
A Model-Based Regression Testing Approach for Evolving Software Systems
with Flexible Tool Support

Qurat-ul-ann Farooq
Technische

Universität Ilmenau,
Germany

Qurat-ul-ann.farooq
@tu-ilmenau.de

Muhammad Zohaib Z.
Iqbal

 Simula Research
Laboratory, Norway
zohaib@simula.no

Zafar I Malik
Academy of

Educational Planning
and Management,

Pakistan
zafarimalik@acm.org

Matthias Riebisch
Technische

Universität Ilmenau,
Germany

Matthias.riebisch
@tu-ilmenau.de

Abstract

Model-based selective regression testing promises
reduction in cost and labour by selecting a subset of
the test suite corresponding to the modifications after
system evolution. However, identification of
modifications in the systems and selection of
corresponding test cases is challenging due to
interdependencies among models. State-based testing
is an important approach to test the system behaviour.
Unfortunately the existing state-based regression
testing approaches do not care for dependencies of the
state machine with other system models. This paper
presents the tool support and evaluation of our state-
based selective regression testing methodology for
evolving state-based systems. START is an Eclipse-
based tool for state-based regression testing compliant
with UML 2.1 semantics. START deals with
dependencies of state machines with class diagrams to
cater for the change propagation. We applied the
START on a case study and our results show
significant reduction in the test cases resulting in
reduction in testing time and cost.

Model-based regression testing has several
advantages compared to the conventional code-based
regression testing approaches. The traditional code-
based testing approaches fail to scale when the size of
the system increases. Model-based testing approaches
provide better complexity management and better
comprehension of the system, the relevant test suites
and test cases. In model-based testing, the testing
activity can be started in the early phase of software
development which results in effort reduction in terms
of time and labour. Further, traceability maintenance
between test cases and models is easy and finally,
portability and platform independence is a major
benefit for evolving systems to adopt the rapid changes
in technology and operational environment [4].

1. Introduction

Evolution is inherent in the software systems. Due to
the growing size and complexity of modern systems,
the evolving nature of a system can cause adverse
effects and even system failures. Besides many other
measures to prevent these unintended effects of
evolution, one very important measure is to test the
systems after introducing the modifications which is
often referred to as Regression Testing. Repeating the
entire testing activity whenever the system is modified
is a very costly task. A large system may have a huge

number of test-cases and test-execution requirements.
Executing all these test-cases is generally not an
option. Hence, it is necessary for regression testing to
select a subset of the system corresponding to
modifications. This is known as the selective strategy
for regression testing and is a more feasible solution in
terms of cost and time [3].

In model-based development, several artefacts are
inter-related. A change in one artefact can affect other
related artefacts; hence, it is necessary to cater for
these relationships and dependencies for effective
regression testing. In UML-based development, the
class diagram shows the structural aspects of classes
and state machines reflect the behavioural aspects of
the classes [15]. State machine-based testing is widely
used in practice to test class behaviour. When a class is
modified, due to any change in the specification, both
structural and behavioural aspects can be modified and
it is necessary to retest the corresponding test cases.
The relationship between class diagram, state machine
and the corresponding test suite is shown in Figure 1.

Figure 1: Relations between structural, behavioural and test view

According to Figure 1, relationship exists between the
class diagram (structural view) and state machines
(behavioural view). For example, attributes defined in
the classes can be referred in the state machine’s
events, guards and actions. Similarly methods defined
in class diagrams can be used in events and actions on
state machine as well. The state machines should also
conform to the corresponding class invariants and
operation contracts defined in the class diagram.

Likewise, relationships exist between state
machines and the test suite derived from the state
machine. For example, the test case with ID “TCA1”
depicted in Figure 1, corresponds to transitions tA1,
tA2, tA3, tA5 and tA6 of the first state machines. It is
important to understand and use these relationships for
safe and effective regression testing.

In our previous work [1] on state-based regression
testing we employed these relationships between class
diagram and state machines for dealing with change
propagation during regression testing. This paper
presents our regression testing tool START (The
STAte-based Regression testing Tool) which is
implemented using concepts of our state-based
regression testing approach [1]. We also present the
application of our tool on a case study. The case study
is executed on tool and we obtained reasonable
reduction in the test suite for regression testing. The
tool supports the UML 2.1 standard. START provides

a flexible means of manipulating models by using an
XMI representation of models. It can be easily
integrated with any modelling environment and can be
integrated as a plug-in with the IDE and a testing tool
like JUnit [24].

