
Software Architectural Design meets Security Engineering

Stephan Bode Anja Fischer Winfried Kühnhauser Matthias Riebisch

Technical University of Ilmenau
Ilmenau, Germany

{stephan.bode, a.fischer, winfried.kuehnhauser, matthias.riebisch}@tu-ilmenau.de

Abstract

Security requirements strongly influence the architec-
tural design of complex IT systems in a similar way as other
non-functional requirements. Both security engineering as
well as software engineering provide methods to deal with
such requirements. However, there is still a critical gap
concerning the integration of the methods of these separate
fields. In this paper we close this gap with respect to secu-
rity requirements by proposing a method that combines soft-
ware engineering approaches with state-of-the-art security
engineering principles. This method establishes an explicit
alignment between the non-functional goal, the principles
in the field of security engineering, and the implementation
of a security architecture. The method aims at designing a
system’s security architecture based on a small, precisely
defined, and application-specific trusted computing base.
We illustrate this method by means of a case study which
describes distributed enterprise resource planning systems
using web services to implement business processes across
company boundaries.

1. Introduction

Software systems have to fulfil requirements with a high
complexity. Business systems for example are frequently
integrated with other technical systems. Due to the strong
interconnection between enterprises and their business pro-
cesses, systems have to be opened for instance to other par-
ties and to the internet. A car insurance system for example
has to cooperate with services for value estimation and with
web services for contract management. The enterprise re-
source planning (ERP) system of a manufacturer that per-
forms the outsourced production has to interact with the
ERP systems of its customers. In many cases such soft-
ware systems play a business critical role. Security threats
constitute an immense risk for the business of a company
and for its economic perspective.

In order to prevent security risks of the software systems,
an early consideration of security issues and an introduc-
tion of security technology during the design provide much
more efficient, more effective, and quicker results than add-
ons to the system’s implementation. Nowadays it is com-
mon sense that the software and the system architecture
have an important influence on the non-functional proper-
ties of the system under development. An early considera-
tion of non-functional goals reduces the development effort
and time.
Unfortunately, the methods, techniques, and processes of

security engineering and the ones of software architectural
design are fairly isolated from each other. This leads to the
situation that the experts from both fields are mostly not
familiar with the basic principles of the other fields. We ad-
dress this issue by combining software engineering, which
considers architectural quality and the realisation of non-
functional requirements, with security engineering, which
is dealing especially with the security of systems through
policies, models, and architecture but is not so well inte-
grated into development processes.
In this paper we introduce a method that integrates soft-

ware engineering and security engineering. We show the
consequences for the development process of software ar-
chitectures that result from a special consideration of se-
curity requirements. We present a methodical way how to
get from security goals to the realising solutions in the soft-
ware architecture. Therefore, the presented method follows
the intention to develop security requirements into a secu-
rity policy, further a security model, and later into a secure
software architecture using different mechanisms to fulfil
the goals. Along this way, several architectural decisions
about concrete realisations have to be made. We will dis-
cuss these decisions with regard to alternative solutions and
trade-offs between competing non-functional properties. To
evaluate our method, we present a case study from an indus-
trial project for building a secure software architecture. The
case study deals with an enterprise resource planning (ERP)
system, which is using web services.

First we briefly outline relevant state-of-the-art methods
for architectural design and for security engineering. In
Section 4 we present the method, where we first introduce
the case study and the core concepts including the Goal So-
lution Scheme. The Sections 4.4 to 4.9 represent the phases
of the method.

2. Architectural design for non-functional
properties

The majority of the software engineering methodologies
and processes considers the design of software architec-
tures as an experience-driven process, which has to be spe-
cific to every single project. However, recent works in the
fields of component-based approaches and software prod-
uct lines identify common aspects that can be applied to
software architectural design in general. Since a functional
decomposition is part of the well-known approaches to soft-
ware design, the functional requirements are usually con-
sidered sufficiently. The non-functional requirements, how-
ever, tend to lead to complicated solutions with a low archi-
tectural quality. Therefore, they require a stronger consid-
eration by the methods.
For developing a software architecture for both kinds of

requirements a frequently performed way of construction
is described by Bosch’s quality attribute-oriented software
architecture (QASAR) design method [5]. The method de-
scribes three steps. In the first step the functional require-
ments are implemented by functional components with the
Functionality-based Architectural Design (FAD) method.
FAD uses core abstractions of functional concepts — the
so-called archetypes — to derive architectural components.
In the second step, the developed architecture is assessed in
order to decide whether the non-functional requirements are
fulfilled or not. Different approaches for the assessment of
the non-functional requirements are scenario-based evalua-
tion, simulation, mathematical modelling or objective rea-
soning. Once the non-functional properties of the architec-
ture are assessed, in the third step, the architecture is trans-
formed to satisfy the non-functional requirements specifica-
tions. Therefore, suitable functional structures and compo-
nents are developed for the implementation of as many as
possible non-functional requirements. All remaining non-
functional requirements are implemented by changing all
affected components. In this step the changes are scattered
over the system.
We will use the core concept of QASAR — the ful-

