
Tracing Quality-Related Design Decisions in a Category-
Driven Software Architecture

Stephan Bode, Matthias Riebisch

TU Ilmenau, Faculty of Computer Science and Automation
P.O. Box 100565, 98684 Ilmenau, Germany

{stephan.bode|matthias.riebisch}@tu-ilmenau.de

Abstract: Quality properties, so-called non-functional ones, have a fundamental
influence on the development of software systems because they constitute the
decisive factors for the design of a system's software architecture. They earn a
similar consideration like functional properties. For a high evolvability of the
software systems, traceability supports changes by facilitating design decisions,
software comprehension and coverage checks. In this paper a method for design
traceability is presented, in which links both for functional and quality properties
are established in similar ways. A software category based design method is used
for a better alignment between requirements and design. As a consequence, the
method leads to a reduced number of traceability links. The method has been
successfully applied in the development and partial reengineering of an e-
commerce system.

1 Introduction

Performance, scalability, flexibility, usability and other so-called non-functional or
quality properties are crucial for the success of nearly every software project. They bear
even more risk than functional requirements, because they can hardly be implemented
after finishing code development. These quality properties represent the determining
factors for the software architecture. Therefore, they have a basic influence on the
development of software systems. Since they are hard to master and have a high impact
on many parts of a software system, several architectural design methods emphasize
their analysis [HNS00] and design [Bo00]. However, bridging the gap between
requirements analysis and architectural design is still a critical issue, especially since
quality requirements change sometimes.

The architectural design methodology Quasar [Si03, Si04] constitutes a successor of
advanced design methods. It applies the principle separation of concerns to master the
complexity of the design task and to achieve a high flexibility by modularization
according to so-called software categories. Moreover, the software categories help to
structure the requirements, and thus to bridge the gap between analysis and architectural
design [Bo08, We07]. The methodology does not specifically support the
implementation of quality features. We extend the methodology in this regard, to achieve
both: the high architectural quality in terms of modularity and flexibility, and the
satisfaction of the quality requirements balanced with the functional ones.

Traceability is the ability to describe and follow implementation activities. It supports
design decisions in many ways. Traceability links facilitate the elaboration and
refinement of requirements; they relate design decisions to constraints for rationales’
determination, they support change impact analysis and effort estimation. Furthermore,
traceability can be utilized for example for the verification of forward engineering
activities by checking the completeness of changes, and for tracing the dependencies for
program comprehension. The tracing of quality properties however, requires a very high
number of links, since typically each quality feature influences a high portion of a
system’s components. The high number leads to a high human effort for establishing,
maintaining, and validating the traceability links. Our design method can contribute to a
reduction of the number of links.

In this paper we show a method for the architectural design that explicitly supports
quality features. We chose Quasar as the basic method and adapt and extend its
architectural design activities. To manage the implementation of the non-functional
requirements we have introduced a so-called Goal Solution Scheme as a part of our
method. Furthermore, we present a traceability framework customized to it. We show
the benefits from the combination of these in terms of a highly detailed description of the
design activities, an improved modularization due to the use of software categories, and
a reduced number of traceability links. In this way we provide preconditions for an
extended tool support in design and traceability management.

This research work has been performed for the quality property usability; however the
method can be transformed to other quality properties as well. It has been validated in a
reengineering project for an e-commerce system, where it was applied for the design of
the upper layers including the user interface. Herpel [He07] performed the reengineering
of the business logic layer, while the GUI components were developed by Bode [Bo08],
together with an evaluation of the method. We will use a cut-out of the e-commerce
trading system as a case study for illustrating our method of quality-oriented design and
of establishing traceability links. The system named Vendorbase is of a middle size and
manages vendors, contracts with them including discounts, controlling, and calculation.

2 State of the Art

2.1 Traceability from Requirements to Design and Between Design Artifacts

Requirements traceability enables to trace back the origin of a requirement from its
elicitation and to document every change made to it. Important works in this field are the
ones of Gotel and Finkelstein [GF94], Ramesh and Jarke [RJ01], Letelier [Le02] as well
as Pinheiro [Pi04]. Other approaches for traceability link establishment consider links
between requirements and test cases, for example the scenario-driven approach by Egyed
[Eg01] and the approach by Olsson and Grundy [OG02].