The rest of the paper is organized as follows;
Section 2 describes our previous state-based regression
testing methodology. Section 3 describes the
implementation of our methodology using our tool
START. Section 4 reports our case study of the
Student Enrolment System. Section 5 discusses and
evaluates the related work in the field and section 6
concludes our work.

2. The State-based Regression Testing
Approach

In this section, we discuss our previous state-based
regression testing methodology [1] to clarify the
fundamental concepts behind the implementation of
START. As shown in Figure 1, we use the
relationships between class diagram and state machine
and to the corresponding test suite to deal with change
propagation. Figure 2 provides an overview of our
approach. Following are major task involved in the
process as expressed in Figure 2.

2.1 Change Identification:
First of all, changes in the class diagram are obtained
by comparing the baseline version of class diagrams
and the delta version of class diagrams along with
class invariants and operation contracts. We refer this
change set as class-driven changes. According to
Figure 2 ClassDiagramComparator performs this task
of comparing two versions of a class diagram.

2.2 Change Impact Analysis:
After computing the class-driven changes the
StateMachineComparator reflected in Figure 2
compares the baseline and delta version of state
machines along with state invariants. Changes in both
versions are detected and class-driven changes are also
used to obtain the affected elements of the state
machine. For example, a state transition will be marked

as affected if it is using any changed attribute or
operation of the corresponding class in its guards,
events or actions. We refer to these changes as state-
driven changes.

2.3 Regression Test Selection:
Finally, the set of affected test cases from the baseline
test suite are selected using RegressionTestSelector by
tracing the state-driven changes to the corresponding
test-cases. Our test suite is classified into three types of
test cases; obsolete, reusable and re-testable [13].This
classification is adopted by several regression testing
techniques in the literature [4, 9]. Obsolete test cases
are no more valid for the delta version. They usually
correspond to elements in the system that are deleted
and are not accessible in the delta version.

Figure 2: Overview of our state-based regression testing methodology

 Re-testable test cases need to be executed for
regression testing as they correspond to modified parts
of the system. Reusable test cases correspond to
unchanged parts of the system. They are valid but they
are not required to be re-executed for regression
testing.

For performing the change identification and
change impact analysis, it is necessary to define the

changes in the artefacts precisely. In the next section,
we discuss the change definitions required for our
approach.

3. Change Definitions
As discussed in the previous section, our approach
requires the definition of two types of changes; class-
driven changes and state-driven changes. The change

definitions and change models used in our approach
are inspired by the work of Briand et al. [4, 21, 22].

3.1 Class-driven changes
Class-driven changes are those changes which can be
obtained by comparing a baseline and delta version of
the class diagram. These changes are sometimes
directly visible on the state machines, such as deletion
of an attribute from a class may cause change in an
action using this attribute on the corresponding state
machine. Some times these changes are not reflected
on the state-machine and this information can be
obtained only by analysing the class diagrams. For
example, the change in type of an attribute will not be
reflected on the state machine but we need to consider
all those transitions using this attribute in some events,
actions or guards for this change.

3.2 State-driven Changes
State-driven changes are obtained by comparing the
base line and delta version of the state machine and by
using the set of class-driven changes. Figure 3 presents
an example of a simple change model defining a
modified transition. According to Figure 3, the
ModifiedTransition class is a sub class of
CompositeModifiedElement.

 Figure 4: State-based Test Suite Classification
Figure 3: The change model for modified Transition

The CompositeModifiedElement class is an abstract
class and it refers to the modified elements which are
further composed of other composite and atomic
elements. A transition can be modified if it refers to
some source or target modified state, as depicted by
the association ends modifiedSourcestate and
modifiedTargetState.

A transition can also be considered modified if it
refers to some modified event, guard or action as
depicted by the association ends modifiedEvent,
modifiedAction and modifiedGuard.

The ModifiedState, ModifiedEvent,
ModifiedConstraint and ModifiedAction are
themselves sub classes of CompositeModifiedElement
and are defined by separate change models. Due to
space constraints we can not present all change
definitions in this paper. Interested readers should refer
to our previous work on the topic [1].

The ClassDiagramComparator and
StateMachineComparator use these definitions for the
comparison of two versions of class diagram and state
machines and construct the corresponding change
models reflecting the changes between two versions.
This change information is used by the
RegressionTestSelctor for the selection of regression
test suite. The following section discusses our
regression test selection process.