filling of non-functional requirements by functional solu-
tions — on our approach. However, the steps of QASAR,
especially the scattered implementation of the remaining
non-functional requirements according to the third step of
Bosch’s way demand for a very high number of traceability
links and hampers maintainability. Moreover, the scattering

violates the major principles for secure software systems
like the isolation of security-relevant functions. This is one
issue we want to address with our approach by carefully
considering non-functional requirements.
Another design approach for dealing with non-functional

requirements is the Non-Functional Requirements (NFR)
framework by Chung et al. [9]. The framework uses so-
called softgoals that represent non-functional requirements.
Softgoals are goals that have no clear-cut definition or crite-
ria for their satisfaction. This concept considers that criteria
for NFR are rather soft and imprecise. The softgoals with
their interdependencies are arranged in a Softgoal Interde-
pendency Graph (SIG).
The NFR framework describes several interleaving and

iterative activities to build a SIG and based on it a qual-
ity software architecture [26, 9]. First NFR softgoals are
established and refined into sub-goals by decomposition.
Then, different architectural alternatives are developed as
so-called operationalisations for the softgoals. In order to
be able to choose between different alternatives for the goals
in a well-founded way the corresponding design trade-offs
and rationale are elaborated. Therefore, correlations that
represent conflict or harmony among softgoals as implicit
interdependencies are detected. Beyond, softgoals are also
refined by argumentations that base on domain characteris-
tics and developers’ expertise. Further, the architect has to
decide about the criticality of different goals. Finally, ade-
quate solutions are selected and the impact of the decisions
is evaluated regarding the solutions’ contribution to the non-
functional requirements.
In this way the NFR frameworkwith its Softgoal Interde-

pendency Graphs helps to build software architectures that
explicitly consider non-functional requirements right from
the beginning. However, the NFR framework deals with
goals that are soft in their specification, which is critical for
security. Therefore, in our approach we use security poli-
cies with precisely defined requirements. Further, we con-
sider general design principles in our decomposition and re-
finement, which Chung et al. do not.
For software architectural design — as to all other engi-

neering disciplines — the reuse of previously developed,
standardised solutions is of great importance for various
reasons. First of all, their use helps to master the complexity
of the design task, i.e. by fulfilling the engineering princi-
ple of conceptual integrity. Further advantages arise from
the accumulation of knowledge and from the increased ef-
ficiency. There are several categories of reusable solutions
for software architectural design. The first group covers ab-
stract solutions, which have to be performed, implemented
or instantiated to become part of solutions, e.g. solution
templates and methods [12]. Examples for software engi-
neering principles are, modularity and separation of con-
cerns, and for architectural patterns and styles, layers and

blackboard, and design patterns like observer and factory.
The second group of software products and tools comprises
components, which are helpful for the architect’s work or
can contribute to the solution.
In this paper, we classify these solutions according to the

non-functional requirements they influence. We extend the
architectural design process in a way that these solutions
are applied in a systematic way. For the field of security en-
gineering there are principles and abstract solutions, which
can be applied in a similar way as mentioned above. We
will later introduce the Goal Solution Scheme as a way of
classification and assignment of these solutions according
to the non-functional goals that are facilitated or hampered
by them.

3. Security engineering methods

IT systems with advanced security requirements in-
creasingly apply problem-specific security policies for de-
scribing, analysing, and implementing security properties
[8, 18, 14, 19, 20, 11]. Security policies are comprehen-
sive sets of rules that are designed to meet a system’s secu-
rity objectives. In order to precisely describe security poli-
cies, state-of-the-art IT systems apply formal security mod-
els such as [3, 15, 6, 22, 10, 24, 11], allowing for formal
analysis of security properties and serving as specifications
from which policy implementations are generated [7].
Security policies and their formal models provide quite

sharper specifications of a system’s security properties than
assumed by a SIG. They precisely determine the functional
complexity of a system’s trusted computing base (TCB):
those functional components that enforce and protect a sys-
tem’s security policies. Correctness and tamperproofness of
a TCB thus are essential prerequisites for achieving a sys-
tem’s security goals and have a commanding influence on
the design and implementation of its security architecture.
While security policies and their formal models achieve

