicatorcc is defined fora1, a2 ∈ A ∧ a1 6= a2 as
follows:

cc := |{c ∈ C : c ∈ a1 ∧ ∃c′ ∈ a2 : c 7−→ c′}| . (12)

Component Implementation Cross-Usage. A missing
“requires” relation in the feature model leads to situations
in which the customer could misunderstand the variability
of a system, which could lead to misconfiguration and de-
sign deficiency. Such a situation is here called Component
Implementation Cross-Usage; in comparison to the Class
Cross-Usage it is characterized by a missing “require” rela-
tion in the feature model. Fig. 2 gives an example:

The appropriate feature model does not contain af
r
→

F (“require”) relation between the two featuresf1 andf2,
whereas the necessity of this relation is represented by both,
a cross-usage between two componentsa1, a2 and by the
two “implementedBy” relationsf1 a1 andf2 a2.

Definition: Component Implementation Cross-Usage
Indicator
The number off

r
→ F relations that should exist in the ap-

propriate feature model is measured by the Component Im-
plementation Cross-Usage Indicatorcif(F), which is de-
fined fora1, a2 ∈ A as follows:

ci(f) := |{f ∈ F : c ∈ a1 ∧ ∃c′ ∈ a2 ∧ c 7−→ c′

∧∃f ′ ∈ F, f 6= f ′ : f a1 ∧ f a2 ∧ ¬f
r
→ f ′}|. (13)

The indicator shows for each featuref ∈ F if an “require”
f

r
→ F relation should exist. Theci(f) must be calculated

for each feature.

cif(F) :=
∑

f∈F

ci(f). (14)

In order to determine the number of missing “require” rela-
tions in the feature model the most simple way is to count
the number of requiredf

r
→ F and compare it with actual

number measured bycif(F) in the feature model.

Resolution: Removing Component Implementation
Cross-Usage

If an component implementation cross-usage exists, the
necessary resolution action is to extend the feature model
by the proper “require” relations between the affected
features.

5 Maintaining Evolvability During Evolu-
tionary Changes

In this paper we introduce means for maintaining the
evolvability of large software systems. In the previous sec-
tion, the formal definition of the indicators for several de-
ficiencies concerning evolvability were described together
with the corresponding resolution actions. These measures
have to be applied during the cycles of an evolutionary de-
velopment procedure. Since the space limitations inhibit the
description of the complete existingAdministrationSystem
(ADS) of an IT infrastructure approach, we use a small part
of such a system as a case study. We want to illustrate the
application and the benefits of the approach: the possibil-
ities of ensuring consistency between different models, of
evaluating the architectural solution concerning variability,
of keeping architectures alive and of increasing the overall
understandability and traceability during the realization of
the example. In this case study the development process is
reduced to one cycle called evolution step and its rework
concerning evolvability. The case study covers three fea-
tures that shall be developed.

Evolution Step. In the evolution step, all three fea-
tures User Management, Application Management
andDatastore Adaptability are implemented at the fea-
ture, architecture and realisation level. The featureAppli-
cation Management allows to manage all application
specific information, whereas the featureUser Manage-
ment allows to manage all user specific information, used
within the IT infrastructure. Please note, that both the
Application Management andUser Management fea-
ture are optional. As shown in Fig. 3, traceability links are
used to express the dependencies between these models. In
this evolution step all features are implemented by the com-
ponentadministration.

The actions of each evolution step are recorded by trace-
ability links. An example for the evolution step is shown in
Fig. 4 by a traceability table. It shows the relations between
elements with one column for each element. Feature Tan-
gling, could be effectively illustrated in a traceability table,
by three traceability links starting from featureA, U and
D end at componentAdm. In practice the high number of
relations are stored in a repository using database technolo-
gies. In general, there are two types of traceability links,

«implementedBy»

Results:

|A|
 ftang

1
 2/3

|F|

3

cc

0

fsca

0

Architecture Model
 Realisation Model

«component»

administration

Feature Model

ADS

Datastore

Adaptability

«implementedBy»

Architecture Model
 Realisation Model

User

UserService

Feature Model

AccessProvider
 ObjectProvider

UKey

DatastoreAccess
 Converter

UserManager

«implementedBy»

«
i
m
p
l
e
m
e
n
t
e
d
B
y
»

ADS

«component»

userservice

«component»

appservice

«component»

dataaccess

«
u

s
 e
»

«implementedBy»

«implementedBy»

Rework of the Evolution Step

Evolution Step

Results:

|A|
 ftang

3
 0

|F|

3

fsca

0

Application

Management

User

Management

0..2

AppService

Application

AppManager

AKey
«
i
m
p
l
e
m
e
n
t
e
d
B
y
»

«
i
m
p
l
e
m
e
n
t
e
d
B
y
»

AKey
 Application

AppService

AppManager

UKey

UserManager

UserService
User

ObjectProvider
AccessProvider

Converter
DatastoreAccess

ADS

Datastore

Adaptability

Application

Management

User

Management

0..2

Variability

limited

Variability

flexible

cc

2

«
u

s
e
»

require
 require

Figure 3. The evolution step (above) and its rework (below).