For our work, approaches regarding traceability from requirements to design and
between design artifacts have to be considered, because our method comes to play after
the requirements have been specified. Traceability links for design shall be established
and adapted while design activities are performed, for example during the building or

manipulation of models. Therefore, the link establishment steps have to be embedded
into the steps of design methods. We have to state that—to our best knowledge—there
are no approaches of this kind. For establishing traceability links regarding non-
functional requirements and design artifacts there is the probability-based retrieval
approach by Clelang-Huang et al. [Cl05] called Goal-Centric Traceability. Their user
evaluation step to discard incorrectly retrieved links to increase precision is valuable.
However, they can only identify links that are incidentally included in the descriptions of
artifacts that were elaborated regardless of traceability. Therefore, the completeness and
correctness of the links can never be optimal. The incremental approach of Latent
Semantic Indexing by Jiang et al. [Ji07] aims at the identification of related elements
with link recovery. It can be helpful for finding links in existing designs and maintaining
their change, but it cannot provide all links. For updating the traceability links after
changes, the change propagation approach event-based traceability [CCC03] provides a
valuable solution; it will be integrated with our approach.

For the definition of relations between design activities and traceability links, syntactical
and semantic definitions of the traceability links are necessary. Unfortunately, the
definition of a standard set of traceability link types is still an unresolved issue. Due to
different research goals, a high number of traceability link type definitions have been
established, for example in [Po96] or [RJ01]. As a step towards simplification and
abstraction, we will restrict ourselves on a small set of types later.

Tool support for traceability is an important issue due to the high effort of establishing
and maintaining traceability links during the whole software life cycle. There is already
support for traceability by requirements management tools, e.g. Requisite Pro. However,
their support for linking other artifacts than requirements is limited. Mäder et al.
[MGP08] present an approach that tackles the problem of automated traceability for
UML-based development. Their traceMaintainer is a rule-based prototype tool for
traceability link establishment. Nonetheless, there is future work because tool support
should not be limited to models specified with the UML. The definition of proper rules
for an automated link establishment is an important issue we want to prepare by
describing the several development steps of our method in detail.

2.2 Quality-Related Software-Architectural Design

For establishing and maintaining traceability links between design artifacts we are
seeking for a design method with (1) a clear definition of relations between design
artifacts and model elements and (2) a precisely defined, fine-grained sequence of design
activities. Furthermore the ideal method provides (3) a structured way of implementing
the non-functional requirements in a non-scattered way. By selection of a method with
such a way of implementation we reduce the number of traceability links. We want to
extend a design method which is accepted in practice (4) because our work aims at
practical application.

For the consideration of non-functional requirements in software architecture
development a frequently performed way of work is described by Bosch's QASAR
method [Bo00]. As the third of three design phases, appropriate functional solutions are

established for the implementation of as many as possible non-functional requirements.
This activity leads to a reduced number of relation between these non-functional
requirements and design artifacts and thus, to a reduced number of traceability links. We
will integrate this core concept into our approach because it fulfils our criterion (3).
Afterwards all remaining non-functional requirements are implemented by changing all
affected components, thus in a scattered way – which is leading to a high number of
traceability links for these remaining requirements. This would hamper maintainability,
therefore, we want to address this is issue by a special consideration of non-functional
properties according to Figure 3.

A structured and explicit refinement of non-functional properties provides additional
potential for reducing the number of traceability links. Software quality criteria are
helpful for aligning design decisions with these requirements. Standards as for example
ISO 9126 define a refinement to subcharacteristics for product quality. Quality models
and other works that describe subcharacteristics of certain quality goals (e.g. [Ni93],
[Sh92]) can be utilized for refining these goals to subgoals. In our method we use them
for refining goals in Figure 3.

A suitable approach for the refinement of the property usability is provided by the so-
called usability framework of Folmer and Bosch [FB03]. First, usability is decomposed
to attributes, e.g. learnability or satisfaction. Then, solutions in form of design principles
heuristics and patterns are related to them. This work is a valuable approach, however, it
has to be extended to other non-functional properties. Furthermore, a traceability concept
is needed for an explicit mapping.