considerable improvements in the effectiveness, efficiency,
and correctness of a system’s security properties, there are
still major drawbacks that get in the way of a general prac-
tical use. From a security engineering point of view, expe-
rience with experimental systems shows that because of the
large semantical gap between (informal) security require-
ments and the security mechanisms of today’s implemen-
tation platforms (operating systems and middleware plat-
forms), the development of security policies, their imple-
mentation, and their integration in a TCB are yet highly
complex and expensive [20, 23, 11]. From a software ar-
chitecture point of view, current operating system and mid-
dleware architectures that are capable of integrating security
policies incorporate large quantities of trusted code, includ-
ing code written by an arbitrary number of hardware equip-
ment and software vendors. Because a failure in any indi-

vidual code line of the TCB has the potential of violating
the entire TCB integrity, such approaches severely offend
the third fundamental reference monitor principle [2, 16].
In consequence, current systems with advanced security re-
quirements still exhibit a large number of security flaws, and
validation or verification of their security properties still is
a highly complex effort.
In this paper, we propose a security engineering ap-

proach that aims at designing a system’s software architec-
ture based on a small and precisely identified, application-
specific TCB. The approach is based on the idea of replac-
ing current off-the-shelf, large-scale, general-purposeTCBs
by tailored, application-specific TCB’s with a reduced func-
tionality that is directly derived from the system’s security
policies.

4. Aligning architectural design with security
engineering

In this section we present our method, which aligns ar-
chitectural design with security engineering. We take up the
approaches, concepts, and challenges discussed in Sections
2 and 3 and provide a methodical way that integrates both.
We give an overview of the design process and go into the
details of several design steps. All described activities of
the method are clarified with the help of ongoing examples
from a web service case study, which is introduced in the
next subsection.

4.1. Web service case study

Our case study describes distributed enterprise resource
planning systems providing services to extend business pro-
cesses of cooperating organisations across company bound-
aries. In this paper, we especially focus on logistic business
processes for cooperative order processing. One important
task in this case study is the process of availability check-
ing (available-to-promise, ATP), which is a process cross-
ing several company boundaries whenever sub-contractors
are involved.
Distributed ATP services provide the examples we use

in this paper. In the course of processing a customer’s order
request, local ERP systems call ATP services for distributed
availability checking. The ATP services are implemented as
web services, receiving customer order requests, forwarding
them to corresponding suppliers, analysing the offers, and
sending the results back to the ERP system.
In this scenario it is important to note, that not only sup-

pliers may be competing but also customers. Therefore, it
is essential that the offers made by the suppliers cannot be
read by any customer but the requesting one. Furthermore,
it must not be possible that customers or suppliers, except
for the offering one, are able to modify any offer.

4.2. Method overview

In this section we give a short overview of the steps of
our integrated method. Figure 1 shows an activity diagram
illustrating the sequence of design steps for one iteration of
the process.
First of all, there must be a requirements analysis for

a project, wherein the requirements are refined and priori-
tised. Based on it, the security policy with its rules for ex-
ample for authentication and authorisation is defined. Once
the policy is set up, the further steps security modelling, de-
composition, usage-driven refinement, and derivation of se-
curity architecture can be performed. The methodical way
finally concludes in the implementation and validation of
the security properties and architecture. These steps are
the important design activities for dealing with the non-
functional goal security. In the next sections we discuss
requirements analysis and policy development, further we
focus on decomposition, usage-driven refinement, and ar-
chitecture derivation, which do not necessarily require a se-
curitymodel. We do not discuss the modelling step, because
it is out of the scope of this paper and there are state-of-the-
art works dealing with security modelling [22, 4, 21], which
can be integrated in our method. However, the formalised
description of policy rules in a model is essential for a later
validation.

4.3. Goal Solution Scheme

As discussed above, in architectural design methods the
support for an adequate treatment of non-functional goals
like flexibility, scalability or security is rare. Therefore, the
authors developed a Goal Solution Scheme, similar to tree
diagrams used for example in the Failure Mode and Effect
Analysis (FMEA) [25], for a representation of the relation-
ships between different non-functional goals and the devel-
opment of appropriate solutions by aligning software archi-
tectural and security engineering principles.
The Goal Solution Scheme (GSS) covers similar ideas

like the Softgoal Interdependency Graph (see Section 2).
As shown in Figure 2, the GSS maps non-functional goals
to their sub-goals, to principles supporting these goals, and
further to functional solutions and technical components for
an implementation of the principles. As a consequence,
it shows the propagation of non-functional goals, e.g. se-
curity, to a software architecture along the design process.
From top to bottom the GSS represents possible refinements
and decisions during the design and implementation of non-
functional goals. The scheme supports different phases in
analysis and design and provides guidance for design ac-
tivities as well as for the establishment and maintenance of
traceability links.
The upper transition in Figure 2 supports the detection

