
Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

Impact Evaluation for Quality-Oriented
Architectural Decisions Regarding Evolvability

Stephan Bode and Matthias Riebisch

Ilmenau University of Technology
P.O. Box 10 05 65, 98684 Ilmenau, Germany

{stephan.bode, matthias.riebisch}@tu-ilmenau.de

Abstract. Quality goals have to be under a special consideration dur-
ing software architectural design. Evolvability constitutes a quality goal
with a special relevance for business critical systems. Architectural pat-
terns can significantly contribute to the satisfaction of quality goals. But
architectural design decisions regarding these goals have to be made in
a systematic, methodical way and concerning the patterns’ influence on
quality properties. Unfortunately, pattern catalogs do not well support
quality goal-oriented design decisions. This paper presents a systematic
refinement and mapping of the quality goal evolvability to properties for
good architectural design. A set of architectural patterns is evaluated re-
garding these properties. Furthermore, a calculation scheme is provided
that enables the evaluation of the patterns to support design decisions.
The results have been developed, revised, and evaluated in a series of
applications based on industrial expertise.

1 Introduction

For the development of many types of software systems, the satisfaction of qual-
ity requirements and the appropriate options for future changes are among the
major goals of software architectures, even more important than functional re-
quirements [12]. Business critical systems demand for the constant provision of
the business services and for a long lifetime for the return of the investment,
while changes have to be performed with a high frequency. As a consequence,
the rank of evolvability often is higher compared to many other quality goals.
Quality attributes have been considered by recent architectural design methods
and approaches, for example QASAR [7], Siemens’ 4 Views [23], ADD [4], and
QADA [28]. Their activities can be classified to the phases architectural analysis,
synthesis, and evaluation [22], of which synthesis creates the candidate solutions
balancing the quality and functional requirements.

According to the importance of quality goals for architectural design, a high
risk is related to them. As a consequence, an effective guidance is needed during
the development, especially for the implementation of goals such as evolvabil-
ity, flexibility, and variability. Quality goals often compete or even conflict with
each other and with functional requirements. A refinement of quality goals to

1



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

quality properties eases the resolution of conflicts and the identification of com-
promises [25]. For balancing between functional and quality requirements, the
utilization of patterns [20] or tactics [4] for architectural structuring constitute
an effective way. Architectural decisions between the several solutions have to
be made according to their impact on the quality properties. This shall result in
a goal-oriented way of selecting patterns and tactics.

The architect’s set of solution elements is usually contained in a toolbox
representing a knowledge base of design knowledge. There are suggestions to
structure a toolbox into two parts [30]: (a) a catalog of approved methods and
solution templates (e.g. patterns), as well as (b) a catalog of fundamental tech-
nologies and tools (e.g. frameworks).

To enable the intended goal-oriented way of selecting solution elements, the
impact of the toolbox elements on quality properties is required as a decision
criteria. Usually, pattern catalogs (e.g. [13, 18]) provide descriptions for context,
problem, and solution. Influences on quality properties of the resulting archi-
tecture are considered to a lesser extent, and qualitatively rather than quanti-
tatively. Classification is related to pattern types instead of quality properties.
Therefore, the catalogs do not sufficiently guide the architect in a pattern selec-
tion related to quality goals. Unfortunately, to the best of our knowledge there is
no quantitative evaluation nor classification of architectural patterns regarding
their impact on quality attributes, which is required for a goal-oriented pattern
selection process. This is especially the case for the goal evolvability.

This paper presents an approach for the quantitative evaluation of the impact
of architectural solution elements on quality goals, which provides all necessary
means for a goal-oriented decision-making for architectural design. As described
in prior works [5, 8], we refine quality goals to subcharacteristics to facilitate con-
flict resolution. The quality subcharacteristics are mapped to properties for good
architectural design. Architectural solution elements such as patterns are then
related to these properties, based on evaluations of their impact on the latter. We
utilize our concept of the Goal Solution Scheme [5] to structure these relations
and to form a knowledge base. A sequence of evaluations of the approach has
lead to revisions of previous schemes, thus, achieving a higher degree of maturity.
The results provide the means for the different steps of a goal-oriented design
process, such as refining the goals, prioritizing the quality subcharacteristics, and
providing a ranked list of candidate solution elements during architectural syn-
thesis. The presented work is focused on the quality goal evolvability, however,
it is intended for other quality goals as well.

The results have been developed, revised, and evaluated in a series of appli-
cations based on industrial expertise. Here we explain them with a case study
of a software system for collective orderers, which additionally confirmed and
improved our evolvability model from an earlier work [8].

The rest of the paper is organized as follows. We introduce the fundamentals
for our evaluation in Section 2: the evolvability model with the subcharacteristics
and the quality properties. Section 3 describes our procedure for the evaluation
of the impact of architectural patterns. Then, in Section 4 the results of the

2



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

evaluation are discussed. Section 5 deals with related work. Finally, Section 6
concludes the paper and gives an outlook on further work.