3 Test Case Selection

As discussed earlier, we classify our test suite into
obsolete, reusable and re-testable test cases. Figure 4
shows the classification of test paths of using our
selection methodology.

TestSuiteClassification

ObsoleteTestCases

According to Figure 4, all obsolete test cases will
correspond to some deleted transitions and all re-
testable test cases will correspond to some modified
transitions. A simple definition of a modified transition
is already discussed in the previous section. For more
rigorous and detailed definitions of modified and
deleted transitions, interested readers can refer to our
previous work [1]. We define the baseline test suite as

Re-testableTestCases

ReusableTestCases

DeletedTransition
*

*

*
ModifiedTransition

*

TS, baseline state machine as SM and delta version
state machine as SM′. The set of deleted transitions in
SM′ refers to T′D and the set of modified transitions in
SM′ refer to T′M.

Our base line test suite consists of the test paths
extracted from the SM by applying any of the state-
based testing strategies [3]. Each test path ts∈TS in
the test suite will represent a sequence of transitions
ti∈T in the SM.

The set of obsolete test cases is defined as TSO⊂ TS.
The set of reusable test cases is defined as TSRE⊂ TS
and TSRT⊂ TS is the set of re-testable test cases. A test
case ts∈TS will be added to TSO if some transition
ti∈TS exists in T′D. A test case ts∈TS will be added to
TSRE if some transition ti∈ts exists in T′M and ti∉ T′D.
All the other test case in TS belong to TSRT and are not
included in TSO ∪ TSRE.

4 START: STAte-based Regression-

testing Tool

In this section, we will discuss how we implemented
our regression testing tool START, based on the
concepts discussed in the previous sections. As stated
earlier, START is built on the Eclipse platform. We
used an EMF plug-in which conforms to the UML 2.1
meta-model [12]. The benefits of adopting an Eclipse-
based platform include the ease of possible integration
of the technique with other modelling environments
and testing tools. We will explore these possibilities
later in this section in detail. Another benefit is the
plug-in centric development supported by Eclipse.

START uses input models in XMI v2.1
format to ease the diagram interchange. The baseline
test cases are also taken in an XML format to make it
possible to integrate the tool with other state-based test
generation tools and to make the interchange of test
cases easy. START consists of three major
components; A Parser, a Comparator and a
TestSuiteAnalyzer. Parser consists of a number of sub
components (XMIParser, OCLParser,
ClassDiagramParser, StateMachineParser). The
Comparator component is further divided in
ClassDiagramComparator and
StateMachineComparator.

XMI parser is used to read the XMI of class
diagrams and state machines, and the OCL parser will
be used to parse the contracts written in OCL. The
ClassDiagram parser and StateMachineParser parse
the XMI files and populate the instances of UML 2
meta-model of classes, associations and state
machines.

StateMachineComparator uses these instances and
the baseline and delta version of state machines to
generate instances of ModifiedStateMachine.
TestSuiteClassifier uses the information of
ModifiedStateMachine and baseline test suite and
classifies the baseline test suite into obsolete, reusable
and re-testable test cases [13]. Figure 5 shows the
package diagram of START. START consists of 5 major
packages; Parser, Comparator, Regression Test
Selector, Change and Test Container.

Figure 5: Package Diagram for START

The parser uses an EMF-based [12] implementation of
the UML meta-model to populate model instances and
JDom to manipulate the XML test cases and the XMI
of models. The comparator uses the parser package to
obtain the instances of class diagram and state machine
models for change identification. It uses the change
package to populate change models described in
section 2.2. Finally, the regression test selector uses
the test container package which provides the baseline
test cases and using the change information obtained
from the comparator to perform the regression test
selection.

Figure 6 depicts the models and their respective
meta-models employed by START. According to
figure 6, the packages above the horizontal strong line
represent the meta-models used by START. START
uses three distinct meta-models. The UML 2.1 meta-
model is implemented as EMF plug-in by Eclipse [12].
The base line and delta version class diagram and state
machines conform to the UML meta-model. The
Change meta-model which we discussed in section 3 is
required to represent change information. The change
definitions provided in section 3 from this Change
meta-model. The change information between baseline
and delta version of models obtained by comparator is
stored in the change models conforming to the Change
meta-model. Finally Test case meta-model is required
for representation of test suite. The baseline test suite
required by the test selector will conform to the Test
case meta-model. Similarly, the regression test suite

constructed by the test selector will also conform to the Test case meta-model.

Figure 6: The relationships between models used by START and their meta-models

5 Case Study Following we will discuss how START provides a

flexible way of integration with other testing tools and
modelling environments.