Figure 1. Activities of one iteration of the se-
curity architecting process.

of conflicting non-functional goals. By a refinement to sub-
goals, new interdependencies between the goals such as
conflicts become obvious. As a major advantage it facili-
tates the prioritising for decision-making. The next transi-
tion of the scheme guides the designer from non-functional
goals to functional or technical principles, thus performing
the transformations proposed by the QASAR method. One
sub-goal is implemented by ideally one principle. However,
a one-to-one mapping is hardly possible. Nevertheless, by
mapping only a few principles to one sub-goal, the resulting
number of traceability links is significantly lower as with
an ad-hoc design. Furthermore, the GSS supports the res-
olution of conflicting non-functional goals by an identifi-
cation of potential trade-offs and by prioritising the alter-
natives. In the lower transition, the principles are linked to
functional solutions and existing components implementing
them. The crossing arrows in Figure 2 indicate the existence
of many interdependencies and trade-offs. As a result, the
scheme provides an alignment of principles and functional
solutions, it classifies solutions and components according
to their impact on non-functional goals, and it provides a
stock of reusable solutions to the architect and the designer.
The solutions serve as a source of proposals for design alter-
natives while decision-making. To further illustrate the idea
of the Goal Solution Scheme we present a specific example

for our case study in Section 4.8.

Figure 2. Structure of the Goal Solution
Scheme.

4.4. Requirements analysis

Regarding the architectural design process the require-
ments analysis constitutes an important design step because
it provides precisely specified system requirements. Un-
fortunately, many of the state-of-the-art methods in this
field consider non-functional requirements less than func-
tional ones. However, for architectural design we need a
balanced consideration of functional and non-functional re-
quirements, including security requirements.
To reduce this deficiency we benefit from security en-

gineering approaches. In this context security properties
are specified by security policies and security models. Yet
being able to develope a security policy a thorough under-
standing of a system’s security requirements is presumed.
In the following we illustrate such security requirements.
For brevity’s sake, firstly we describe the most obvious non-
functional requirements and secondly focus on obvious se-
curity requirements by means of the ATP example.
The ATP scenario is characterised by a high degree of

flexibility, expandability, and scalability regarding the num-
ber and type of customers and suppliers. Changes are not
limited to the integration of new customers, represented by
their systems, and to the addition of their supply chains to
the scenario. Already installed supply chains may change
such that suppliers are modified, added to, or removed from
the supply chain as well.
In order to enable real-time communication or to even

guarantee stability of just-in-time production processes, the
ATP scenario must cope with special performance require-
ments.
Due to realising business processes across company

boundaries and companies using services on a shared com-
munication platform, security properties are essential pre-
requisites for this scenario. When companies call these

ATP services, business critical data is not only processed
by a shared cooperation platform but also transfered via a
public, insecure communication medium. Thus, it is essen-
tial firstly to guarantee confidentiality and integrity of data
within the borders of the shared cooperation platform and
secondly to realise confidentiality and integrity of transfered
data.

In our ATP scenario several types of information flow,
which necessarily need to be controlled, can occur. Be-
tween customers and suppliers maintaining a business re-
lationship business process related information may flow
across system bounderies. However, if they do not main-
tain a business relationship, it is important that there must
not flow any business related information at all. Note that it
is less important if somebody obtains the knowledge that an
information flow has occured between several parties. Fol-
lowing, we illustrate these requirements with an example.

Figure 3. Information flow example within the
ATP scenario.

Assuming there are two competing manufacturers of en-
gine starters, called manufacturer M1 and M2. Let’s fur-
ther assume they maintain independent business relations
to the same supplier S1 who is connected to the ATP web
services and provides both customers with units for their
engine starters. If M1 undM2 call the ATP services to send
a customer order request, S1 provides an offerO1 forM1 and
an offer O2. In order that S1 is able to make offers, the sup-
plier needs basic data from its customers such as a required
number of units, dimensions of units, delivery terms, price
limits etc. It is now essential, that this information is only
transfered between M1 and S1, respectivelyM2 and S1, and
cannot be obtained or modified by other customers or sup-
pliers. It is equally important that the offerO1 is only known
to M1 and O2 to M2. Moreover, nobody, except for the of-
fering supplier, must be able to modify the offers O1 and
O2. On the other hand, it is less important if, for instance, a
supplier S2 knows if S1 made offers to M1 and M2. Figure
3 illustrates the example using continuous arrows to repre-
sent legal information flow between M1 and S1 and dashed
arrows to represent legal information flow betweenM2 and
S1.