2 Evolvability Subcharacteristics and Design Properties

This section provides the fundamentals for our approach. Three elements form
the base for our approach of goal-oriented decision support on architectural
solutions: (1) A quality model with a refinement of quality goals to subcharac-
teristics and properties, (2) a process for selecting architectural solutions, and
(3) an evaluation of solutions regarding their impact on quality goals—in this
case evolvability. We use a definition of evolvability based on Breivold et al. [9]
and Rowe et al. [32]:

Definition. Evolvability is the ability of a software system throughout its lifes-
pan to accommodate to changes and enhancements in requirements and technolo-
gies, that influence the system’s architectural structure, with the least possible
cost while maintaining the architectural integrity .

2.1 The Evolvability Model

Evolvability of a software system is a property referring to the effort concerning
different aspects of its evolution. This effort can be determined by the help of
several subcharacteristics of evolvability, which we define by a quality model.
This model is an extension of the works of Breivold et al. [9, 10] and Cook et al.
[15] and was introduced earlier in [8].

For a goal-oriented way of decision-making during architectural synthesis,
the impact of a decision on the quality goal has to be determined or predicted.
Expert estimations constitute an effective way of impact determination. An ex-
pert in this regard should have experience with the implications of architectural
patterns on quality properties in a certain class of software systems. The sub-
jective character of expert estimations can be reduced by performing them on a
detailed level and then aggregating the results.

We discovered that properties for good architectural design provide a proper
refinement of the quality subcharacteristics to determine the impact of archi-
tectural elements on the different aspects of evolution effort. We modeled the
refinement by a mapping between subcharacteristics and properties.

The subcharacteristics of evolvability are described in Table 1. These sub-
characteristics are based on the ISO 9126 [24] and other works on evolvability
[9, 10, 15]. They also strongly correlate to what Matinlassi et al. [27] call evo-
lution qualities and additional characteristics (e.g. traceabiliy, variability) for
specifying the quality goal maintainability.

The design properties used for refinement are listed in Table 2. The map-
ping between subcharacteristics and design properties is shown in Figure 1 and
Table 3. In the figure we left out some direct dependencies and show the aggre-
gated ones for a better visualization. In Table 3 an existing influence relation

3



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

is represented by 1 if positive and by -1 if negative. Indentations in the tables
express the refinements of subcharacteristics and properties. For example mod-
ularity aggregates cohesion and loose coupling. The indentations correspond to
the refinement links in Figure 1.

Many evolvability subcharacteristics can be influenced by the architectural
structure and behavior. However, there are important influence factors on evolv-
ability as for example qualification and motivation of the team members, process
maturity, or quality management activities. The development process with roles,
phases, communication paths, and traceability has a large influence as well. Ar-
chitectural structures cannot control these factors; they will be considered partly
in the calculation scheme in Section 3.3. For the subcharacteristics (Table 1) and
the design properties (Table 2) we marked the ones with a direct influence from
architectural patterns by an * in the first columns. They are applied as evaluation
criteria for the architectural patterns in the sequel.

The mapping relations have been developed in an iterative way, starting with
hypotheses [8] and multiple steps of revision during application in case studies
[31, 33]. Meanwhile, the relations and the way of calculating impact values can be

Table 1. Evolvability subcharacteristics.

Subcharacteristic Description

Analyzability, Ease
of comprehension,

(Understandability)*

The capability of the software product to be diagnosed for deficiencies
or causes of failures in the software and to enable the identification of

influenced parts due to change stimuli (based on [24] and [9]).

Changeability/

Modifiability*

The capability of the software product to enable a specified modification

to be implemented quickly and cost-effectively (based on [24] and [27]).
Extensibility* The capability of a software system to enable the implementation of

extensions to expand or enhance the system with new capabilities and

features with minimal impact to existing system [9].
Variability* The capability of a software system or artifact to be efficiently extended,

changed, customized, or configured for use in a particular context by

using preconfigured variation points (based on [34]).
Portability* The capability of the software product to be transferred from one en-

vironment or platform to another [24].

Reusability* The system’s structure or some of its components can be reused again

in future applications [27].

Testability* The capability of the software system to enable modified software to be

validated [24].

Traceability* The capability to track and recover in both a forwards and backwards
direction the development steps of a software system and the design

decisions made during on-going refinement and iteration in all devel-

opment phases by relating the resulting artifacts of each development
step to each other (based on [19]).

Compliance to

standards*

The extent to which the software product adheres to standards or con-

ventions relating to evolvability (based on [24].

Process qualities Additional process quality characteristics are for example Project Ma-

turity and Community Quality, which are recognized as characteristics
that influence the evolvability of open source software projects [17].

4



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

Table 2. Properties of good architectural design.

Property Description

Low complexity* The extent to which the amount/number of elements and their inter-

dependencies are reduced.

Abstraction* The extent to which unnecessary details of information are hidden to
build an ideal model and the extend to which a solution is generalized

(based on [6]).

Modularity* The property of a software system to be decomposed into a set of co-
herent and loosely coupled elements with subsumption of abstractions

(based on [6]).
Cohesion* The strength of the coupling between the internals of an element

(based on [6]).

Loose
coupling*

The extent to which the interdependencies between elements are min-
imized (based on [6]).