In order to validate the applicability of our approach
and our regression testing tool START, we present a
case study of a Student Enrolment System. The
baseline version of the system consists of seven
classes. The behaviour of the Student and Course
classes of the system is described by using the state
machines. Figure 7 shows an excerpt of the course
state machine.

.Integrating START with Testing Tools

START provides a flexible architecture and can work
with other testing tools like JUnit [24]. In Figure 5, the
package diagram depicts the package “Test
Container”. Test Container is the package that contains
test classes of the baseline version. The student state machine consists of 9 states and 18

transitions. The course state machine is rather complex
and consists of 14 states and 26 transitions. We
constructed the baseline test suite for the classes in the
system using transition tree methodology (Binder,
2000). The baseline test suites of the Student and
Course classes consist of 58 and 723 test cases
respectively. The delta version of the system contains
following changes

The test container package contains an interface
TestSuite which represents the test suites
corresponding to the state machines. For integrating
JUnit with our approach, the JUnit test class can
implement the test suite interface and we have to
define a method getAllTestCases() that will return the
JUnit test cases. The ID of JUnit test cases should
depict the corresponding state-machine transitions so
that the implicit traceability between state machine
transitions and test cases could be retrieved at the time
of test selection.

• The type of an attribute is changed in the Student

class from String to Boolean (the “defaulter”
attribute)

Integrating START with Modelling Environments • A state and two transitions are removed from the
Student state machine (State 2 and transition T1
and T3)

Due to inconsistencies in the XMI representation of
models in several available modelling tools; it is hard
to cater for all possible XMI representations. We are
working on a module that can transform multiple XMI
formats in one standard simple format to be processed
by START. At presents, START supports XMI format
used by the Visual Paradigm modelling environment.

• A new parameter is passed to the function
closeRegistration() in the Course class (course
code)

Table 1 depicts the results computed by executing our
case study on START. From the 723 test cases of the

Course class 447 are required to re-execute for the regression testing.

Figure 7: An Excerpt of course state machine

None of the test cases are obsolete and 276 test cases
are preserved for future use. From 58 test cases of the
Student class 15 test cases need to be re-executed for
regression testing, 29 test cases become obsolete and
are required to be excluded from the baseline test suite
and 14 test cases are preserved for the future use.

Table 1: Results of the Student Enrolment System

case study
Classes Total

base-line
test cases

Reusable Re-testable Obsolete

Course 723 276 447 0

Student 58 14 15 29

6 Related Work
In this section, we discuss the related work on UML-
based regression testing and state-based regression
testing. Various UML-based regression testing
approaches are reported in the literature. However, all
these approaches do not deal with the state-based
testing aspects.
Following we discuss these approaches in brief to see
how the UML-based regression testing techniques
present in literature deal with change identification,
impact analysis and test selection activities.

Naslavsky et al. [21] presented an idea for
regression testing using class diagrams and sequence

diagrams for model driven architecture (MDA). They
make use of model transformations for regression
testing. Briand et al. [4] presented a technique for
regression testing based on use case diagrams,
sequence diagrams and class diagrams. They provide
impact analysis among these different diagrams to deal
with change propagation and provide a mechanism for
test case selection. They implemented a tool RTS for
the proof of concept. For change identification and
change definitions the change models used in our
approach are inspired by Braind et al.’s work on
change impact analysis and consistency management
[21, 22]. However, the change definitions provided by
Briand et al. are based on UML 1.4 and are focusing
on model refinements and consistency checking and
are not complete for our purpose

Ali et al. [18] presented an approach for regression
testing using class and sequence diagrams. They
construct an extended control flow graph using both
diagrams. The change identification is based on
comparison of both diagrams and then the selection of
corresponding test cases is performed. Jeron et al. [6]
present an approach for integration and regression
testing from the UML class diagrams. They
constructed a Test Dependency Graph (TDG) as their
test model to show the dependencies among the
classes. The authors proposed several coverage criteria
for regression testing if a class is modified. However,
how changes will be identified is not addressed by the
authors. Wu and Offutt [7] discuss UML-based

regression testing of component-based software using
class diagrams, collaboration diagrams and state charts
for specification of components. The authors provide
some guidelines of using these artefacts for regression
testing but further rework is required for
implementations of these guidelines.