4.5. Security policy development

Having analysed a system’s functional and non-
functional requirements, we want to adopt a software engi-
neering method in the next design step. Just as a functional
specification is deduced from the system’s functional re-
quirements, we deduce a security policy by precisely speci-
fying the security requirements. Following we illustrate the
security policy derived from the security requirements of
our ATP example.
While a security policy usually includes rules about au-

thentication, authorisation, communication, the handling of
persistent data and transaction journals, this paper focusses
on its core part, the authorisation policy providing rules to
realise information flow control.
In many contemporary systems information flow control

is realised by access control applying role-based access con-
trol rules. Role-based access control accomplishes confi-
dentiality and integrity while scaling well concerning the
number of users, having a friendly, application-oriented ab-
straction level and many users are familiar with this con-
cept. Therefore, role-based access control suits our require-
ments very well and information flow control can easily be
mapped to role-based access control rules.
User permissions for calling services are derived from

service contracts between the distributed ERP system’s
provider and companies of the users. A user’s right to obtain
permissions results from his identity; his effective permis-
sions are determined by the roles assigned to him.
To distinguish users of different companies, each user is

assigned a security domain, a concept adopted from non-
interference models [13]. Users of each company are as-
signed a separate security domain, and users belonging to
different companies thus belong to different security do-
mains. Consequently, information flow between different
companies is represented by access control rules regarding
security domains.
Regarding our ATP scenario this means, users working

for manufacturerM1 belong to a security domain called D1
and users acting for manufacturerM2 belong to domain D2.
Thus, a user of D1 owns the permission to read the offer O1
whereas a user of D2 only has the read-permission to O2.
By this means, users belonging to domainD1 cannot access
documents of any other domain and vice versa. Figure 3
illustrates the permissionsM1,M2 and S1 need to have.
A high level of security may not impose any additional

burden on the regular, untrained user. Consequently, the
authorisation policy as well as the mechanisms for its en-
forcement will be integrated transparently in the applica-
tion. On the other hand, correctness, robustness, tamper-
proofness, maintainability, and expandability properties of
the implementation require that the security policy is rig-
orously isolated from all other parts of the system. More-

over, the mechanisms for the enforcement of the authorisa-
tion policy have to be integrated into the system such that
every access to an object is assured. These goals strongly
influence the principles which should to be applied. These
principles again have a main impact on the overall security
architecture.

4.6. Decomposition

One of the most important design activities during the
realisation of a secure software system is the step of de-
composition. Here the functional decomposition meets the
non-functional security requirements. Based on the require-
ments, the functional decomposition of a software system
can be performedwith the help of a function tree or a feature
model [17], for example by applying Bosch’s FAD method
that is part of QASAR as stated in Section 2. However, an
appropriate balancing of the functional and non-functional
issues has to be considered in this design step.
For the functional decomposition of a system that has to

fulfil several security requirements, the definition of a se-
curity policy as explained in the last section is a necessary
prerequisite to guide this step. A security policy as input for
the decomposition enables the determination of the func-
tional blocks that are security-relevant and of the ones that
are not. To illustrate this categorisation of the functional
blocks according to their security relevance, we use a green
and red colorisation as symbolisation. To perform the de-
composition with special consideration of security require-
ments right from the beginning, the following algorithmic
steps have to be run through:

1. Perform a functional decomposition and mark all func-
tional blocks green.

2. Determine the security-relevant functional blocks and
mark them red.

3. In order to further minimise the TCB, red nodes must
be decomposed to smaller functional units that can be
coloured separately.

As a result of this procedure on the one hand the software
system is refined into functional blocks and on the other
hand each block is marked as either red or green. There-
fore, a categorisation of security-relevant (red) and security-
irrelevant blocks (green) is performed. However, in a next
step the usage relations between the functional blocks have
to be analysed.
For our case study an example could be the following as

illustrated in Figure 4, however, grey is used instead of red
for printing reasons, and white instead of green correspond-
ingly. If a manufacturer only checks its available suppliers
for placing an order request over the ATP service this is not
relevant for security. The corresponding feature is marked

green. However, as introduced in Section 4.4, where the re-
quirements are analysed, if one places a concrete order re-
quest by sending a request to a supplier or wants to read the
provided offer this functionality is subject to security con-
straints. Therefore, the features for this functionality are
marked red, as well as the composing ATP service feature.

Figure 4. Feature model for the case study.

