

Model-‐based	 Regression	 Testing—
Process,	 Challenges	 and	 Approaches1	 	
Qurat-ul-ann Farooq
Matthias Riebisch
Steffen Lehnert
Ilmenau University of Technology, Germany

To improve is to change; to be perfect is to change often (Winston Churchill)

ABSTRACT

Evolution is the consequence of the continuous changes, which a software system has to perform
due to changes in requirements and various maintenance activities. Regression testing provides a
means to assure the wanted properties of the system after the introduction of the changes;
however, testing requires high effort. Model-based regression testing (MBRT) has the potential
to perform test tasks with a much better efficiency. MBRT uses analysis and design models for
identifying changes and their corresponding test cases to retest the system after modifications.
MBRT promises reduction in cost and labour by selecting a subset of the test cases
corresponding to the modifications. However, the identification of modifications in a system and
the selection of corresponding test cases is challenging due to interdependencies among models.
This chapter aims to provide a detailed insight into MBRT, how it is related to the general
software lifecycle and what are the challenges involved. We evaluate the state of the art in
MBRT with a detailed analysis of the strengths and weaknesses of the existing approaches. For
the analysis we develop a set of comprehensive analysis criteria based on the identified
challenges. Furthermore, we demonstrate the applicability of MBRT by presenting our state-
based MBRT approach as an example. The chapter targets researchers and practitioners who
want to achieve a detailed comprehension of the field and want to know the strengths and
weaknesses of the existing approaches in MBRT. This chapter also identifies the areas within
MBRT which require further attention by the researchers.

I. INTRODUCTION

Evolution is inherent to the software systems. Due to the growing size and complexity of modern
systems, the evolving nature of a system can cause adverse side effects and even system failures.
Besides many other measures to prevent these unintended effects of evolution, it is essential to
test a system after modifications; often referred to as Regression Testing. Regression testing is
performed during the software maintenance phase and during various maintenance activities
including corrective, perfective and adaptive maintenance (Wu & Offutt, 2003).

1 The research presented in this chapter was partly funded by the Federal State Thuringia and the European Regional
Development Fund ERDF through the Thüringer Aufbaubank with project no. 2007 FE 9041.

 2	

When a software system is modified, repeating the entire testing activity is a very costly task. A
large system may have a huge number of test cases and test-execution requirements. Executing
all these test cases is generally not a economically feasible option. Hence, it is necessary for
regression testing to select a subset of the test cases corresponding to modifications. This is
known as the selective strategy for regression testing and is a more feasible solution in terms of
cost and time (Binder, 1999).

Another important issue during regression testing is scalability. Conventional code-based
regression testing approaches fail to deal with the huge size of modern software systems. Model-
based regression testing is a potential solution to this problem, because it offers several
advantages compared to the conventional code-based regression testing approaches. This
includes better scalability, better complexity management and better comprehension of the
system, the relevant test suites and test cases. In model-based testing, the testing activity can be
started in early phases of software development allowing early regression planning and
estimation (Briand, Labiche, & He, 2009). This results in effort reduction in terms of time and
labour. Furthermore, traceability maintenance between test cases and models is relatively easier
to accomplish as compared to the code-based approaches (Briand, Labiche, & He, 2009). Due to
the use of models as primary artefact in the MBRT, static and dynamic interactions are more
visible in design models and no static and dynamic analysis is required to determine the dynamic
bindings as in code based approaches. Finally, portability and platform independence is a major
benefit for evolving systems to adopt the rapid changes in technology and operational
environment.

Besides all these benefits, there are some limitations of model-based regression testing as well.
One of the major limitations is the potential impact of incomplete and outdated design models on
the creation of effective regression test suites and plans. Moreover, since the test cases are
generated from the design models, they are more abstract than test cases generated from code.
This abstraction, sometimes make the test execution more difficult as the test cases should be
adapted according to the implementation environment. However, considering the benefits of
model-based regression testing, these limitations can be somehow compromised.

In this chapter, we try to not only give a broad overview of the area but also discuss all the main
steps and key challenges involved in model-based regression testing. We discuss the role and
place of MBRT in the classical software development lifecycle and identify the major steps
involved in the MBRT phase. We also identify and discuss the challenges associated with model-
driven regression testing approaches which are relatively novice approaches and are influenced
by the concepts of model-driven architecture (MDA, 2011). We present our state-based
regression testing approach with a demonstrating example to apply the regression testing steps
identified previously and give a detailed insight of how practical regression testing can be
performed to the reader. As the major contribution of the chapter, we provide a comparative
analysis of the existing MBRT approaches. For this analysis we develop comprehensive
evaluation criteria and evaluate the approaches based on the criteria. Our analysis not only shows
the strengths and weaknesses of the MBRT approaches but also highlights the areas which still
require attention of the researchers and developers. By reading this chapter, researchers and
practitioners can get a thorough picture of the area and state of the approaches available in the

 3	

area. They will also get an insight into how practical MBRT can be performed and what are the
major challenges in the field. The rest of the chapter is organized as follows.

Section II provides an overview of model-based regression testing. It discusses the MBRT in the
context of the traditional software development lifecycle and also elaborates the major steps
involved in the regression testing phase.

Section III presents a state-based regression testing approach developed by the authors as an
example, together with a demonstrating case study to explain the approach. The approach and the
discussed example provide an insight how the regression testing steps can be performed in
practical scenarios.

Section IV discusses the challenges involved in MBRT in detail. These challenges include
change identification, the notion of change propagation, the difficulties associated with baseline
test suite generation, the risk of invalid test cases after regression test selection and the challenge
of test automation. The challenges guide the analysis and classification of the state of the art
presented in the section VI.

Section V extends the discussion of challenges of the previous section by those of model-driven
regression testing approaches.