Encapsulation* The extent of hiding the internals of an element for example by sep-

aration of interface and implementation (based on [6]).
Separation of

Concerns*

The extent to which different responsibilities are mapped onto dif-

ferent elements with as little as possible overlap, at which ideally one

responsibility is assigned to exactly one specific element. The violation
of this property is called tangling and scattering.

Hierarchy* The arrangement or classification of related abstractions ranked one

above the other according to inclusiveness and level of detail (based
on [6] and [29]).

Simplicity* The quality or condition of being easy to understand or do [29].
Correctness The property of an element to be complete and consistent resulting

in a fulfillment of its responsibilities.
Consistency The absence of contradictions and violations between related ele-

ments.

Completeness The coverage of all relevant responsibilities by an element without

lacking any necessary detail.
Conceptual

integrity

The continuous application of ideas throughout a whole solution, pre-

venting special effects and exceptions (based on [11]).

Proper granularity* The size and complexity of an element is appropriate to its responsi-

bilities and to the particular situation.

Coherent mapping to
concepts*

The way to map elements to ideas and mental pictures so that they
are easy to understand, for example by proper names.

considered as rather mature. As an additional benefit of the evolvability model
the refinement of the quality goals by mapping to properties enables a conflict
resolution between competing quality goals, as discussed earlier in [5].

2.2 The Selection Procedure for Architectural Decisions

Architectural decisions concern design changes or the introduction of architec-
tural solution elements, for example from the architect’s toolbox. In order to
implement a goal-oriented development we embed our approach into a two step
procedure of selecting architectural solutions: (1) Architectural constraints are
used to determine the set of applicable solutions by eliminating all unsuitable

5



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

Evolvability

Traceability

Testability

Analyzability

Process 
Qualities

Reusability

Consistency

Completeness

Low 
complexity

Loose coupling

Abstraction

Separation of 
Concerns

Project Maturity

Community Quality

Quality Goal Subcharacteristics Properties

Refinement Positive Influence Negative Influence

Compliance to 
Standards

Cohesion

Conceptual 
integrity

Proper 
granularity

Coherent 
mapping to 

concepts

Correctness

Modularity

Simplicity

Extensibility

Portability

Variability
Encapsulation

Hierarchy

Changeability

Fig. 1. Graphical representation of the evolvability model.

Table 3. Mapping of subcharacteristics to properties.

Property \ Subcharacteristic A
n

a
ly

za
b

il
it

y
C

h
a
n

g
ea

b
il
it

y
E

x
te

n
si

b
il
it

y
V

a
ri

a
b

il
it

y
P

o
rt

a
b

il
it

y
T

es
ta

b
il
it

y
R

eu
sa

b
il
it

y
T

ra
ce

a
b

il
it

y
C

o
m

p
li
a
n

ce

Low complexity* 1
Abstraction* 1 1 1 1 1 1

Modularity*

Cohesion* 1 1 1 1 1 1
Loose coupling* 1 1 1 1 1 1

Encapsulation* 1 1 1 1 -1 1
Separation of concerns* 1 1 1 1 1 1 1

Hierarchie* 1 1 1 1 1 1
Simplicity* 1 1 1 1 1 1
Correctness

Consistency 1 1 1 1 1 1 1

Completeness 1 1 1 1
Conceptional integrity 1 1 1 1 1

Proper granularity* 1 1 1 1
Coherent mapping to concepts* 1 1 1 1 1 1 1 1

1 – Positive influence; -1 – Negative influence

ones. (2) All solutions in the set are evaluated and ranked regarding the relevant
quality goals. According to the ranking the architect selects and implements a
solution. The evaluation needed for step 2 is presented in the next chapter.

6



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

3 Evaluation of Architectural Solution Elements

In this section we describe our approach for the evaluation of the impact of
architectural patterns on evolvability. The concept of the approach is based on
the evolvability model and the evaluation criteria presented in the last section.
The evaluation itself is presented with a case study of a software system for
collective orderers of mail order companies.

Case Study: Collective Ordering System. Mail order companies prefer
to work together with collective orderers, who accumulate orders of several cus-
tomers and submit them as a collective order to the mail order company. The
mail order company delivers the goods in one shipment to the collective orderer,
who in turn distributes them to the customers. There are several advantages: The
collective orderer knows the formalities and processes for rare procedures such as
reshipment, complaint, deferred payment, etc. better than the average customer.
The personal, familiar contact to customers has positive effects on the business
volume. The mail order company can delegate communication activities with cus-
tomers to the collective orderer. These procedures belong to the core business in
the domain and are affected by frequent changes. Therefore, they were chosen
for this case study.

The software system of the company shall enable collective orderers to sub-
mit orders, manage their customers, and deal with complaints. We applied our
approach for the task of enhancing this system. First, we selected some archi-
tectural patterns as explained in Section 3.1. Second, we determined the impact
of the patterns on the properties for good architectural design (Section 3.2).
For evaluation purposes, a suitable part of the collective ordering software was
designed for each of the considered architectural patterns. This architectural de-
sign was used for the impact determination. Based on the results, the impact
on the subcharacteristics was determined as discussed in Section 3.3. Finally, we
aggregated the values to determine the impact on the quality goal evolvability
(Section 3.4). The resulting values are stored together with the patterns in the
architect’s catalog. They can be used for future design decisions regarding this
quality goal.