4.7. Usage-driven refinement

After the decomposition step a graph of functional
blocks with a distinction of red and green blocks is available
as input for the next. In this design step the usage-relations
between the functional blocks are analysed for transitivity.
This is necessary because of the transitivity property of the
usage relation. The analysis for transitivity is driven by the
rules of the security policy. They assure that the security
level of the using block cannot be higher as the security
level of the block used. As a consequence, usage-relations
are only directed from green blocks to red ones— from less
security-relevant to equal or more security-relevant func-
tional blocks of the system.
A call for usage directed from a security-relevant block

to an irrelevant one results in changing the state of relevance
for the called block — in terms of colours a change from
green to red. Therefore, in this case, a further refinement
of the functional blocks is performed in order to minimise
the number of security-relevant blocks, which make up the
trusted computing base. With the refinement of a red block
some green blocks may be separated and thus the size of the
TCB may be reduced.
To continue our case study example, a manufacturer has

to select one concrete supplier or even add it when placing
an order request. This selection is not security-relevant in
contrast to sending the order request to the supplier. There-
fore, this function is separated and marked as green to min-
imise the trusting computing base with the security-relevant
functions. The result is shown in Figure 5.
As output from this step of usage-driven refinement we

have achieved a clear distinction of the security-irrelevant

functional blocks and the security-relevant blocks that be-
long to the trusted computing base. This serves as the basis
for the derivation of the security architecture as the proceed-
ing step.

Figure 5. Feature model from Figure 4 after
usage-driven refinement.

4.8. Security architecture

For more than two decades, the referencemonitor princi-
ples [2, 16] have provided fundamental and rigorous guide-
lines for the design and implementation of security architec-
tures. From a theoretical point of view, a reference monitor
simply is an abstract machine that enforces authorised rela-
tionships (given by a security policy) between the subjects
and objects of an IT system. In practise, reference monitors
constitute the inner sanctum of security architectures and
generally enforce a system’s access control policies.
Three fundamental rules — the reference monitor prin-

ciples — have guided the design of security architectures
for many years; these rules require that reference monitors

RM 1: are isolated from any other ordinary system compo-
nent — the tamperproofness property,

RM 2: totally control any interaction between subjects and
objects — the total mediation property,

RM 3: are as small and simple as possible — so that they
can be formally analysed.

In an ideal world, these principles would apply to the en-
tire TCB and its implementing security architecture. How-
ever, even if any non-security-critical function (a green node
in the decomposition graph) is rigorously excluded from
a TCB, considering today’s excessive number of security
mechanisms the rigorous adoption of RM 1 would result in
excessively large security architectures, which then again
would violate RM 3.
We thus encounter a fundamental conflict between tam-

perproofness and correctness: by strictly applying RM 1,

complete encapsulation and isolation of the entire security
architecture will result in a high level of tamperproofness
of a system’s security controls. On the other extreme, any
rigorous enforcement of RM 3 would result in very small
reference monitor implementations, encapsulating only the
most critical TCB functions in a well protected part of the
security architecture.
As a consequence, the reference monitor principles can-

not be applied absolutely; instead the problem has to be
approached by criticality-aware security engineering tech-
niques that are well aware of this conflict.

From security requirements to security architectures.
Once the security requirements have been casted into a se-
curity policy that then guided the colouring of the functional
decomposition graph, the sum of all red-coloured subtrees
precisely identifies a system’s TCB. In the next step, red-
coloured subgraphs on the one hand and the reference mon-
itor principles on the other guide the design of the security
architecture.
Once again, traditional software engineering meets secu-

rity engineering. Applying traditional software engineering
methods such as architectural styles and design patterns in
an unconstrained way would result in software architectures
that will fail to exhibit even the most simple qualities of se-
curity architectures. Thus we combine both approaches and
put the development of the security architecture under the
constraints of the reference monitor principles, requiring

• the identification of highly security-sensitive functions
to be encapsulated within the reference monitor, pon-
dering tamperproofness against correctness; success-
ful candidates are the red leaves of the decomposition
graph (RM 3),

• the encapsulation of the reference monitor into a
(hardware- or software-) isolated system component
— the inner sanctum (RM 1), and

• the establishment of the total mediation property, pro-
viding the reference monitor with the power to control
any information flow in the system (RM 2).

As a result, some decisions for a subset of the compo-
nents are already made. They must not be affected by the
following decisions.