Section VI contains a comprehensive analysis and classification of existing MBRT approaches.
It discusses the research questions identified, the comparison criteria and later the detailed
analysis based on those criteria.

Section VII finally concludes the chapter and sums up its contents and findings.

II. MODEL-BASED REGRESSION TESTING: THE BIG PICTURE

In the traditional software development life cycle (SDLC), MBRT is the part of the testing
activity in the maintenance phase. If we consider the simple waterfall development model, the
regression testing will be performed in the maintenance phase when a change request is
triggered. The following figure depicts the place of regression testing in the classical waterfall
style SDLC. However, this figure is just for understanding the concept, in reality MBRT is
applicable to all major SDLC,s for example RUPi, SCRUMii etc.

 4	

Figure 1: MBRT the big picture

According to Figure 1, a software system is constructed using the steps of any regular software
development life cycle. When a change request is triggered probably due to a changed
requirement, the maintenance activities are performed to entertain it. Once this new requirement
is implemented, the system should be tested to detect the faults introduced by the changes.
Model-based regression testing is used in this phase to test the changed software system.
As depicted in Figure 1, model-based regression testing constitutes of several steps shown in the
last row. We discuss these steps in detail in the following sub sections.

A. Steps Involved in Model-based Regression
Testing Phase

As depicted in Figure 1, we identified 6 major steps, which constitute the MBRT phase. Before
discussing those steps in detail, we first discuss a pre-requisite of MBRT in the next section i.e.
establishment of baseline test suite. The sections afterward provide a discussion of the steps of
the MBRT phase.

1. Baseline Test Suite Establishment

Before performing the actual regression testing, we need to have an existing test suite of the
stable version of the system (the so-called baseline system). This test suite is often referred to as
a baseline test suite. The test selection during regression testing is then performed by using this
test suite. The establishment of a baseline test suite is a necessary activity because if there is no
formal baseline test suite available, no regression testing can be performed.

Baseline test suites are often constructed using model-based testing approaches as shown in
Figure 1. However, an important aspect while establishing the baseline test suite is preserving the
relationships between the constituents of the test suites and the systems models. Otherwise, it
will be hard to identify the affected test cases corresponding to affected elements of the models.

 5	

This concept is a core concept in the field of model-based regression testing and is discussed in
detail in section IV.B. In the next sections, we discuss the regression testing steps depicted in the
lower part of Figure 1.

2. Change Identification

Change identification is the first step of regression testing performed after establishing the
baseline test suite. This step aims at the identification of the delta–the changes introduced in the
new system. In MBRT this delta identification is often performed by comparing various design
and architecture models. A more detailed discussion on change identification is available in
section IV.A.

3. Change Impact Analysis

After obtaining the delta, the next step in MBRT is Change Impact Analysis. Several
relationships and dependencies exist between different elements of the system. An impact
analysis is necessary to identify the elements affected due to these relationships and
dependencies. In context of model-based development several models of a system represent
different views of the system and hence, are related to each other to give a complete picture of
the system. The aim of change impact analysis in MBRT is to determine the impact of change in
one model on other models of the system. It helps to identify the parts of the models/system
which are indirectly affected by the changes. This topic is discussed in detail in section IV.B

4. Regression Test Selection

Regression test selection is performed after identifying the changed and impacted elements in the
system. In this step, the changes and their impact (already determined in the previous steps) is
used to select a subset of the test suite for regression testing. Relationships between elements in
the model and test cases are established for performing test selection. As discussed earlier, these
relationships are either established at the time of baseline test suite establishment or they need to
be discovered later by applying heuristics to discover such relations. Test cases are classified
against the added, deleted and changed parts of the system. A very famous test suite
classification often adopted by several regression testing techniques in the literature by Leung et
al. divides the regression test suite into obsolete, reusable and re-testable test cases (Leung &
White, 1989). Test cases may also be prioritized based on cost and risk factors (Chen & Probert,
2003).

5. Repair Broken Test cases
A lot of test cases become inapplicable due to the changes introduced to the system. After
performing the test selection, it is necessary to identify such test and repair them for further use.

 6	

6. Regression Test Execution
Once all the test cases have been selected and broken test cases are repaired, the next step is
execution of these test cases. This step does not require any special tools and techniques, as
existing test execution methodologies, environments and engines used for testing the base line
can be adapted during the regression test execution as well.

7. Regression Test Analysis
The last step is to analyze the test results and evaluate the test verdicts to determine the
regression defects. Existing test analysis approaches for baseline test analysis can also be used in
this step. If some defects are uncovered during the test analysis, some rework is often required to
correct the system. In the proceeding section we discuss an example state-based regression
testing approach to demonstrate the applicability of the steps discussed above.

III. A PRACTICAL STATE-BASED MBRT APPROACH: A DEMONSTRATING
EXAMPLE

In this section, we present a state-based approach for model-based regression testing developed
by the authors, together with an illustrating example. This approach provides a practical
demonstration of all the MBRT steps discussed in Section II.A. It is also included later in our
analysis of the MBRT approaches.

Figure 2: State-based Regression Testing Process

 7	

Our approach uses UML class diagrams and state machines as input. The dependencies between
both types of artefacts are discovered and change impact analysis is performed based on these
dependencies.
Figure 2 presents the overview of the approach. According to
Figure 2, first of all the baseline version of both state machine and class diagram are compared
for change identification and impact analysis. These artefacts are stored in a model repository for
the version control. The set of changes obtained after the comparison is used to select the
regression test cases from the baseline test suite. Before we discuss these activities in detail in
following sections, we explain how the baseline test suite was established in the next section.