3.1 Selection of Patterns

For the impact determination regarding the quality goal evolvability, architec-
tural and design patterns with an influence on the software architecture consti-
tute interesting candidates. There is a high number of patterns available. For the
evaluation with this case study we selected a set of patterns from the entirety
which have an influence on the architecture, which are well documented, and
which are expected to have an impact on evolvability. According to step 1 of our
decision procedure, they have to fulfill the constraints of the software system of
the case study. The selected patterns are listed in Table 4.

7



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

Table 4. Selected architectural patterns.

Name Sources

Client-Server see Avgeriou&Zdun [1]

Layers/Tiers

Repository
Blackboard

Pipes and Filters

Model View Controller (MVC)
Presentation Abstraction Control (PAC)

Event-Based, Implicit Invocation

Broker
Micro Kernel

Reflection

Facade Gamma et al. [18]

Adapter

Proxy

Plug-in Manolescu et al. [26]

3.2 Determination of the Impact on the Properties

This section explains the determination of the impact values for the selected
patterns in the case study. First, we applied the patterns in an exemplary archi-
tectural design for the case study. The resulting pattern-based design was rated
regarding the impact on the properties for good architectural design. The ratings
were gained through an assessment of the impact for each property by experts.
The value of the impact is expressed by values of -2 (strong negative), -1 (weak
negative), 0 (neutral), 1 (weak positive) and 2 (strong positive).

Case study example for impact discussion A collective orderer has to enter orders
into the software system, and then the orders have to be transmitted to the mail
order company. Usually this is done via phone but should be supported by the
new software system. As a possible solution in the case study, we utilized the
Client-Server pattern (see Figure 2(a)). The server at the mail order company is
connected to the collective orderer’s client via internet. It provides an interface
for the transmission of orders. The client is structured in three layers as shown in
Figure 2(b). The presentation layer is responsible for the graphical user interface
(GUI). It uses the application layer, which provides functions as calculations for
deferred payment, a search for ordered but not delivered goods, or a reminder
for the deadline for returning the goods. The data layer is responsible for the
data persistence in a databank.

Now we discuss the evaluation of the patterns Client-Server and Layers re-
garding their impact on the properties for good architectural design. They both
have a strong positive impact on several properties. For example they provide
a good abstraction of internal details (rating 2). The resulting architecture is
simple to understand (2). They provide good modularity due to high cohesion

8



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

Catalog 
Company Server

Collective 
Orderer Client

(a) Client-Server

Collective Orderer Client
Presentation Layer

Application Layer

Data Layer

(b) Layers

Fig. 2. Pattern application in the case study example

inside the layers, client, and server (2), as well as a loose coupling between the el-
ements (2) for example for the deferred payment. Unnecessary details are hidden
behind interfaces between the layers. Therefore, the encapsulation is improved
(2). Regarding separation of concerns Client-Server and Layers have a positive
impact, but they cannot completely prevent mixing different concerns (rating
1). Regarding the Hierarchy criteria the two patterns differ in their impact. The
Layers pattern supports the ranking and grouping of abstractions on different
levels very well due to the different layers (2). For the Client-Server pattern this
cannot hold to this extend resulting in a lower rating (1). The same applies for
the coherent mapping to concepts criteria. The Layers pattern has a weak pos-
itive impact on a proper granularity of an architectural design by structuring
into layers instead of one big structural element (1). Overall, the Client-Server
pattern and the Layers pattern reduce the complexity of an architecture through
structuring.

Inside the client’s presentation layer, the Model View Controller (MVC) pat-
tern can be used to separate the data to be presented (e.g. a customer or order),
from the different views and control mechanisms. For example there are views
for editing the customers’ contact information or for collecting and managing
the orders.

The support for abstraction and cohesion as well as separation of concerns of
MVC is very good (rating 2) as a result of the strict separation of model, view,
and controller. This improves the simplicity of the design as well (1), although
it is not so easy to use MVC with modern GUI libraries. The encapsulation is
also good because the internals of each element are hidden behind interfaces (1).
To build a hierarchy with MVC is not so well supported (0)—here Presenta-
tion Abstraction Control (PAC) would be better. Regarding coupling MVC is
evaluated slightly negative (-1). Of course, the views can be decoupled from the
model via a change-propagation mechanism, however, view and controller are
coupled very tightly. Summed up, the complexity resulting from MVC is good
but not excellent. The granularity that results from MVC can be quite good (1)
if the models and views are properly designed. However, MVC’s real strength is
to provide a coherent mapping of concepts for the user interaction through the
GUI (2).

9



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

Table 5. Values for the patterns’ impact on the properties

Property \ Pattern C
li
en

t-
S

er
v
er

L
a
y
er

s/
T

ie
rs

R
ep

o
si

to
ry

B
la

ck
b

o
a
rd

P
ip

es
&

F
il

te
rs

M
V

C

P
A

C

Im
p

l.
In

v
o
c.