Architectural design decisions and traceability. Con-
sidering the whole software architecture, decisions on all
components and their interfaces have to be made. Those of
the red-coloured ones are defined, most of the other inter-
faces can be derived from information flows, because these
interfaces are already pre-determined by them. The compo-
nents are derived from the functional blocks established in

the decomposition and usage-driven refinement steps. Fur-
ther, the design decisions for software engineering solu-
tions, e.g. architectural styles, design patterns, tools, and
standards should be documented. Then, the impact of the
decisions for the component architecture, for example de-
cisions about architectural styles or the component model,
become traceable.
With the help of traceability links the development steps

from the requirements analysis to technical solutions and
the implementation can be tracked. The Goal Solution
Scheme helps to establish traceability links on the way from
the non-functional goals to principles and solutions, and
thus helps to document design decisions.
In Figure 6 a Goal Solution Scheme for a case study cut-

out is shown with traceability links of the type refine for the
decomposition of the non-functional goals into sub-goals,
e.g. security into confidentiality, integrity, and authentic-
ity. Traceability links of the type realise are established for
the transitions representing a step towards solution of the
goals. Therefore, in our case study the role-based access
control (RBAC) security policy is linked with the sub-goals
confidentiality and integrity it contributes to. Further, the
reference monitor principles as well as the principles iso-
lation and minimal TCB that support them are linked, too.
The last step shows the assignment of the solutions state
machine and access control lists for the RBAC policy as
well as a reference monitor for the security principles. Be-
yond, in the scheme conflicting relations are depicted, for
example the trade-off between the first and third reference
monitor principle as explained above.

4.9. Evaluation of the architecture

The architectural design has to be evaluated regarding
the goals covering both functional and non-functional prop-
erties. Regarding security, we have to consider the degree of
minimisation of the TCB, its isolation, as well as the total
mediation property — the three reference monitor princi-
ples.
The established architectural assessment approaches

provide appropriate methods and techniques. As one group
the questioning techniques include scenario-based evalua-
tions e.g. ATAM, SAAM. The scenarios have to be estab-
lished in a way that covers an assessment of the reference
monitor principles. These techniques fit to an iterative de-
sign process because they can be applied in the early design
steps, too. As another group, measuring techniques cover
metrics as well as simulations, prototypes, and experiments
[1]. They can be applied to formal models, e.g. to the infor-
mation flow model.
The decision which of the techniques is appropriate is

determined depending on the progress of the design pro-
cess and, thus, on the maturity of the architectural artefacts

Figure 6. Goal Solution Scheme for the case study.

in terms of completeness and rigour. For example, a semi-
formal model of an architecture can only be evaluated by
questioning techniques, whereas for a precise model a be-
havioural analysis can be performed.

5. Conclusion

This paper deals with the architectural design of
security-related software systems. We presented a method
that guides the developer on a systematic way for the ap-
plication of security principles and solutions. In this way,
an integration of security engineering methods with archi-
tectural design methods is achieved. The method supports
the analysis and the refinement of the non-functional goals
and requirements regarding security, while competing goals
are resolved. Both structural and security-related goals are
considered, and they are balanced against each other. Es-
tablished methods and principles of security engineering are
applied for fulfilling these goals, e.g. the construction and
the explicit reduction of a TCB. The degree of minimisation
of the resulting TCB however depends on the application
and the amount and the complexity of the security require-

ments. A Goal Solution Scheme is introduced to visualise
the relations between goals, refined goals, and solutions.

As a result, the achieved ease of comprehension for the
developer and the clear decision criteria lead to an im-
proved design process. A strict separation between security-
relevant and non-relevant blocks in the solution is achieved.
The design decisions and their prospective consequences
are made clear and explicit. For the latter, three factors are
important. Firstly, the indication of the interactions between
functional decomposition and security relevance helps the
developer during the creative design process. Secondly,
the Goal Solution Scheme guides the decisions in a goal-
oriented way, especially in the case of competing require-
ments and trade-offs. Thirdly, the traceability links support
the comprehension and facilitate analyses and coverage as-
sessments.

For illustration and proof of feasibility of the method
case examples from a web service project in the enterprise
resource planning domain are employed.

6. Future Work

Even if design tasks are considered to be creative ones,
there is a need for tool support for managing the complex-
ity, for avoiding mistakes, and for effort reduction. The
visualisation of the consequences of design decisions dur-
ing the decomposition step is of special importance, since
the functional structuring and the security relevance have
a mutual influence on each other. As another aspect of
future work we consider a tool support for the exploita-
tion of the security specification, both for implementation
and for assessment. During design, tool support is help-
ful for the management of the traceability links according
to the Goal Solution Scheme: the traceability links have to
be updated and checked especially during changes and de-
sign evolution. For assuring a high design quality in terms
of security engineering principles and architectural quality,
further works regarding assessments and analyses are nec-
essary. Since the method leads to well-founded decisions,
their appropriate implementation has to be assessed. As an
example, metrics for an evaluation of a proper decoupling
between components and of the degree of minimisation of
the TCB have to be mentioned.

References

[1] G. Abowd, L. Bass, P. Clements, R. Kazman, L. Northrop,
and A. Zaremski. Recommended Best Industrial Practice
for Software Architecture Evaluation. Technical Report
CMU/SEI-96-TR-025, CMU/SEI, 1997.