A. Baseline Test Suite Establishment in the State-
based MBRT Approach

As mentioned earlier baseline test suite construction is a prerequisite for regression testing. We
constructed our state-based base line test suite using the transition tree methodology (Binder,
1999). Figure 3, depicts the partial transition tree of the state machine corresponding to the
Student class presented in Figure 5. The dashed lines in the figure represent an ongoing path
which is not shown in due to the huge size of the tree.

Figure 3: Partial Transition Tree for Baseline Student state machine

The concrete test representation is in a XML format, where each block marked as Test case in
the XML document represents a distinct path in the transition tree. Listing 1 depicts an excerpt of
the test suite contacting two cases.

 8	

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.1" xmlns:uml="http://schema.omg.org/spec/UML/2.0"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1">
<Test case name="TC1" TestContext=”StudentClass”>
<TestComponents>
<TestComponent name=”RegistrarTestComponent”/>
</TestComponents>
 <TestTransition name= "T0" source="Initial" target="RegisteredStudent" trigger=""/>
 <TestTransition name= "T2" source="RegisteredStudent" target="BeingEnrolled"
trigger="registrar.enrollInCourse"/>
 <TestTransition name= "T4" source="BeingEnrolled" target="RegisteredStudent"
trigger="self.status==unsuccessful"/>
</Test case>
<Test case name="TC2">
<TestComponents>
<TestComponent name=”RegistrationTestComponent”/>
</TestComponents>
 <TestTransition name= "T0" source="Initial" target="RegisteredStudent" trigger=""/>
 <TestTransition name= "T2" source="RegisteredStudent" target="BeingEnrolled"
trigger="registrar.enrollInCourse"/>
 <TestTransition name= "T6" source="BeingEnrolled" target="Enrolled"
trigger="self.status==unsuccessful"/>
 <TestTransition name= "T7" source="Enrolled" target="Enrolled | Studying"
trigger="registration.currentSemester.status==Study"/>
 <TestTransition name= "T12" source="Enrolled | Studying" target="Enrolled |
GivingExams" trigger="registration.currentSemester.status==midTerm||finalExam"/>
 <TestTransition name= "T14" source="Enrolled | GivingExams" target="Enrolled |
Studying" trigger="registration.currentSemester.status==Study"/>
</Test case>
</xmi:XMI>

Listing 1: The Concrete Test Representation in XML Format

B. Traceability between System Models and Test
cases

We use the concept of implicit traceability to discover the relationship between class diagrams
and state machines and then the test cases. In implicit traceability, the traceability information is
not already available and made explicit. To discover the relationship between class diagrams and
state-machines, we apply heuristics based on similarity of the names and the ID’s of model
elements.

Discovering the relationship between state machines and test cases is simpler in our approach.
During the test suite generation every test case contains the id of the corresponding transition in
the state machine. These ID’s are used later to trace the test cases corresponding to the affected
transitions.

C. Performing Change Identification and Impact
analysis on the state-based MBRT Approach

The first step of our MBRT approach is change identification and impact analysis. According to
Figure 2, at first the changes in the class diagram are obtained by comparing the baseline and the
delta versions of class diagrams along with class invariants and operation contracts. A change set

 9	

is obtained after this comparison and is referred to as “Class-driven Changes”. Change
computation is performed by comparing the properties of all the elements of the class model
such as classes, operations and attributes, after parsing both class diagrams.

After computing the class-driven changes the next activity is state machine comparison. Changes
in both versions are detected and class-driven changes are used to obtain the affected elements of
the state machine. For example, a state transition will be marked as affected if it uses any
changed attribute or operation of the corresponding class in its guards, events or actions. The set
of these changes is referred to as state-driven changes.

To elaborate the methodology, let us consider Student Enrolment System as an example. Figure
4 represents an excerpt of the class diagram of the Student Enrolment System.

Figure 4: Baseline version class diagram of the example student enrolment system

In the class diagram shown in Figure 4, we have state machine corresponding to two state-full
classes; the Student class and the Course class. Figure 5 depicts the state machine of the baseline
version of the student class.

 10	

Following corrective changes are introduced in the new version of the system.

1. The defaulter attribute of student class is modified. Its type is changed from String to
Boolean.

2. State 2 and transition T1 and T3 are no more in the state machine of student class.

During the class diagram comparison process, the defaulter attribute is identified as modified and
inserted in the set of class-driven changes. In the state machine comparison process, the state 2
and transition T1 and T3 are marked as deleted. However, an additional transition is also marked
as modified. The transition T5 is using the defaulter attribute of the student class in its guard
condition “[self.defaulter=”false”]”, hence T5 is also marked as a modified transition
Listing 2 contains two sample change impact rules for the modified transition. It is important to
note that such change models and change impact rules are defined for every model element in the
state machine meta-model.

 11	

Figure 5: Base line Version state machine of the of the Student Class

A. Regression Test Selection

Finally, the set of affected test cases from the baseline test suite are selected by tracing the state-
driven changes to the corresponding test cases. As discussed earlier, the test cases contain the
information about the ID’s of the transitions they correspond. The ID,s of the affected
transitions are matched with the test cases to identify the affected test cases. Our test suite is
classified into three types of test cases; obsolete, reusable and re-testable (Leung & White,
1989).

1. A transition is modified if the event associated with the transition is modified.
a. A call event is modified if its corresponding operation/Operation Contract

defined in the class diagram is modified
b. A signal event is modified if its corresponding operation /Operation Contract

defined in the class diagram is modified
c. A Change Event or a Time Event is modified if it uses a variable defined as

class attribute in the class diagram and that variable is modified.
2. A transition is modified if its guard conditions are modified

a. A guard condition is modified if it uses a variable or operation defined in the
corresponding class and that variable or operation is modified.

Listing 2: Example Change Impact Rules for ModifiedTransition

This classification is adopted by several regression testing techniques in the literature. Obsolete
test cases are no more valid for the delta version. They usually correspond to elements in the
system that are deleted and are not accessible in the delta version. Re-testable test cases need to
be executed for regression testing as they correspond to modified parts of the system.