Chen et al. [9] presented a regression testing
strategy using activity diagrams. They used activity
diagrams for describing the system requirements. They
treated activity diagrams as a control flow graph and
perform change identification by comparing nodes in
the graph. The test cases corresponding to the nodes in
the graph are selected by using a traceability matrix.
The test cases are also prioritized based on important
functional requirements and risk prone requirements.

Gorthi et al. [19] presented an approach similar to
Chen et al. [9] for regression testing. They presented
the requirements using activity diagrams
corresponding to use cases annotated with information
regarding priority of each activity. They also made test
case prioritization by considering higher priority
modified activity nodes. Deng et al. [10] presented a
rule-based approach for regression testing using use
case diagrams, class diagrams, sequence diagrams and
activity diagram. The test cases are generated based on
activity diagrams. However, rework is required to
apply the technique to a real scenario due to fewer
details.

Mansour et al. [21] presented a regression testing
approach based on class diagrams and interaction
overview diagrams (IOD). The IOD depicts the
systems requirements. Test case selection is performed
considering the changes in both artefacts.

Palkins et al. [16] presented an approach for
regression testing of UML models, their work is not
related to implementation testing, and hence, it is not
of interest for us. Sajeev et al. [17] presented an
approach for modelling version data with UML. The
actual input of the approach are not UML models,
hence, their work is also not very related to our work.

A limited research is also available in literature in
which state machine like models are used for
regression testing. Korel et al. [14] presented a
regression testing technique using EFSM (Extended
Finite State Machine). They perform change
identification based on two elementary modifications,
addition and deletion of a transition. A dependence
graph considering data and control dependence is
constructed and test suite reduction is performed by
calculating interaction patterns based on the
dependence graph.

Beydeda and Gruhhn [8] present a regression
testing technique using specification and
implementation information. They used a class state
machine (CSM) similar to a state machine. A control
flow graph is generated using CSM and the methods
presented in the implementation. Both graphs are
comparing for change identification and test selection.
One major drawback of their approach is that they
require implementation and code level details along
with the specification.

These existing state-based regression testing
techniques are not compliant with any standard UML
meta-model. Besides, these techniques do not deal with
the interdependencies of state machine with other
system artefacts as we did. Hence, they fail to deal
with the change propagation phenomena. The tool
support provided in the area is very limited. None of
the state-based testing techniques provide any tool
support to ease the regression testing process.

7 Conclusions and Future work

In this paper, we reported our tool support for our
state-based regression testing methodology. START is
our regression testing tool that uses UML 2.1 state
machines and class diagrams and their dependencies
for regression test selection. START is based on the
Eclipse platform and provides an EMF-based solution.
START can be easily integrated with other modelling
environments and testing tools.

START classifies state-based test suite into obsolete,
reusable, and re-testable test cases for regression
testing. We applied a case study of Student Enrolment
System on START to prove the applicability of our
approach. Our results show significant reduction in the
size of the baseline test suite for regression testing.

In future, we intend to investigate the possibility of
the application of our approach using the model driven
development methodology. We want to investigate the
required transformations and to see how the
relationships between models at different levels of
abstractions can affect our original methodology.

8 References
[1]. Qurat-ul-ann Farooq, Muhammad Zohaib, Z. Iqbal,

Zafar I Malik, Aamer Nadeem, “An approach for
selective state machine based regression testing”, ACM
Proceedings of the 3rd international workshop on
Advances in model-based testing, Pages: 44 - 52,
ISBN:978- 1-59593-850-3, London, United Kingdom,
2007

[2]. Heiko Stallbaum, Andreas Metzger, Klaus Pohl, “An
Automated Technique for Risk-based Test Case

Generation and Prioritization”, Proceedings of the 3rd
international workshop on Automation of software test,
pp. 67-70, 2008

[3]. Binder, R.. Testing Object-oriented Systems: Models,
Patterns, and Tools, Published by Addison-Wesley, The
Addison-Wesley object technology series, ISBN
0201809389, 2000

[4]. L.C. Briand, , Y. Labiche, S. He, Automating regression
test selection based on UML designs, Information and
Software Technology, Volume 51 , Issue 1, January
2009

[5]. Kung, D., GAO, J., Hsia, P., Toyoshima, Y., Chen, C.,
Kim, Y.S., and Song, Y.K. Developing an object-
oriented software testing and maintenance environment,
Communications of the ACM, Volume 38, Issue 10, p:
214 , ISBN:0-7695-1819-2, 1995