[2] J. P. Anderson. Computer Security Technology Planning
Study. Technical Report ESD-TR-73-51, Air Force Elec-
tronic Systems Division, Hanscom AFB, Bedford, MA,
USA, 1972. Also available as Vol. I, DITCAD-758206. Vol.
II DITCAD-772806.

[3] D. E. Bell and L. J. LaPadula. Secure Computer Systems:
Mathematical Foundations (Vol.I). Technical Report AD
770 768, MITRE, Bedford, Massachusetts, Nov. 1973.

[4] R. Bhatti, E. Bertino, and A. Ghafoor. A Trust-Based
Context-Aware Access Control Model for Web-Services.
Distrib. Parallel Databases, 18(1):83–105, 2005.

[5] J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-line Approach. ACM
Press/Addison-Wesley, New York, NY, USA, 2000.

[6] D. F. Brewer and M. J. Nash. The Chinese Wall Security
Policy. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 206–214. IEEE Computer Society Press,
May 1989.

[7] C. Bryce. The Skippy Security Engineering Framework.
Technical Report 1060, GMD – Forschungszentrum Infor-
mationstechnik, Mar. 1997.

[8] C. Bryce, W. E. Kühnhauser, R. Amouroux, and M. Lopéz.
CWASAR: A European Infrastructure for Secure Electronic
Commerce. Journal of Computer Security, IOS Press,
5(3):225–235, 1997.

[9] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
functional Requirements in Software Engineering. Kluwer
Academic Publishers, 2000.

[10] F. Cuppens and C. Saurel. Specifying a Security Policy: A
Case Study. In Proceedings of the Computer Security Foun-
dations Workshop, Kenmare, Ireland, 1996. IEEE Press.

[11] P. Efstathopoulos and E. Kohler. Manageable Fine-Grained
Information Flow. In Proc. of the 2008 EuroSys Conference,
pages 301–313. ACM SIGOPS, Apr. 2008.

[12] S. Giesecke, W. Hasselbring, and M. Riebisch. Clas-
sifying Architectural Constraints as a Basis for Software
Quality Assessment. Advanced Engineering Informatics,
21(2):169–179, 2007.

[13] J. Goguen and J. Meseguer. Security Policies and Security
Models. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 11–20. IEEE, Apr. 1982.

[14] U. Halfmann and W. E. Kühnhauser. Embedding Security
Policies into a Distributed Computing Environment. Oper-
ating Systems Review, 33(2):51–64, Apr. 1999.

[15] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection
in Operating Systems. Commun. ACM, 19(8):461–471, Aug.
1976.

[16] C. E. Irvine. The Reference Monitor Concept as a Unifying
Principle in Computer Security Education. In Proceedings
of the IFIP TC11 WG 11.8 First World Conference on Infor-
mation Security Education, pages 27–37, 1999.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-021, SEI Insti-
tute, Carnegie Mellon University, USA, 1990.

[18] W. E. Kühnhauser. A Classification of Interdomain Actions.
Operating Systems Review, 32(4):47–61, Oct. 1998.

[19] P. A. Loscocco and S. D. Smalley. Integrating Flexible Sup-
port for Security Policies into the Linux Operating System.
In C. Cole, editor, Proceedings of the FREENIX Track, 2001
USENIX Annual Technical Conference, June 25-30, 2001,
Boston, Massachusetts, USA, pages 29–42. USENIX, 2001.

[20] P. A. Loscocco and S. D. Smalley. Meeting Critical Security
Objectives with Security-Enhanced Linux. In Proceedings
of the 2001 Ottawa Linux Symposium, 2001.

[21] Q. Ni, A. Trombetta, E. Bertino, and J. Lobo. Privacy-aware
Role Based Access Control. In SACMAT ’07: Proceed-
ings of the 12th ACM symposium on Access control models
and technologies, pages 41–50, New York, NY, USA, 2007.
ACM.

[22] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE Com-
puter, 29(2):38–47, 1996.

[23] S. D. Smalley. Configuring the SELinux Policy. Technical
Report 02-007, NAI Labs, Jan. 2003.

[24] S. D. Smalley and T. Fraser. A Security Policy Configura-
tion for the Security-Enhanced Linux. Technical report, NAI
Labs, Feb. 2001.

[25] D. H. Stamatis. Failure Mode and Effect Analysis: FMEA
from Theory to Execution. ASQ Quality Press, 2nd edition,
2003.

[26] N. Subramanian and L. Chung. Process-Oriented Metrics
for Software Architecture Evolvability. InProceedings Sixth
International Workshop on Principles of Software Evolution,
pages 65–70, Sept. 2003.