The Non-Functional Requirements (NFR) framework by Chung et al. [Ch00] represents
another approach considering with implementation of non-functional properties. The
non-functional requirements – so-called softgoals – and their interdependencies are
represented by a Softgoal Interdependency Graph. The approach describes the activities
to build such a graph. First, the softgoals are established and decomposed to subgoals.
Then, sets of architectural solutions are developed as so-called operationalizations for
the softgoals. Beyond, the softgoals are refined according to domain characteristics and
the developers' expertise. Furthermore, the priority of different goals is evaluated.
Finally, a selection of a solution is made, and its contribution to the non-functional
requirements is evaluated. In this way the NFR framework helps to build software
architectures that explicitly consider non-functional properties. However, Chung et al.
concentrate on certain categories of non-functional requirements, e.g. accuracy, security,
and performance requirements. Furthermore, they do not consider the application of
general design principles for decomposition and refinement. Moreover, the authors do
not provide a traceability model.

Many widely accepted (4) design methods e.g. the Unified Process and Fusion fail to
provide a seamless sequence of fine-grained activities (2) for architectural design. A
much finer granularity in terms of activities and relations (1) is provided by the design
method Quasar — an acronym for QUAlity Software Architecture — which extends the
methods for component-based systems design. It achieves an improved decomposition of
the software into components by distinguishing so-called software categories. By this

way of separation according to the responsibilities and to the knowledge covered,
dependencies between components are minimized [Si03, Si04]. Quasar defines a
sequence of design steps and uses the categories to structure components according to
the requirements. These steps help to bridge the gap between analysis and architectural
design in a more precise way than other design methods [Bo08, We07]. Furthermore, the
steps enable a more precise definition of rules for the establishment and the maintenance
of traceability links (2). Quasar was developed in industrial practice (4) and combines
Best Practices and principles for a good component-based software architectural design.

3 Embedding Traceability to the Architectural Design Process

For a discussion of the traceability concept two aspects are investigated in this section.
First, the design activities for a software system are explained for the domain
functionality of the application kernel. Second, for each activity the corresponding
traceability link types have to be defined, because later these types control the tracking
and the utilization of the traceability links.

3.1 Traceability Link Types

As introduced by earlier works [MPR07], we distinguish 4 different link types.
- refine – for an activity increasing the level of detail, either by decomposition or by

specialization.
- realize – represents a step towards the solution (e.g. between a usability goal and a

design principle)
- verify – compares the behavior and the properties of requirements and of the

developed solution or its parts (for example between a use case and a test case) and
- define – relates the establishment of an identifier and its usage.

The link type implemented by corresponds to realize but with an opposite direction.
Furthermore, a distinction between implicit and explicit links is necessary. Implicit
traceability represents existing associations between elements of the system model using
identifiers, for example between an analysis and a design artifact. These traceability links
are references, but they are evaluated, if traceability links are tracked during their
utilization. Explicit traceability links are established, while a developer performs a
software development activity. Additional information can be stored attached to the link,
e.g. design decisions. An explicit traceability link consists of:
- a unique identifier for its recognition and to avoid ambiguity,
- a start element as source of the link, including type and context of this element,
- an end element as destination of the link, including type and context,
- the type of the link.

The link can contain additional information:
- a reference to a design rule for this specific activity,
- the decision connected with the development activity, including the goal of the

decision, alternatives, rating of the alternatives and the choice,
- the link status concerning the certainty of correctness (e.g. after changes of the

connected elements or during reverse engineering activities),

- the creator of the link,
- a temporary priority to control the tracking of the links.

3.2 Design steps for the application kernel

This section shows the several design steps according to our extended Quasar method
and explains the establishment of traceability links.

Step 1 Mapping use cases to functional features, with assignment to architectural
layers
First, the use case model with a textural description of the functional requirements of the
system [Co00] is analyzed for relations to functional features to establish a mapping. In
the simplest case one use case is directly connected to one feature. Possibly one use case
has to be mapped to more than one functional feature, or more than one use case to one
functional feature. The fact, that every use case and every feature has to be assigned at
least once, is expressed by a rule [Sch08] and can be checked by a tool. Furthermore, the
include and extends relationships between use cases have to be corresponded by feature
relations, which are assessable by tools as well. While establishing the function tree, the
functional features are structured according to their responsibilities to the intended
architectural layers, e.g. of a three-tier architecture. A case study example for a function
tree can be seen in the upper part of Figure 1 with the two layers Domain Functionality
and Interface Functionality. In this step traceability links of the type refine have to be
established, both for each mapping between use cases and functional features and for
each assignment to an architectural layer.