Table 1 summarizes the results of the case study. According to the table, the baseline test suite of
the Course and Student class consists of 723 and 58 test cases respectively.

Table 1: Results of The Student Enrolment Case Study
Test Classes Total base-line

test cases
Reusable Re-testable Obsolete

Course 723 276 447 0
Student 58 14 15 29

After performing the test suite classification for regression test selection, the total number of re-
testable test cases that are required to execute during regression testing for the Course and
Student class are 447 and 15 respectively. 29 test cases of the student class are also marked as
obsolete and cannot be executed to test the delta version of the system.

 12	

IV. CHALLENGES IN MODEL-BASED REGRESSION TESTING

In this section gives a general introduction to the challenges in research and industrial application
of model-based regression testing. These challenges guide the analysis and classification in
section VI.

A. Change Identification

Change identification is a crucial part of regression testing. As discussed earlier, change
identification in MBRT is the process of calculating the change given one of more models of
baseline and delta version of the system. Model comparison is a key concept while dealing with
change identification in MBRT. Unfortunately, most of the existing approaches in MBRT do not
place much focus on this aspect (see section VI.D.3).

However, in a few approaches [(Briand, Labiche, & Soccar, 2002), (Farooq, Z., Malik, &
Nadeem, 2007)] change identification is explicitly covered. These approaches focus on
elementary change types; addition of a model element, deletion of a model element and
modification (changed/added/deleted property) of a model element. However, there can be more
complex and fine grained changes. The so-called modular operators discussed by Baldwin and
Clarke (Baldwin & Clarke, 1999) can be used as a foundation for understanding complex change
types. These modular operators are splitting, substituting, augmenting, excluding, inverting and
porting. Mäder et al. (Mäder, Gotel and Phillipow, 2009) also presented an interesting taxonomy
of complex change types for traceability maintenance. These change types are add, delete, move,
merge, split, and replace.

In Figure 6, we present a taxonomy of elementary and complex model changes for comparison of
models for change identification during regression testing. The figure contains the change types
from Baldwin and Clark, and Mäder et al. and some other additional change types relevant to
model comparison. All the change types/operators are presented with a demonstrating example
of a structural model (class diagram) and a behavioural model (activity or process diagram). In
Figure 6, left hand side of the containers separated with a dashed line show the original models
and right hand side shows the modified models. The name of the container depicts the name of
the change type/operator applied. We discuss these change types/operators in the following.

 13	

Figure 6: A Taxonomy of Changes for Change Identification between models

Add/Augmentation, Delete/Remove
The first two change types in Figure 6 are add and delete or according to Baldwin augmentation
and remove. This change type/or operator adds a new model element or removes an existing
model element from a model. In the corresponding example in Figure 6 a new class and activity
is added in the class diagram and activity/process diagram.

Rename
Rename is a change type/operator which changes the name of a model element in a model.
Rename is quite similar to the property update change type; however, we separated it because
name is often a unique and most significant property of a model element and the effect of this
change type will normally different in regression testing as compared to the update property
change type.

Split and Merge
The change-types split splits a model element into n number of model elements; whereas, merge
merges n number of model elements into 1 respectively. In Figure 6, two classes A and B are
merged into 1 class C. It is to notice that after merge properties of both classes are part of the
merged class.

 14	

Similarly in case of an activity/process diagram example in Figure 6, input and output of the
merged process are a combination of both processes it merged. Normally, changes like merge
and split are hard to detect and require very strong heuristics and change detection rules.

Move/Change of Hierarchy
We combined the move and change of hierarchy change types/operators because, if we move any
model element from one place to another, it will be placed from one container to another, which
is a form of change in hierarchy as well. However, in some cases change of hierarchy can also be
separated from move. For example, in a class diagram, if a new parent class is added or an
existing parent class of a class is deleted then it will also cause change of hierarchy without
application of move change type/operator.

Change of Order
Change of order occurs in the behavioural models. In the corresponding example in Figure 6,
one the order of activities in the activity/process diagram is changed. Such changes are also hard
to detect and also require strong heuristics and change detection rules.

Property Update

Property update is a change in which any attribute/property of a model element is changed. This
is also a form of elementary change. Figure 6 contains an example of a property update, where a
property value of the attribute isAbstract of a class is changed from true to false.

We think that the above mentioned change types are very interesting for change identification in
MBRT and the investigation of the impact of such change type during regression test selection is
a very interesting research question.

In the following sections we will discuss the types of model comparison approaches and the
available tools and technologies for model comparison

1. Type of Model Comparison Approaches
There are two basic types of model comparison techniques. We discuss them in the following
subsections.

a) Offline/State-based Change Detection
In offline/state-based change detection, two states of the models are compared. The state before
change (baseline models) and the state after change (delta model). Models are often compared to
detect the added and deleted elements and changed properties of these elements. All the
regression testing techniques discussed in the literature so far are using offline change detection.

b) Online/ Event-based Change Detection
In contrast to the offline change detection, each change operation performed by a modeller is
recorded in online/event-based change detection. This event capturing mechanism is built-in in
the modelling tool and produces chains of recorded events. These event chains are then

 15	

processed to extract the complex change type based on modeller’s intentions by applying
heuristics. Online change detection is used in many fields such as traceability maintenance and
conflict resolution [(Mäder, Gotel and Phillipow, 2008); (Gerth et al., 2010)]. However, none of
the regression testing techniques discussed in the literature so far uses online change detection. It
is an interesting research question how these change operation chains can be processed to
compute complex changes and then how they can affect the regression testing. At present, using
online change detection for MBRT to answer these questions is a work in progress and the
authors of this chapter are working on it.