F
a
ca

d
e

A
d

a
p

te
r

B
ro

k
er

P
ro

x
y

M
ic

ro
K

er
n

el

R
efl

ec
ti

o
n

P
lu

g
-i

n

Low complexity 1,7 1,8 0,8 0,3 1,7 1,1 1,4 0,8 1,3 1,4 1,5 1,5 2 0,3 1,6

Abstraction 2 2 0 0 2 2 2 1 2 2 2 2 2 2 2
Modularity 2 2 0 0,5 0 0,5 0,5 1 1,5 1,5 2 2 2 1 1,5

Cohesion 2 2 1 1 2 2 2 0 1 1 2 2 2 0 2

Loose coupling 2 2 -1 0 -2 -1 -1 2 2 2 2 2 2 2 1
Encapsulation 2 2 1 2 2 1 1 1 2 2 2 2 2 0 2

Separation of concerns 1 1 2 0 2 2 2 0 0 1 1 1 2 0 2

Hierarchie 1 2 0 0 2 0 2 0 0 0 0 0 2 0 0
Simplicity 2 2 2 2 2 1 1 2 2 2 2 2 2 -1 2

Proper granularity 0 1 0 0 2 1 1 0 2 1 0 0 1 0 2

Coherent mapping to concepts 1 2 1 0 2 2 2 0 1 1 2 0 2 0 2

For the rest of the patterns the evaluation concerning the properties was
done in the same way. It cannot be explained here in detail due to space lim-
itations. Table 5 shows the determined impacts of all selected patterns on the
properties for good architectural design. The ratings of the aggregated proper-
ties modularity and low complexity are calculated by arithmetic mean of the
subordinates.

3.3 Calculation of the Impact on Evolvability Subcharacteristics

The patterns’ impact on the quality subcharacteristics is primarily determined
from the impact on the properties, as discussed above. They are considered in the
first step of the calculation. Additional influences on the subcharacteristics—for
example from efforts not related to the properties of good design—are considered
by introducing adjustments in a second step.

We calculated the results in the following way. Let R be the matrix of the
impact ratings for the properties (Table 5) and rp be a column vector of this
matrix for one element p of the set of patterns P . Let M be the mapping matrix
of Table 3 and M∗ be M reduced by the rows for which the properties were not
evaluated (and are not marked with *). Further, let ms be a column vector of
M∗ for one element s of the set of subcharacteristics S. Moreover, let V be the
matrix with the impact values of the patterns on the subcharacteristics. Then,
each element vsp of V is calculated by

vsp = rp ·ms/ ‖ms‖1 .

Finally, the matrix V ′ in the top of Table 6 is obtained from V by calculating the
impact values for changeability in row 2 by the arithmetic mean of the values for
extensibility, variability, and portability. In this way we determine the patterns’

10



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

impact values on the subcharacteristics from the direct ratings for the properties
(Table 5) by evaluating and normalizing the influences of the interdependencies
described by the mapping in Table 3.

However, through the calculation there is no discrimination regarding the
subcharacteristics of changeability. The Reflection pattern for example con-
tributes to extensibility and variability but reduces portability if the base tech-
nology does not support reflection. Furthermore, testability is decreased due to
possible dynamic changes at runtime.

These effects are not represented by the aggregated impact values in V ′ of
the first step. Therefore, we considered offset values osp shown in the middle of
Table 6 for the determination of the patterns’ impact on the subcharacteristics.
To determine these offset values we also incorporated knowledge about conse-
quences of the pattern application regarding quality properties mentioned in the
literature (e.g. Buschmann et al. [13]). The final impact values are calculated as
follows. Let F be the matrix for the adjusted impact values. Then each element
fsp of F is calculated by

fsp =

{
vsp if osp is undefined
(vsp + osp)/2 otherwise.

The final impact values F ′ for the subcharacteristics including changeability
shown in the bottom of Table 6 again are obtained as for V ′ before.

3.4 Determining the Impact on Evolvability

As the last step the overall impact of the patterns on the quality goal evolvability
is to be determined by aggregating all subcharacteristics with equal weights. The
resulting values of the patterns’ impact on evolvability are shown in Figure 3
and in the lowermost row of Table 6. The experts gave feedback on the results.
This feedback led to a minor revision of the offset values discussed in the last
section. The changes resulting from the offset values can be seen by comparing
the unadjusted and the final values shown in Figure 3. As a consequence of the
evaluation, a plug-in-based architecture was selected as the best solution.

4 Discussion of the Results

The final results of the impact evaluation are illustrated by Figure 3. The chart
shows that the patterns in general do have a positive impact on the quality goal
evolvability. Some patterns turned out to be excellent, for example Layers, Plug-
in, or Pipes and Filters; others are less supportive. However, the impact of the
patterns on evolvability and on software quality in general is limited if process
aspects are not taken into account. We have considered process qualities only
partly by the adjustments. Traceability constitutes another aspect important for
evolvability which depends on the development process rather than on patterns.

Buschmann et al. [13] argue that a classification of patterns into groups is
necessary to help the architect with the utilization of a system of patterns. We

11



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

Table 6. Impact values for subcharacteristics and evolvability

Subcharacteristic \ P
a
tt
e
r
n

C
li
en

t-
S

er
v
er

L
a
y
er

s/
T

ie
rs

R
ep

o
si

to
ry

B
la

ck
b

o
a
rd

P
ip

es
&

F
il

te
rs

M
V

C

P
A

C

Im
p

l.
In

v
o
c.