Step 2 Grouping the functional features
In the following the functional features are examined for commonalities to build
abstractions. For structuring and refining functional features a function tree is introduced
as proposed by Herpel [He07] The elaboration of software categories and components
from a function tree or a feature model [Ka90] is much easier than directly from the
requirements. Hierarchy relations within the tree are traceability links of the type refine.
This step is an extension to the Quasar methodology for bridging the gap between
analysis and architectural design. By structuring the system in a functional way,
candidates for later components can be determined and the identification of the
categories is supported. The previously existing traceability links have to be maintained
according to the changes in the function tree. In our case study the feature Vendor
Management is introduced for grouping three sub-features, and it is assigned to the
Domain Functionality layer (see Figure 1).

At this point we give a brief introduction to the QUASAR categories. All components
have to be based on the standard categories A, T, 0, and R. For a concrete application
design, these categories are therefore refined in a category model. A-components are
application specific but independent of technical issues. They contain the application
logic and entity classes for the realization of the domain functionality. T-components
cover technical knowledge about a system, and they frequently provide an application
programming interface (API) for example for database connectivity or for the GUI

elements. They are independent of concrete application functions. Software of the 0-
category is neutral concerning the application's functionality and independent of
technical aspects and it creates no undesired dependencies. Modules, classes and
interfaces with a high degree of reusability belong to 0-software, e.g. class libraries. R-
software refers to representation; it establishes a connection between A- and T-
components, however, minimizing the dependencies between them. This is achieved by
transformation, for example to external data presentation formats like XML. Other
ways of directly connecting or even mixing A and T – the so-called AT-software – are
prohibited, because they would re-introduce stronger dependencies.

<<system>>
Vendorbase

<<architecture layer>>
Domain Functionality

<<architecture layer>>
Interface Functionality

<<functional feature>>
Vendor Management

<<functional feature>>
Scale of Discount Change

<<functional feature>>
Vendor Edit

<<functional feature>>
Vendor Creation

<<functional feature>>
Contract Management

<<functional feature>>
User Management

<<functional feature>>
Vendor Display

<<refine>>

<<refine>>

<<refine>>

<<refine>> <<refine>>

<<refine>>

<<refine>>

<<refine>>

<<refine>>

<<0-software>>
0

<<A-software>>
Vendorbase Management

<<A-software>>
Data Management

<<A-software>>
User Management

<<A-software>>
Vendorbase GUI

<<T-software>>
Swing

<<R-software>>
Vendorbase GUI Swing

Function Tree

Category Model

<<realize>> <<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<refine>>

<<refine>>

<<refine>>

<<refine>>

<<refine>>

<<refine>>
<<refine>>

<<refine>>

<<realize>>

Figure 1. Tracing the identification of the categories between function tree and category model.

Step 3 Identification of categories
The input for the identification of the categories is the function tree refined to
architectural layers and functional features. In Figure 1 the two functional features are
related to this aspect: the Vendor Management and Vendor Display are shown with their
relation within the function tree (upper part) and to the category model [Si04, Ad07]
(lower part). Layers are related via a realize link to upper level categories, for example
Vendorbase Management as a super category for all A parts of the application and
Vendorbase GUI for all functional features for visualization. Grouped features are
candidates for A categories, and they are related via a realize traceability link as well.
Vendor Display represents an example. Functional features become lower level
categories only in rare cases.

Generally, the T categories are derived from technical influence factors [HNS00]. In our
case, Java Swing is predefined as the GUI framework. Therefore, Swing is introduced as
a T category. Because a direct coupling of A and T has to be avoided according to
Quasar, Vendorbase GUI Swing is introduced as an R category accessing the Swing API
for visualizing the Vendorbase GUI elements. All decisions made, while identifying the
categories, are traced with links from the function tree to the category model as shown in
Figure 1. Again a tool can support the designer by checking the assignment of features to
categories. The refinement relations among features and among categories have be
consistent; a tool can determine conflicts or even suggest proper categories for functional
features. Furthermore, cyclic dependencies in the category graph can be detected.