2. Recent Tools and Technologies for Model Comparison

In this section, we discuss some recent tools and technologies developed in the field of model
comparison.

EMF Compare (Generic Model Comparison Tool)
EMFCompare is a generic tool for comparing EMF based models (EMFCompare, 2011); hence,
the tool is able to compare any model expressed in EMF. It focuses on the elementary change
types add delete and update/change during model comparison. A very interesting feature of
EMFCompare is its ability of change visualisation in form of a model.

ECL (Epsilon Comparison Language)
Another interesting concept in model comparison introduced recently is of ECL (ECL, 2011).
ECL is a rule-based language to specify the comparison logic; hence, complex change types can
be specified. However; more case studies are required to evaluate the comparison strengths and
weaknesses and scalability of ECL.

Model Comparison using Model Transformations

In such comparison approaches, comparison logic is specified using model transformation
languages. The examples available at the website of ATL (Atlas Transformation Language) for
model comparison and model merging are examples of such comparison (ATL, 2011).

The approaches discussed in this section can be used in the change identification phase of MBRT
because most of the MBRT approaches do not focus on change identification, as mentioned
earlier. It is an interesting research question how regression testing techniques can use these new
approaches for change identification, and consider the changes mentioned above.

B. Change Propagation

After the identification of changes, their consequences on tests have to be determined. A change
in one artefact affects other related artefacts, for example test cases. This phenomenon is often
referred to as Change Propagation. In model-based development, several artefacts are covered
by different views, which represent different aspects of the system. These views are inter-related
as they represent the whole system. It is necessary to consider the relationships and dependencies

 16	

between the artefacts and model elements, to analyze the change propagation phenomenon for
effective regression testing. Two concepts are important when dealing with change propagation;
“Traceability” for the establishment and maintenance of the relationships, and “Change Impact”
for the determination of the affected artefacts. In the following sub sections, we will discuss both
concepts in detail.

1. Traceability

According to a definition by Gotel and Finkelstein (Gotel & Finkelstein, 1995), traceability
refers to the ability to describe and follow those aspects that are of interest. Traceability deals
with the relationships among entities of interest. A traceability link expresses a dependency
between two or more entities, which has been passed during a development activity. By
definition, a dependency constitutes a relation between two artefacts of which the one has to be
adapted if the related artefact changes. For MBRT, relations between artefacts from all
development phases such as requirements, design, implementation, deployment, and test are of
relevant.

Different artefacts relate with each other in a different context. This context determines the type
of the relationship, the type of the artefacts, which can be related, and rules for completeness and
consistency. The context, however, is determined by the problem to be solved by the modelling,
and thus the goal of the modelling. There is no need to analyse other aspects such as the actual
development activity, the design methodology applied, and the problem domain are related to the
context in a minor degree, because the goal of the modelling is influenced by them. For example
for a modelling of time behaviour, artefacts with a regard to time such as events, tasks and
semaphores are relevant. The relevant types of relationships between them comprise all
relationships with influence on the time behaviour such as after, before, waits-for and similar.

If the analysis of change propagation constitutes the goal of the modelling, all those artefacts are
relevant that are influenced by a change, for example use cases and conceptual models as part of
requirements models; systems, components, and interfaces as part of the structural view of
architectural and design models; the various elements from behavioural models, and the elements
of implementation and deployment models. The set of relevant types of relationships comprise
all dependencies, for example the relationships use, implements, part-of, is-a, instance-of, and
many more.

The relationship type of dependencies and traceability links is important for its evaluation and
utilization. Using the relationship type, rules for consistency checks can be established, and
methods for impact analysis can be developed. Unfortunately, there is no standard classification
of types of dependencies. Moreover, Antequi et al. argue that it is not possible to foresee all
relationship types for dependencies (Anquetil, et al., 2008). However, it is helpful for impact
analysis to classify relationship types according to their nature in order to establish rules for
impact evaluation for theses classes. Since the goal of modelling determines the relevant
relationships, a classification should be made according to the purpose they serve. For testing,
the issue analysed by a test determines the relevant dependency types. For example, if functional
or structural properties are validated by a test, then component relations such as part-of, kind-of,

 17	

and instance-of have to be evaluated to determine the need for a retest of a component after a
change of a related component.

In literature, different characteristics for relationships are mentioned. Bachmann outlines basic
dependency characteristics (Bachmann, Bass, & Klein, 2002):
Symmetricity explains the existence of names for both directions (e.g. verify – isTestedBy).
Semantic dependencies cannot be broken with intermediaries, only weakened by abstractions.
Dependencies are independent of specific changes to a model – dependencies remain despite
modifications of modules. Pornpit et al. 2008 present a categorization of relationship types in an
ontology, which we can transfer to the determination of impact relevant for tests
(Wongthongtham, Chang, Dillon, & Sommerville, 2009): generalisation, association, include
relationship, and extend relationship.

Furthermore, there is a category of dependencies between problem description and solution, or
even between model elements towards a solution. Dependencies of the types implements and
realizes fall into this category. Since, executable software is the subject, dependencies such as
uses, defined-by, and asserts can help to evaluate the fact that on artefact has impact on another
one. For tests regarding quality issues however, other types of dependencies are relevant
according to the type of quality issue to be evaluated. For tests regarding security, safety, and
dependability, all dependencies of the types caused-by, Agent-Actor, harms, and failure-
prevented-by have to be analyzed. Summarizing we have to state that the relevance of a type of
dependencies is related to the aspect one wants to test.

2. Change Impact Analysis

Determining the effect of a change to a software system is commonly referred to as Impact
Analysis (Bohner & Arnold, 1996). Caused by dependencies between different software artefacts
(e.g. classes), the effect of a change is able to spread across the entire software system, causing
new changes and resulting in unwanted side effects.