F
a
ca

d
e

A
d

a
p

te
r

B
ro

k
er

P
ro

x
y

M
ic

ro
K

er
n

el

R
efl

ec
ti

o
n

P
lu

g
-i

n

Calculated Rating

Analyzability 1,6 1,9 0,8 0,1 1,5 1,1 1,4 0,8 1,3 1,4 1,6 1,4 2,0 0,4 1,6
Changeability 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7

Extensibility 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7

Variability 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7
Portability 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7

Testability 1,4 1,8 0,8 -0,2 1,2 1,0 1,4 0,6 0,8 1,0 1,4 1,0 2,0 0,2 1,4
Reusability 1,5 1,8 0,8 0,3 1,5 1,3 1,3 0,8 1,5 1,5 1,6 1,4 1,9 0,4 1,9

Traceability 1,2 1,6 1,3 0,8 1,9 1,7 1,8 0,3 0,8 1,1 1,5 0,8 2,0 0,1 1,9

Compliance to standards 1,3 2,0 0,3 0,0 2,0 1,3 2,0 0,3 1,0 1,0 1,3 0,7 2,0 0,7 1,3

Offset

Analyzability 0 -1 -1 2 0 1 0
Changeability

Extensibility 1 1 2 -1 2 2 2 2 2 2 2 2

Variability 1 1 2 2 2 2 2 2
Portability 2 2 2 2 2 2 2 -1

Testability -2 -2 -1 2 0 -1 2

Reusability 2 2 2 1
Traceability 2

Compliance to standards 2 0 2

Final Values

Analyzability 1,6 1,9 0,4 -0,4 1,5 1,1 1,4 -0,1 1,6 0,7 1,3 1,4 1,0 0,4 1,6

Changeability 1,4 1,6 0,9 0,0 1,6 1,6 1,7 1,1 1,4 1,7 1,6 1,4 1,9 0,7 1,8
Extensibility 1,2 1,4 1,3 -0,4 1,6 1,6 1,7 1,3 1,7 1,7 1,7 1,2 1,9 1,2 1,8

Variability 1,2 1,4 0,7 0,2 1,6 1,6 1,7 1,3 1,3 1,7 1,4 1,2 1,9 1,2 1,8
Portability 1,7 1,9 0,7 0,2 1,6 1,6 1,7 0,7 1,3 1,7 1,7 1,6 1,9 -0,3 1,7

Testability 1,4 1,8 0,8 -1,1 1,2 1,0 1,4 -0,7 -0,1 1,0 1,4 1,5 1,0 -0,4 1,7

Reusability 1,5 1,8 0,8 0,3 1,5 1,3 1,3 1,4 1,8 1,8 1,6 1,4 1,9 0,7 1,9
Traceability 1,2 1,6 1,3 0,8 1,9 1,7 1,8 1,1 0,8 1,1 1,5 0,8 2,0 0,1 1,9

Compliance to standards 1,3 2,0 0,3 0,0 2,0 1,3 2,0 0,3 1,0 1,0 1,7 0,7 1,0 0,7 1,7

Evolvability 1,4 1,8 0,7 -0,1 1,6 1,3 1,6 0,5 1,1 1,2 1,5 1,2 1,5 0,3 1,8

agree to this argument for general categories like architectural pattern or design
pattern, structural or behavioral pattern, or regarding problems like concurrency
or distribution. However, for effort-related quality properties a quantitative eval-
uation is more effective than a categorization because the impact on effort varies
within an interval. In our decision procedure, step 1 results in a very similar
effect as Buschmann’s categories. The ranking of step 2 supports the architect
in selecting the most appropriate solution element.

12



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

-0,2 

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1,4 

1,6 

1,8 

2 

C
lie

nt
-S

er
ve

r 

La
ye

rs
 /T

ie
rs

 

R
ep

os
ito

ry
 

B
la

ck
bo

ar
d 

Pi
pe

s&
Fi

lte
rs

 

M
V

C
 

PA
C

 

Im
pl

. I
nv

oc
. 

Fa
ca

de
 

A
da

pt
er

 

B
ro

ke
r 

Pr
ox

y 

M
ic

ro
 K

er
ne

l 

R
ef

le
ct

io
n 

Pl
ug

-in
 

Unadjusted 
Rating 
Final Rating 

Fig. 3. Resulting Impact of Patterns on Evolvability

The impact values have been derived from a concrete case study. We must
admit that they are subjective by nature because they were determined from
expert opinion. The results of an expert survey also depend on the application
conditions as the experience of the development teams. However, an improve-
ment regarding objectivity is possible by including several experts. The values
shall be applicable and applied in further projects. The degree of universality of
the impact values can be improved by revising them in a series of projects.

The presented results have been developed as hypotheses, later revised, and
evaluated in a series of applications based on industrial expertise. They can be
considered as rather mature. Even if forthcoming revisions might result in smaller
modifications of the impact values, the revisions of the relations for refinement
and mapping (Fig. 1) can be expected to be minor ones.