“use” between components and “implementedBy” links be-
tween features and components. In addition to the traceabil-
ity links relations between classes are considered.

The results of the evaluation by the indicators intro-
duced in section 4 are summarized for each step (see Fig.
3 below the models). As indicated by theftang = 2/3
tangling between the features and the architectural com-
ponent exists, which hampers the evolvability of the ADS
system (discussed in section 3). Beside the already dis-
cussed issues of evolvability support, it is important to
achieve a high flexibility regarding changes of features
and feature variants. An architecture for example is flex-
ible if it supports variability, so that a feature and the re-
lated component could be independently used in the sys-
tem. From a logical point of view, customers have the
choice to use the two featuresUser Management or
Application Management and their combination, as ad-
ditional variant (visualised in the feature model by at-
tribute 0..2). The system (depicted in Fig. 3) is limited

through feature tangling in its variability, as a customer
would have to deploy two featuresUserManagement and
ApplicationManagement even though he would need
only one (componentadministration in Fig. 3 consists
of classes from both features, highlighted using the same
shade of grey). With the defined resolution actions these
limitations will be resolved by a rework of this evolution
step, described in the following paragraph.

Rework of the evolution step. To achieve a high flex-
ibility regarding changes of the features, the measured
tangling must be eliminated by splitting the component
administration into three separated architectural compo-
nents. The traceability links (highlighted using the same
shade of grey as relating to different features) and the tan-
gling measurement point out that the decomposition into
feature related components is fairly possible. The result
of the resolution actions is presented in Fig. 3. Compar-
ing the measurements results of the evolution step and its

D
 Us
 Um
 Ur
 Da
 Ob
Adm
 Co
A
 U
 Uk

Components:

Adm
 administration

implementedBy

use-relation
 Um
 UserManager

Ur
 User

Uk
 Ukey

Da
 DatastoreAccess

Co
 Converter

Ob
 ObjectProvider

Ac
 AccessProvider

Ac

Tangling

Features:

A Application M.

U User M.

D Datastore A.

Classes:

As
 ApplicationService

Am
 ApplicationManager

Ap
 Application

Ak
 AKey

Us
 UserService

As
 Am
 Ap
 Ak

Figure 4. Traceability table of the evolution step.

rework shown in Fig. 3, commit the resolution of feature
tangling (ftang = 2/3 in the evolution step was reduced to
ftang = 0 by the rework of the evolution step).

The additional effort for the elimination of feature
tangling leads to a chain (componentuserservice and
appservice uses componentdataaccess), this is ex-
pressed by the Class Cross-Usage Indicator, increasing
from 0 to 2. It indicates a “use” relation between two
classes belonging to different components. Additionally,
as e.g. componentuserservice needsdataaccess, it
follows that featureUser Management requires feature
DatastoreAdaptability. A component implementation
cross-usage could possibly be recognised if the responsible
architect fails to create a “require” relation between these
features in the feature model. The described rework makes
it possible to use all optional feature variants without con-
figuration effort. However the achievement of this variabil-
ity goal leads to a situation of dependency between compo-
nents.

6 Conclusion and Future Work

In this paper we have introduced a model-based ap-
proach for evaluating, improving software systems regard-
ing evolvability and keeping software systems’ architec-
tures alive and refreshed, which is part of research efforts

for improving the life-span of business-critical software
systems. Since maintainability and evolvability are hard to
be measured by state-of-the-art metrics quantifying source
code, model relations are evaluated. Several software de-
sign principles e.g. abstraction, modularisation and separa-
tion of concerns are applied as the major criteria for evolv-
ability.

Based on these principles, several situations of model re-
lations have been determined, e.g. tangling and scattering
as increasing the impact of a change to the remaining parts
of a system. Traceability links between requirements, fea-
tures, design elements and implementation artefacts are the
subjects of the analysis, because they constitute the relevant
model relations representing deficiencies both for the de-
sign and for the implementation phase of the development
cycles.

In the paper, traceability relations are investigated and
typical architectural situations with influence on evolvabil-
ity and flexibility are discussed. For the evaluation of such
situations, indicators (similar to metrics in the field of qual-
ity management) have been defined formally, and actions
for resolving these situations have been presented. These
actions make use of model relations in a similar way. The
resolution actions are embedded into an evolutionary devel-
opment procedure. By their formal definition, the indica-
tors provide the base for tool-supported quality assessments

and for decision support during architectural design and re-
design.

The research results this paper is presenting have been
achieved within an industrial project of the IT infrastructure
domain. After establishing the indicators and the actions of
problem resolution we would like to continue our work in
this field. One of the next tasks consists in the application
of the indicators in decision assistance tools to reduce the
overhead effort and the error proneness of architectural de-
cisions. Another task is the development of rules for the
validity of traceability links based on the indicators, and
their integration into other research projects on traceabil-
ity maintaining methods, which aim at the effort reduction
for the link management.