Step 4 Identification of application kernel components as domain abstractions
The identification of the application kernel components is guided by the rule that there
must be one managing component per each entity class in the data model [Ad07].
Figure 2 shows VendorManager for the entity class Vendor. Additionally, the functional
features from the function tree are assigned to components, so that each functional
feature with domain functionality is covered by a component. In the upper part of
Figure 2 the functional feature Contract Management is assigned to the corresponding
component as a responsibility. For these decisions, traceability links of the type realize
are established for connecting goal and solution. By assessing the established links from
a component to categories and features back to the use cases, a tool can be help to
analyze the impact of changes of particular requirements for the component.

Step 5 Definition of the interfaces of the application kernel
The provided and required interfaces of the components are specified following the
design principle design by contract. According to the architectural style mentioned in
section 2, there are two types of provided interfaces:
(1) the so-called programming interfaces according to the functional features as assigned

in step 4 (IVendorManager for calling the functionality)
(2) interfaces for each entity type to provide getter and setter methods (IVendor)

The case study situation is presented in the lower part of Figure 2. Vendor Manager and
Contract Manager both are derived from entity classes; therefore, Quasar demands two
provided interfaces for them.

The required interface is determined by two sources:
(1) relations to other application kernel components which result from associations

between entity classes in the data model, e.g. the use of the Vendor Manager
interfaces by the Contract Manager which can be traced back to the association
between Contract and Vendor in the data model.

(2) provided interfaces of the underlying framework, e.g. the Catalog component.

<<entity type>>
Vendor

<<entity type>>
Contract

<<functional feature>>
Vendor Management

<<functional feature>>
Contract Management

Data Model

Component Model

Function Tree

VendorManager ContractManager

Component Model

4. Identification of Components

Catalog Catalog

IContractIVendor

IVendorManager
IContractManager

ContractManager

<<realize>> <<realize>>

<<realize>>

<<realize>><<realize>>

<<realize>>

VendorManager

<<realize>>

5. Definition of Interfaces

Figure 2. Traceability between the model elements for the steps 4 and 5

Figure 2 also shows the traceability links of the type realize from the functional features
to the corresponding programming interfaces, which were defined. A rule enables a
validation if each functional feature is accessible by at least one interface [Sch08].

Step 6 Definition of the inner structure of the components
In this step sub-components are specified to build components by integrating a bottom-
up and a top-down procedure. The composition of components is carried out similarly to
the composed categories like Vendorbase Management in the category model of
Figure 1. Simple components consist only of interface classes, implementing classes and
entity classes. Even if later relevant for the package assignment this is not visible in our
example.

Step 7 Decision about loose or tight coupling of components
Decoupling is an important issue of the Quasar methodology. For Quasar, the standard
way of coupling within the application kernel is a tight coupling. It is usually
implemented by programming interfaces using references to entity class interfaces in an
object-oriented style. However, for crossing borders between architecture layers or in
distributed systems, a loose coupling is appropriate. In terms of Quasar, so-called service
oriented interfaces are used wherein transportation classes and data values are
minimizing the coupling. Implicit traceability links are established between the
corresponding interfaces. A traceability tool can suggest an appropriate link to an
interface based on rules and on a comparison of interface identifiers.

3.3 Design Steps for GUI components

Because not covered by Quasar, the authors introduced the design steps for GUI
components in an earlier work [Bo08a]. The fundamental sequence of the three steps—

component identification—interface specification—inner structuring—was originally
defined by Quasar (steps 4 to 6, see above), and has been adopted for the design of the
GUI related components.

For the identification and specification of the GUI components usability as a quality
property is an important issue. For an analysis of influencing factors and the
development of appropriate solutions a Goal Solution Scheme was developed by the
authors, similar to tree diagrams used in the Failure Mode effect analysis. Leading from
quality goals through a refinement to influencing factors and further to principles and
functional solutions, the scheme supports the transformation of non-functional
requirements into functional and technical solutions and components akin to the third
phase of QASAR. Figure 3 shows the part of the Goal Solution Scheme corresponding to
the case study. Usability is refined to sub-goals representing the six main factors
according to [La05] and to the ISO 9241-11 standard. The nodes of the diagram are
mapped to architectural elements by design decisions, leading to a lower number of
traceability links by reducing the scattering effect.