[6]. Thierry Jéron, Jean-Marc Jézéquel, Yves Le Traon,
Pierre Morel, , Efficient Strategies for Integration and
Regression Testing of OO Systems, 10th International
Symposium on Software Reliability Engineering, p.
260, 1999

[7]. Wu, Y., Offutt, J. Maintaining Evolving Component
based software with UML, In Proceeding of 7th
European conference on software maintenance and
reengineering, IEEE, pp: 133- 142, ISBN:0-7695-1902-
4, Publisher: IEEE Computer Society, 2003

[8]. Beydeda, S., and Gruhn, V. Integrating White- and
Black-Box Techniques for Class-Level Regression
Testing, Proceedings of the 25th International Computer
Software and Applications Conference on Invigorating
Software Development, pp. 357 – 362, 2001

[9]. Chen, Y., Probert, R.L., and Sims, D.P. Specification-
based Regression Test Selection with Risk Analysis,
Proceedings of the conference of the Centre for
Advanced Studies on Collaborative research, pp: 1,
2002

[10]. Deng, D., Sheu, P.C.Y., and Wang, T. Model-based
testing and maintenance, Proceedings of IEEE Sixth
International Symposium on Multimedia Software
Engineering, Volume 00, pp. 278- 285, ISBN:0-7695-
2217-3, 2004

[11]. Eclipse, Available at:
http://www.eclipse.org/downloads/, The Eclipse
Foundation, Last Visited: November 2009

[12]. UML2. UML Plugin for Eclipse, Available at:
http://www.eclipse.org/modeling/mject=uml2, Last
Visited: November 2009

[13]. Leung, H.K.N. White, L. , Insights into regression
testing software testing, Proceedings of Conference on
Software Maintenance., , On page(s): 60-69, ISBN: 0-
8186-1965-1, Oct 1989.

[14]. Korel, B., Tahat, L.H., and Vaysburg, B. (2002).
Model Based Regression Test Reduction Using
Dependence Analysis, Proceedings of the International
Conference on Software Maintenance (ICSM.02)

[15]. OMG, UML 2.1: Super structure Specifications, OMG,
Available at: http://www.omg.org/cgi-
bin/doc?formal/07-02-03, Last visited: November 2009

[16]. Pilskalns, O., Andrews, A. Regression Testing UML
Designs, In Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM’06),
Publisher: IEEE Computer Society, Pages: 254 - 264 ,
ISBN :1063-6773, 2006

[17]. Sajeev, A.S.M., and Wibowo, B.. Regression test
selection based on version changes of components,
Tenth Asia-Pacific Software Engineering Conference,
pp. 78- 85, 2003

[18]. Atifah Ali, Aamer Nadeem, Muhammad Zohaib Z.
Iqbal, Mohammad Usman, Regression Testing based on
UML Design Models, Proceedings of the 13th Pacific
Rim, International Symposium on Dependable
Computing, pp. 85-88, 2007

[19]. Ravi Prakash Gorthi, Anjaneyulu Pasala, Kailash KP
Chanduka and Benny Leong, Specification-based
Approach to Select Regression Test Suite to Validate
Changed Software, Proceedings of the 2008 15th Asia-
Pacific Software Engineering Conference, pp 153-160 ,
Year of Publication: 2008

[20]. Leila Naslavsky, Debra J. Richardson, Using
Traceability to Support Model-Based Regression
Testing, Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, pp. 567-570, 2007

[21]. N. Mansour and H. Takkoush, “UML based regression
testing technique for OO software,” in Proceedings of
the IASTED International Conference on Software
Engineering and Applications, pp. 96–101,
Boston,Mass, USA, November 2007.

[22]. Briand,L.C, Labiche,Y, Yue, T, “Automated
Traceability Analysis for UML Model Refinements”,
Technical Report: TR SCE-06-06, Version 2, Carleton
University, Ottawa, , Canada,
http://sce.carleton.ca/squall, August 2006.

[23]. Briand, L.C., Labiche, Y, Sullivan, L.O, and So´wka,
M. M. “Automated impact analysis of UML models”.
Journal of Systems and Software, Volume 79, Issue 3,
Pages: 339 - 352, ISSN: 0164-1212, March 2006.

[24]. Junit, available at: www.junit.org, Last visited:
Novemebr 2009

	0B1. Introduction
	1B2. The State-based Regression Testing Approach
	2B3. Change Definitions
	3 3BTest Case Selection
	4 4BSTART: STAte-based Regression-testing Tool
	5 5BCase Study
	6 6BRelated Work
	7 7BConclusions and Future work
	8 8BReferences