Many different techniques to uncover such ripple-effects have been proposed in literature within
the last years of research. The overall goal is to assist developers who are responsible for
planning and implementing changes, allowing them to evaluate the effects of proposed changes
before actually performing the change.

Impact Analysis can as well be used to [(Kabaili, Keller, & Lustman, 2001); (Orso,
Apiwattanapong, & Harrold, 2003)] identify those test cases which must be executed after
implementing a change and therefore assist regression testing. As MBRT is concerned with
abstract system representations such as a systems architecture, Impact Analysis techniques
developed for abstract models, such as (Briand L. , Labiche, O'Sullivan, & Sowka, 2006), can be
used to identify possible candidates for retesting.

Apart from dependencies between different artefacts, change couplings offer an additional source
for conducting Impact Analysis. Change couplings can be inferred by observing historical

 18	

change data, i.e. examining version control systems for patterns or clusters of co-changing
artefacts (Xing & Stroulia, 2004), as a change to one artefact of a cluster is very likely to cause
changes to the entire cluster of artefacts.

C. Baseline Test Suite Generation

As mentioned earlier, it is a prerequisite for regression testing approaches to have an existing
baseline test suite used to test the stable version of the system. However, baseline test suite
generation is very crucial, since model-based test generation approaches are still not very mature.
Most of the test suite generation activities are often manual and only a few approaches for
automated test generation in the domain of model-based testing are available.
Moreover, most of the approaches use ad-hoc specification languages for test specification.
There are a very few approaches using test specific languages and even these approaches are not
mature enough to be applied in different domains and in larger development contexts (Baker et
al., 2008).
Moreover, maintenance of traceability and preserving the relationship between models and test
cases is also often overlooked during baseline test suite generation. This makes the regression
testing activity more difficult.

D. Validity of Test Cases

As mentioned earlier, due to introduction of changes, many test cases often become invalid and
they therefore, must be identified and repaired prior to regression test execution. How these test
cases can be automatically repaired is a very interesting research question which is completely
neglected by existing MBRT approaches.

E. Test Automation

Like other model-based testing approaches, test automation is also a big challenge for model-
based regression testing approaches. The standard conformance of these tools is another major
issue, caused by rapidly changing modelling standards. Moreover, integration of model-based
regression testing tools with other tools, especially baseline test generation tools and test
execution environments is also a necessity which is often overlooked. Since MBRT relies
heavily on models precise definitions of models (meta-models) and their implementation is
required for tool implementation. Such meta-models are often not available for many domain
specific languages. However, they are increasingly made available for example the UML and
BPMN meta-model implementation for eclipse platform which is a positive sign for MBRT tool
developers [(UML2Eclipse, 2011); (BPMNEclipse, 2011)].

In the next section, we discuss a practical approach for state-based MBRT. We are demonstrating
the approach with the help of an example for the sake of brevity. The approach is discussed in
context of the MBRT steps and challenges discussed above.

 19	

V. MODEL-DRIVEN REGRESSION TESTING – CHALLENGES AND EMERGING
APPROACHES

Due to the increasing adaptation of model-driven development in the industry, researchers are
investigating the possibilities of introducing MDA practices during regression testing as a next
step after MBRT. The core of MDA lies in raising the level of abstraction by introducing models
in all the development stages, compared to model-based techniques. Model transformations are
the key concept in MDA which allows transformations of models between different or same
abstractions. Recently some researchers proposed ideas in the dimension of Model-driven
regression testing (referred in this chapter as MDRT).

A. Challenges in Model-driven Regression Testing

1. Maturity of Model-driven testing (MDT) approaches
For the application of regression testing approaches, well defined model-driven test generation
approaches are required. Due to the fact that MDT itself is a quite new research area, the number
of sophisticated MDT approaches is very limited. MDRT approaches depend on the test-suites
generated by MDT approaches; hence, it is difficult to perform the regression testing without
existing test generation methodologies.

2. Maturity of Transformation languages
For the application of MDT and MDRT approaches, transformation languages area core
requirement. However, a lot of available transformation languages are not mature enough. They
lack sophisticated development environments, sometimes they do not support the required
modelling languages and sometimes they lack the important development facilities such as
debugging etc.

3. Maturity of Test modelling languages
 MDRT should use test modelling languages to conform to the MDA ideology. However, the
support for test modelling is also very limited. Very few test modelling languages are available
for example AGEDIS (AGEDIS, 2002), Tela (Pickin, 2001) and U2TP (U2TP1.0, 2005).
However, AGEDIS and Tela are abandoned project and no more support is available for them.
Although U2TP is a standard by OMG, it still lakes proper semantics and tool support for U2TP
is also very limited.

4. Platform Independence
By definition of model-based and model-driven approaches, they should provide platform
independence. However, its a big challenge to provide platform independence at every level

 20	

during regression testing. For example, as discussed earlier, test modelling is another way to
introduce the platform independence for test specification but due to immaturity of test
modelling language it is hard to make the test specification platform independent.

5. Various Dimensions of Evolution
Due to the fact that in MDA models are available at different levels of abstractions, there are
CIM (Computation Independent Models), PIM (Platform Independent Models) and PSM
(Platform Specific Models). Hence, evolution is performed both vertically and horizontally as
compared to the traditional model-based development where evolution is normally horizontal
(Briand, Labiche, & Yue, 2009).

Another important aspect is meta-model evolution. In MDA every model should conform to
some meta-model. In case the meta-model is changed or extended, it can create version
compatibility issues. Another type of evolution is platform and technical infrastructure evolution
where chains of code generators, runtime environments, dependency tools are changed. The
effect of such evolution can be same as meta-model evolution (Visser, Warmer, & Deursen,
2007).