Usability

Task
efficiency Learnability Memo-

rability
Low

error rate Satisfaction

Workspace
metaphor Consistency Clarity Reuse old data

presentations
Aesthetically

pleasing

non-modal dialogs
with similar layout

TooltipsShortcuts

Grouping of dialog
elements

Balance /
symmetry

Table
sorting

Portability
support

SwingX JGoodies

Goals

Principles

Functional
solutions

Components

Follow
platform

Element
alignment

<<refine>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

Figure 3. Assignment of principles and solutions to usability goals in a goal solution diagram

In the three design steps, GUI component identification, Definition of the component
interfaces, and Definition of the GUI components’ inner structure, we realize quality
properties especially for usability. Therefore, the Goal Solution Scheme from Figure 3 is
applied. To achieve for example the subgoal satisfaction of the users, we considered the
principles aesthetically pleasing using balanced and symmetric dialog layouts as
important. A technical component helping to accomplish these principles, for example
by paying enormous attention on element alignment when using Java Swing, is
JGoodies, which was utilized in the case study.

This procedure represents a contribution for supporting a systematic implementation of
quality features. All corresponding design decisions for the mapping of non-functional
requirements to technical solutions are documented using traceability links as shown in
Figure 3. Therefore, is becomes possible to check whether and how a particular non-
functional requirement is realized by a certain solution. Further, Quasar’s guidelines for

component and interface design are traced as presented in the design steps for the
application kernel in the preceding subsection.

4 Conclusion and Future Work

In this paper, a method for architectural design concerning quality requirements is
presented, which is based on software categories as means of design. A strong alignment
between the design for functional and quality requirements (so-called non-functional
ones) is established. The advantages of software categories for component identification
and decoupling are utilized for the architectural design concerning quality properties.
This is achieved by adopting the Quasar procedure. For a detailed, systematic design
process and an engineering way of reusing principles and solutions, new intermediary
activities and artifacts are introduced, e.g. the arrangement of features to groups and the
Goal Solution Scheme. This is done in a way that the overall design effort is reduced by
a strict goal-orientation of the design decisions and by the reduced rework.

The improvements regarding evolvability by the introduction of traceability links
constitute another important contribution of this work. Traceability links are used
because of their great support for software comprehension, decision-making,
completeness checks and dependency analyses and other aspects. For minimizing the
maintenance effort for the traceability links, the paper provides an assignment of
traceability link types to the artifacts and activities of the process. Furthermore, it
facilitates the link management by a significant reduction of the number of traceability
links by reducing the scattering effect. This reduction is achieved by the improved
alignment between quality requirements and the solution elements via features and the
Goal Solution Scheme. Moreover, the detailed activities enable a more precise tool
support for the link management. The earlier established link types are assigned to the
artifact relations to provide the prerequisites for an efficient tracking of the links while
evaluating a design.

The work has been performed and evaluated in a reengineering project for a business
information system for vendor management. As the next steps, an initial tool support for
the architectural design process using traceability shall be provided by generating
traceability links in repositories and in the background of design activities. Further steps
towards an automated traceability will be performed using this tool support in larger
projects, e.g. to establish heuristics for rules and guidelines for tracking the links.

References

[Ad07] Adersberger, J.: Consistency Constraints for the Architectural Development Using the
Quasar Methodology (in German: Konsistenzbedingungen bei der Entwicklung einer
Softwarearchitektur nach der QUASAR Methode). Erlangen-Nürnberg, Univ., 2007.

[Bo00] Bosch, J.: Design & Use of Software Architectures. Addison Wesley, 2000.
[Bo08] Bode, S.: Traceability Design Decisions for Software Architectures using the Quasar

Method (in German: Traceability und Entwurfsentscheidungen für Softwarearchitekturen
mit der Quasar-Methode). Diploma Thesis, Ilmenau, Techn. Univ., 2008.

[Bo08a] Bode, S.; Riebisch, M.: Usability-Focused Architectural Design for Graphical User
Interface Components. In: Proc. International Conference on Innovation in Software
Engineering (ISE’08), 10-12 Dec. 2008, Vienna, Austria (in press).

[CCC03] Cleland-Huang, J.; Chang, C. K.; Christensen, M.: Event-Based Traceability for
Managing Evolutionary Change. IEEE Trans. Software Eng. 29(9), 796-810, 2003.