References

[1] IEEE standard glossary of software engineering terminol-
ogy. Technical report, 1990.

[2] Maintenance of operational systems – an overview.
Carnegie Mellon University, SEI; published online at
http://www.sei.cmu.edu/str/descriptions/mos.html, 01 1997.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, October 1999.

[4] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (ALMA).J. Syst.
Softw., 69(1-2):129–147, 2004.

[5] F. P. Brooks.The Mythical Man-Month : Essays on Software
Engineering. Addison-Wesley, 1995.

[6] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using met-
rics to evaluate software system maintainability.Computer,
27(8):44–49, 1994.

[7] L. Davis and R. F. Gamble. Identifying evolvability for in-
tegration. InICCBSS ’02: Proceedings of the First Interna-
tional Conference on COTS-Based Software Systems, pages
65–75, London, UK, 2002. Springer-Verlag.

[8] M. Eaddy and A. Aho. Towards assessing the impact of
crosscutting concerns on modularity. InAOSD Workshop
on Assessment of Aspect Techniques (ASAT 2007), page 3,
Vancouver, BC, Canada, March 12, 2007.

[9] M. Eaddy, A. Aho, and G. C. Murphy. Identifying, assign-
ing, and quantifying crosscutting concerns. InACoM ’07:
Proceedings of the First International Workshop on Assess-
ment of Contemporary Modularization Techniques, page 2,
Washington, DC, USA, 2007. IEEE Computer Society.

[10] A. Egyed. A scenario-driven approach to traceability. IEEE,
ICSE’01, 23rd International Conference on Software Engi-
neering, 2001.

[11] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei,
W. Cazzola, and A. Marchetto. On the maintainability of
aspect-oriented software: A concern-oriented measurement
framework. InCSMR, pages 183–192, 2008.

[12] M. Fowler. Improving the design of existing code. Addison
Wesley, Longman, Inc., 1999.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-021, SEI Insti-
tute, Carnegie Mellon University, 1990.

[14] H. Ossher and P. Tarr.Software Architectures and Compo-
nent Technology, chapter Multi-Dimensional Separation of
Concerns and the Hyper- space Approach. Kluwer Aca-
demic Publishers, 2001.

[15] D. L. Parnas. On the criteria to be used in decomposing
systems into modules.Commun. ACM, 15(12):1053–1058,
1972.

[16] F. A. C. Pinheiro. Requirements traceability. InRe-
quirements traceability in Perspectives on Software Require-
ments. Julio C. S. P. Leite and Jorge Doorn, Kluwer Aca-
demic Publishers, pp 91-113, 2004.

[17] F. A. C. Pinheiro and J. Goguen. An object-oriented tool for
tracing requirements. IEEE Software, 13(2):52-66, 1996.

[18] K. Pohl. PRO-ART: Enabling requirements Pre-traceability.
ICRE, 00:76, 1996.

[19] K. Pohl, G. B̈ockle, and F. van der Linden.Software Product
Line Engineering;Foundations, Principles, and Techniques.
Springer-Verlag Berlin Heidelberg, 2005.

[20] V. T. Rajlich and K. H. Bennett. A staged model for the
software life cycle.Computer, 33(7):66–71, 2000.

[21] B. Ramesh and M. Jarke. Toward reference models for re-
quirements traceability.IEEE Trans. Softw. Eng., 27(1):58–
93, 2001.

[22] W. Reimann. Building enterprise applications with an in-
tegrated application Platform. Erfurt, Germany, Septem-
ber.NET.ObjectDays Conference, 2004.

[23] M. Riebisch. Supporting evolutionary development by fea-
ture models and traceability links. IEEE International
Conference on Engineering of Computer-Based Systems,
00:370, 2004.

[24] M. Riebisch and R. Brcina. Optimizing design for variabil-
ity using traceability links. 15th IEEE International Con-
ference on Engineering of Computer-Based Systems, 0:235–
244, 2008.

[25] J. Rumbaugh, I. Jacobson, and G. Booch.Unified Modeling
Language Reference Manual, The (2nd Edition) (Addison-
Wesley Object Technology Series). Addison-Wesley Profes-
sional, 2004.

[26] P. Sochos.The Feature-Architecture Mapping Method for
Feature-Oriented Development of Software Product Lines.
PhD thesis, Technical University of Ilmenau, Germany,
2006.

[27] D. Streitferdt, M. Riebisch, and I. Philippow. Details of for-
malized relations in feature models using OCL.IEEE In-
ternational Conference on Engineering of Computer-Based
Systems, 2003.

[28] K. van den Berg, J. M. Conejero, and J. Hern’andez. Anal-
ysis of crosscutting across software development phases
based on traceability. InEA ’06 Proceedings of the 2006
international workshop on Early aspects at ICSE, pages 43–
50, New York, NY, USA, 2006. ACM.

[29] D. Vogler. Design and implementation of an extensible java
framework based on an ontology knowledge base to support
software comprehension. Master’s thesis, Brunel University,
West London, 2007.