5 Related Work

There is a lot of literature with works about patterns and their classification
in pattern catalogs, some of which were already mentioned in the preceding
sections. A good start to read are Avgeriou and Zdun [1], Buschmann et al. [13],
or the seminal work of Gamma et al. [18]. Unfortunately, there is no catalog of
patterns for evolvability. For security such a thing exists already for a quite long
time [35].

A similar work to ours is the one of Harrison and Avgeriou [21]. They give
an overview about the strengths and liabilities of a set of common architectural
patterns regarding their impact on the qualities of the ISO 9126. They also
present a design method for architectural design, which describes how to select
the appropriate patterns for balancing quality and functional requirements in

13



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

[20]. However, they do not discuss the impact of the patterns on the properties
for good architectural design as we do. Furthermore, our work has a strength in
focussing on evolvability.

Architectural tactics discussed in several works by the SEI (e.g. [3], [2]) can
be other means for a proper selection of patterns during architectural design.
They are used for example in the Attribute Driven Design (ADD) method [4].
The tactics give some qualitative hints for choosing patterns concerning several
quality attributes as e.g. modifiability or performance. But they do not consider
design principles either, only partly deal with evolvability through modifiability,
and cannot be interpreted quantitatively as the ratings in our approach.

POSAAM [16] is a method for quantitative architectural evaluation that
relates patterns to quality attributes and design principles in an ontology. In
this it is akin to our approach, though not for architectural synthesis.

Furthermore, the NFR-Framework of Chung et al. [14] has some similarities
to our evolvability model. They link quality goals, so-called softgoals, and their
subgoals via contribution links and operationalize them with solutions to perform
an evaluation of the quality goals’ satisfaction. However, the NFR-Framework
has a requirements-oriented viewpoint, and therefore, does not consider archi-
tectural design principles or properties important for architectural synthesis.

6 Conclusion and Further Work

In this paper as the major contribution we presented an approach for the quan-
titative selection of architectural elements regarding quality goals. It consists of
a quality model for evolvability as a basis for the evaluation of architectural pat-
terns regarding their impact on the quality goal evolvability. We defined subchar-
acteristics of evolvability and mapped them to properties for good architectural
design in order to be able to determine the impact on evolvability. Addition-
ally, we presented our calculation scheme for the evaluation together with the
results of the evaluation. The evaluation is embedded in a decision procedure
on architectural elements in a toolbox. With a case study we explained how to
determine the patterns’ impact on the properties, to calculate the impact on the
subcharacteristics through our mapping, then to consider additional influences
by offset values to fit expertise knowledge, and finally, to aggregate the ratings to
the final impact values on evolvability. The results show a considerable impact
of architectural patterns on evolvability, although this quality goal cannot be
addressed by merely using architectural patterns.

Another contribution of this work consists in a quantitative evaluation of ar-
chitectural patterns regarding their impact on the quality goal evolvability and
its subcharacteristics. In our opinion this is a valuable mean for supporting the
decision-making process of a software architect. Using the patterns’ impact val-
ues, a software architect can enrich his toolbox and rank the patterns according
to their quality impact. This eases the search and selection of appropriate solu-
tions for quality goals during architectural design. Furthermore, the mapping of

14



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

quality goals on subchararcteristics facilitates the resolution of conflicts between
competing quality goals.

In further works, the mapping relations between properties and subcharacter-
istics will be investigated in more detail, to elaborate a weighting of the mapping
relations. Moreover, the results can be combined with knowledge on patterns’
impact on other quality attributes, in addition to evolvability. Furthermore, with
our approach additional solution concepts of an architect’s toolbox can be evalu-
ated, for example architectural refactorings or frameworks. Tool support for the
approach is currently developed.

References

1. Avgeriou, P., Zdun, U.: Architectural patterns revisited – a pattern language. In:
10th European Conf. on Pattern Languages of Programs (EuroPlop 2005), Irsee.
pp. 1–39 (2005)

2. Bachmann, F., Bass, L., Nord, R.: Modifiability tactics. Tech. Rep. CMU/SEI-
2007-TR-002, CMU/SEI (September 2007)

3. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward
methodical architectural design. Tech. Rep. CMU/SEI-2003-TR-004, CMU/SEI
(Mar 2003)

4. Bass, L.J., Klein, M., Bachmann, F.: Quality attribute design primitives and the
attribute driven design method. In: Revised Papers from 4th Int. Workshop on Soft-
ware Product-Family Engineering. LNCS, vol. 2290, pp. 169–186. Springer (2002)

5. Bode, S., Fischer, A., Kühnhauser, W., Riebisch, M.: Software architectural de-
sign meets security engineering. In: Proc. 16th Int. Conf. and Workshop on the
Engineering of Computer Based Systems (ECBS ’09). pp. 109–118. IEEE (2009)

6. Booch, G.: Object Oriented Analysis and Design. With Applications. Addison-
Wesley Longman, Amsterdam (Oct 1993)

7. Bosch, J.: Design and use of software architectures: Adopting and evolving a
product-line approach. ACM Press/Addison-Wesley, New York, NY, USA (2000)