6. Models as Code

B. Emerging Approaches in the field of Model-
driven Regression Testing

As discussed earlier, MDRT is about introducing MDA practices such as model transformations,
platform independent models for test generation and platform independent models for test
specifications. The approaches mentioned here are recent and most of them only present research
ideas. The application of these ideas is still a work to be done.

Naslavsky et al’s approach is to use traceability and model transformations for regression test
selection (Naslavsky, Ziv, & Richardson, 2010). They used sequence diagrams for baseline test
suite generation. The idea was in a preliminary phase and no results are reported for the success
of the approach. Pilskalns et al. discuss another interesting approach for regression testing the
designs models directly instead of testing the implementation (Pilskalns, Uyan, & Andrews,
2006). This means that the test cases corresponds directly to the model and will be executed on
the design models instead of the code.

Silva et al. present a concern-based approach for model-driven system; however, they do not
discuss the use of model transformation languages or model-based test specification in their
approach (Silva, Budnik, Hasling, McKenna, & Subramanyan, 2010). We are evaluating the
above mentioned approaches in our analysis in Section VI.

Another recent approach is by one of the authors of this chapter and it is a work in progress. The
idea consists of using the MDA transformations for the baseline test suite generation with the
integrated traceability. However, instead of ad-hoc test suite representations as adopted by other

 21	

approaches, we are using U2TP2 (U2TP1.0, 2005), a test modelling language, for the test
specification. Use of a test modelling language not only increases the portability of the test suites
but also the traceability maintenance is easy between design models and test models rather than
test code. Another important aspect is that dedicated test specification languages cover several
aspects of test specification such as test architecture, test time and test data modelling; hence, the
impact analysis is fine grained and covers various aspects of test suites.

VI. EVALUATION OF MODEL-BASED REGRESSION TESTING APPROACHES

In this section, we present a comprehensive evaluation of the existing MBRT approaches.
Considering the challenges identified in the previous sections, it is very important to evaluate the
ability of the existing MBRT approaches to deal with all these challenges. This will help the
researches working in the field of MBRT to identify the weaknesses of the existing approaches
and to further continue the research in those areas to improve those weaknesses. For the
practitioners, however, this evaluation can help to select the approach that suites their particular
needs and project’s requirement. For the tool developers, the analysis provides a guideline to
identify the state of automation in the field and it provides the motivation to build new tools to
address the need of testers during software maintenance.

Before performing the analysis, we identified some research questions and formulated detailed
evaluation criteria to address these research questions. We discuss them in the subsequent
sections. The criteria presented here is equally applicable to MDRT approaches as well; hence,
we include the MDRT approaches discussed in V.B in our analysis as well.

There are some existing surveys on model-based regression testing (Fahad & Nadeem, 2008),
(Mahdian, Andrews, & Pilskalns, 2009), (Engstroem, Runeson, & Skoglund, 2010). However,
the major difference of the survey presented in this chapter is the level of detail. We identified a
set of research questions for each criterion to have a better understanding of weakness and
strengths of approaches in certain areas. The criteria presented in this chapter are very
comprehensive as compared to any other criteria developed to evaluate model-based regression
testing techniques in the literature. It contains 9 criteria and 27 inquiries corresponding to them.
Our criteria are discussed in detail in Section VI.C. Moreover, before the comparison, we divided
the approaches into 6 different sets for better understanding. These sets are explained in the start
of VI.D.

A. Research Questions

According to the challenges discussed in section IV, we identified the following important
research questions.

1. How much support is available for each regression testing step discussed in section II.A?

2 U2TP (UML 2 Testing Profile) is a standard test specification language by Object Management Group (OMG).
The preliminary building blocks of U2TP are “Test Architecture”, “Test Behaviour”, “Test Data” and “Test Time”.
The current available version of U2TP is 1.0; however, the next revisions are also in progress.

 22	

2. Whether the techniques provide strong support for change identification and impact
analysis to deal with change propagation or not?

3. How much platform independence the existing techniques provide?
4. Do the techniques provide adequate test suite classification and how much reduction they

promise?
5. How mature are the approaches in the field and how much support for the users they

provide?
6. How much automation is supported by the model-based regression testing techniques?

Besides the research questions related to the challenges discussed earlier, we added two more
research questions for better understand the techniques.

1. How many approaches exist for each testing level, i.e. unit, integration and system level?
2. What is the tendency of coverage of structural and behavioural models by the available

model-based regression testing techniques?

In the next section we explain how we selected the studies for our analysis. We eliminate the
irrelevant studies by establishing study selection criteria.

B. Study Selection

To eliminate the irrelevant studies before performing the analysis we used the following two
filters.

1. All the approaches we considered are from the year 2000 and onwards. The
reason is that the studies before that do not use mature modelling languages and are
not applicable to the present scenarios.

2. We consider only those approaches that use models as input; hence, ignoring the
approaches that use source code or specification and design artefacts other then
models.

In the following sub sections, we discuss the study selection process and the eliminated studies.

1. Selected Studies
Initially the research papers were selected on the basis of title and abstract relevance. To search
for the relevant papers we relied mostly on the existing knowledge of the authors in the field;
hence, the initial papers were mostly already known by the authors. To make our search more
reliable, we also thoroughly searched the references of all available papers and finally to get
confidence on a complete coverage we searched the most popular databases IEEE digital
Library, ACM Digital Library, SpringerLink and ScienceDirect using different combinations of
following keywords.

“Regression Testing, Models, UML, Design Models, Model-driven, Model-based, specification-
based, evolution”

 23	

After applying the initial selection filters and filtering them based on abstract and title relevance
we obtained total 17 studies corresponding to 31 research papers. The list of these selected
studies and their corresponding references are given in Appendix A.

2. Excluded Studies
We excluded all those approaches from our analysis which are published before year 2000.
Interested readers can have a look on these studies in additional readings section in Appendix XI.
Some other studies are excluded because the input used by these approaches was not models,
they were either textual requirements or version data modelled using OCL. The list of these
studies is also included in the additional reading section.