[Ch00] Chung, L. et al.: Non-functional Requirements in Software Engineering. Kluwer, 2000.
[Cl05] Cleland-Huang, J.; Settimi, R.; BenKhadra, O.; Berezhanskaya, E.; Christina, S.: Goal-

Centric Traceability for Managing Non-Functional Requirements. ICSE’05, ACM, 2005.
[Co00] Cockburn, A.: Writing Effective Use Cases. Addison Wesley, 2000.
[Eg01] Egyed, A.: A Scenario-Driven Approach to Traceability. In: Proc. 23rd International

Conference on Software Engineering ICSE’01, pp. 123-132, IEEE, 2001.
[FB03] Folmer, E.; Bosch, J.: Usability Patterns in Software Architecture. In: Proc. 10th Int.

Conf. on Human-Computer Interaction (HCII2003) Volume I pp. 93-97, 2003.
[GF94] Gotel, O. C. Z.; Finkelstein, A. C. W: An Analysis of the Requirements Traceability

Problem. Proc. 1st Int. Conf. on Requirements Engineering, IEEE, pp. 94-101, 1994.
[He07] Herpel, K.: Refactoring and Identification of Components (in German: Refactoring und

Identifikation von Komponenten). Diploma Thesis, Ilmenau, Techn. Univ., 2007.
[HNS00] Hofmeister, C.; Nord, R.; Soni: Applied Software Architecture. AddisonWesley 2000.
[Ji07] Jiang, Hsin-yi; Nguyen, T. N.; Chang, C. K.; Dong, Fei: Traceability Link Evolution

Management with Latent Semantic Indexing. COMPSAC 2007, IEEE, 2007.
[Ka90] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, SEI,
Carnegie Mellon University, USA, 1990.

[KKC00] Kazman, R., Klein, M., Clements, P.: ATAM - Method for Architecture Evaluation.
(Tech. Rep. CMU/SEI-2000-TR-004). Pittsburgh, USA: CMU, SEI, 2000.

[La05] Lauesen, S.: User interface design: a software engineering perspective. Addison Wesley,
2005.

[Le02] Letelier, P.: A Framework for Requirements Traceability in UML-based Projects. 1st Int.
Workshop on Traceability in Emerging Forms of SE (TEFSE'02), pp. 32-41, 2002.

[MGP08] Maeder, P.; Gotel, O.; Philippow, I.: Rule-based maintenance of post-requirements
traceability relations. In Proc. 16th Int’l Req. Eng. Conf., 2008.

[MPR07] Maeder, P.; Philippow, I.; Riebisch, M.: Customizing Traceability Links for the Unified
Process. In: Software Architectures, Components, and Applications. QoSA 2007 -
Revised Selected Papers. Springer LNCS pp. 53-71, 2008.

[Ni93] Nielsen, J.: Usability Engineering. Interactive Technologies. Academic Press, Boston,
USA, 1993.

[OG02] Olsson, T.; Grundy, J.: Supporting Traceability and Inconsistency Management between
Software Artifacts. In: Proc. Int. Conf. on Software Engineering and Application, 2002.

[Pi04] Pinheiro, F. A. C.: Requirements Traceability. In: Leite, J.; Doorn J. (Eds.) Requirements
Traceability in Perspectives on Software Requirements, pp. 91-113, Kluwer, 2004.

[Po96] Pohl, K.: PRO-ART:Enabling Requriements Pre-Traceability. In: Proc. of the 2nd Int.
Conference on Requirements Engineering ICRE’96, pp. 76-84, IEEE, 1996.

[RJ01] Ramesh, B.; Jarke, M.: Toward reference models of requirements traceability. IEEE
Trans. Software Eng. 27(1), 58–93, 2001.

[Sh92] Shneiderman, B.: Designing the user interface: strategies for effective human-computer
interaction. Addison-Wesley, Boston, MA, USA, 2nd edition, 1992.

[Sch08] Schröter, M.: Rules for the Assessment of Traceability Relations and Dependencies for
Application Design Using Quasar (in German). Thesis, Ilmenau, Techn. Univ., 2008.

[Si03] Siedersleben, J.: Quasar Standardarchitektur (German). Munich, sd&m research, 2003.
[Si04] Siedersleben, J.: Modern Software Architecture (in German). Heidelberg, dpunkt, 2004.
[We07] Wendler, S.: Design Decisions for Software Architectures (in German) Diploma Thesis,

Ilmenau, Techn. Univ., 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