8. Brcina, R., Bode, S., Riebisch, M.: Optimization process for maintaining evolv-
ability during software evolution. In: Proc. 16th Int. Conf. and Workshop on the
Engineering of Computer Based Systems (ECBS ’09). pp. 196–205. IEEE (2009)

9. Breivold, H.P., Crnkovic, I., Eriksson, P.: Evaluating software evolvability. In:
Proc. of the 7th Conf. on Software Engineering Research and Practice in Sweden
(SERPS’07). pp. 96–103. IT University of Göteborg, Göteborg, Sweden (2007)

10. Breivold, H.P., Crnkovic, I., Land, R., Larsson, S.: Using dependency model to
support software architecture evolution. In: 23rd IEEE/ACM International Con-
ference on Automated Software Engineering - Workshops, 2008. ASE Workshops
2008. pp. 82–91. IEEE (Sept 2008)

11. Brooks, F.P.: The Mythical Man-Month : Essays on Software Engineering.
Addison-Wesley (1995)

12. Brown, A.W., McDermid, J.A.: The art and science of software architecture. In:
Oquendo, F. (ed.) Proceedings First European Conference on Software Architec-
ture (ECSA 2007). LNCS, vol. 4758, pp. 237–256. Springer (September 2007)

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons (1996)

14. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering, Int. Series in Software Engineering, vol. 5. Kluwer (2000)

15



Preprint Version: The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-15114-9_15

15. Cook, S., Ji, H., Harrison, R.: Dynamic and static views of software evolution.
In: 17th IEEE International Conference on Software Maintenance (ICSM’01). pp.
592–601. IEEE, Los Alamitos, CA, USA (Nov 2001)

16. da Cruz, D.B.: POSAAM – Eine Methode zu mehr Systematik und Expertenun-
abhängigkeit in der qualitativen Architekturbewertung. Ph.D. thesis, TU München
(2009)

17. Deprez, J.C., Monfils, F., Ciolkowski, M., Soto, M.: Defining software evolvability
from a free/open-source software perspective. In: Proceedings of the Third Inter-
national IEEE Workshop on Software Evolvability. pp. 29–35. IEEE (Oct 2007)

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Softwaresystems. Addison-Wesley (Nov 1994)

19. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability
problem. In: Proceedings of the First International Conference on Requirements
Engineering, Colorado Springs, CO, USA. pp. 94–101. IEEE (Apr 1994)

20. Harrison, N., Avgeriou, P.: Pattern-driven architectural partitioning: Balancing
functional and non-functional requirements. In: Second International Conference
on Digital Telecommunications, 2007. ICDT ’07. IEEE (July 2007)

21. Harrison, N., Avgeriou, P.: Leveraging architecture patterns to satisfy quality at-
tributes. In: Proc. ECSA 2007. vol. 4758/2007, pp. 263–270. Springer (2007)

22. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A gen-
eral model of software architecture design derived from five industrial approaches.
Journal of Systems and Software 80(1), 106–126 (Jan 2007)

23. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley,
Boston, MA, USA (2000)

24. ISO/IEC: ISO/IEC 9126-1 International Standard. Software Engineering - Product
quality - Part 1: Quality models (June 2001)

25. van Lamsweerde, A.: From system goals to software architectures. In: Formal Meth-
ods for Software Architectures. LNCS, vol. 2804/2003, pp. 25–43. Springer (2003)

26. Manolescu, D., Voelter, M., Noble, J.: Pattern Languages of Program Design 5.
Addison-Wesley Professional (May 2006)

27. Matinlassi, M., Niemelä, E.: The impact of maintainability on component-based
software systems. In: Proc. 29th Euromicro Conf., 2003. pp. 25–32. IEEE (2003)

28. Matinlassi, M., Niemelä, E., Liliana, D.: Quality-Driven Architecture Design and
Quality Analysis Method. A Revolutionary Initiation Approach to a Product Line
Architecture. Tech. Rep. 456, VTT Technical Research Centre of Finland (2002)

29. McKean, E.: The New Oxford American Dictionary. Oxford University Press, 2
edn. (May 2005)

30. Posch, T., Birken, K., Gerdom, M.: Basiswissen Softwarearchitektur: Verstehen,
entwerfen, wiederverwenden. dpunkt.verlag, 1 edn. (2004)

31. Riebisch, M., Bode, S.: Software-Evolvability. Informatik-Spektrum 32(4), 339–343
(Aug 2009)

32. Rowe, D., Leaney, J., Lowe, D.: Defining systems architecture evolvability - a tax-
onomy of change. In: Proceedings of the 11th International Conference on the
Engineering of Computer Based Systems (ECBS’98). pp. 45–52. IEEE (1998)

33. Stollberg, R.: Klassifikation von Architekturstilen und -mustern hinsichtlich quali-
tativer Ziele für den Softwarearchitekturentwurf. Bachelor thesis, Ilmenau Univer-
sity of Technology, Ilmenau, Germany (2010)

34. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-
niques. Software: Practice and Experience 35(8), 705–754 (2005)

35. Yoder, J.W., Barcalow, J.: Architectural patterns for enabling application security.
In: 4th Conf. on Patterns Languages of Programs (PLoP ’97) (1997)

16