C. Analysis Criteria

In this section, we discuss the analysis criteria we developed to answer the above mentioned
research questions. The criteria contain a set of further questions/inquiries satisfying the criteria.
Table 2 presents each criterion and the inquiries related to the criterion.

Table 2: Analysis Criteria for MBRT Approaches
1. Criteria name: Testing Level
Inquiries

Inq-1: What is the testing level addressed by the approach?
2. Criteria Name: Model Coverage
Inquiries

Inq-2: The approach covers structural modelling diagrams, behavioural modelling diagrams or
both?

Structural only
Behavioural only
Both structural and behavioural

Inq-3: What are the input models used by the approach?
Inq-4: What is the test specification language used by the approach?
3. Criteria Name: Support for Regression Testing Steps (RTS)

Inquiries

Inq-5: Baseline test suite establishment
Inq-6: Change identification (see Criteria 4)
Inq-7: Change impact analysis (see Criteria 5)
Inq-8: Regression test selection (see Criteria 7)
Inq-9: Repair broken test cases
Inq-10: Test result analysis
4. Criteria Name: Change Identification

 24	

Inquiries

Inq-11: Does the approach provide sound change definitions for modifications in the system?

Inq-12: How many change types were considered by the approach?

Inq-13: Does the approach discusses the change detection mechanism and rules for change
detection between different versions of the system?

5. Criteria Name: Impact Analysis
Inquiries

Inq-14: How the traceability between several design and test artefacts was established?
(Traceability Support)

Explicit Traceability
Implicit Traceability
No traceability

Inq-15: Does the approach perform impact analysis?

(Inter-model) Impact Analysis within several models
(Intra-model) Impact analysis within 1 model
No Impact Analysis

Inq-16: Does the approach consider the dependency types?
6. Criteria Name: Platform Independence
Inquiries

Inq-17: Does the approach use platform independent specification and design models (input
models) or they are polluted with implementation specific concerns.

Inq-18: Does the approach support platform independent test modelling?

Inq-19: Does the Tool support/implementation provided by the approach is specific to some
platform?
7. Criteria Name: Efficiency
Inquiries

Inq-20: how much reduction is achieved? (We are collecting the data provided by the authors
and are not measuring the reduction ourselves)

Inq-21: Does the approach provide some effective classification for the regression test
selection?

Modified test cases are identified
Obsolete test cases are identified
The elements for which new test cases are required are identified
8. Criteria Name: Maturity and Support

 25	

Inquiries

Inq-22: Is the approach evaluated on any case study or does any experimental evaluation was
present?

No: 0
Just an example (only some example diagrams are used)
Small case study (Less than 100 Test cases OR less than 10 components)
Medium case study (100-500 test cases OR 5-20 Components)
Large case study(More than 500 test cases OR more than 20 Components)

Inq-23: Is the approach compliant to the standards for input models?

Complete compliance with a standard
Partial Compliance (Notations and extensions applicable to standards)
No standard compliance

Inq-24: Is the approach compliant to the standards for test specifications?
Complete compliance with a standard
Partial Compliance (Notations and extensions applicable to standards)
No standard compliance

Inq-25: What is the degree of documentation and support?

Just a paper
Detailed Method description
Plus Tutorials, templates and examples
9. Criteria Name: Automation and Tool Support
Inquiries

Inq-26: Were the ideas defined by some algorithmic details or not?

Inq-27: Does the approach provide tool support or not?
Full tool support
Prototype tool
No tool support

A very important criterion to evaluate the regression testing techniques was presented by
Rothermel & Harrold. This criterion includes 5 parameters, Inclusiveness, Precision, Efficiency,
Generality, and Accountability (Rothermel & Harrold, 1994).

According to the criteria, inclusiveness is the extent to which modification revealing test cases
are added in the regression test suite and Precision is the extent to which non-modification
revealing test cases are omitted from the regression test suite. To determine inclusiveness is not
possible without an experimental evaluation. For us experimental evaluation of 18 approaches

 26	

was not possible due to time, resources and non-availability of detailed information for all the
approaches. However, inclusiveness and precision in our case can be deduced by considering
criterion 4 and 5 in Table 2.

Efficiency, according to Rothermel & Harrold, is determined by considering space and time
requirements of the regression testing techniques. This criterion also cannot be determined
without experimental evaluations. We defined efficiency as the reduction capability of regression
testing techniques and ability to classify the original test suite for regression testing effectively.
The criterion 7, in Table 2 presents this criterion. Rothermel & Harrold defined generality as the
ability to function in a wide and practical range of solutions. In our case, generality can be
deduced by considering the inquiries in criterion 1.

Harrold et al defined Accountability as the extent to which regression testing approaches
promote structural coverage criteria. To us, application of a structural coverage is concerned
mostly with test prioritization approaches and most of the regression testing approaches do not
deal with application of structural coverage criteria; hence, we do not consider this in our
analysis. Another very important issue is scalability of the approaches. Scalability can be
deduced by considering criterion 1 and 2 in Table 2.

D. Detailed Analysis of MBRT Approaches

In this section, we present the detailed analysis of the selected studies for each criterion. We
classified the approaches into 5 different categories according to the models they are using.
Following is the classification of the approaches.

Specification Level Activity-based Approaches: These are approaches with use specification models like
use cases and activity diagrams as input for regression testing.

Approaches involving Both Specification and Design Artefacts: These approaches either perform system
level testing or involve multiple testing levels such as unit, integration and system levels. They take both
specification and design models as input.

Design Level State-based Approaches: These approaches take event-based models as input for regression
testing. Most of these approaches take variants of finite state machines as input.

Design Level Component-based Approaches: These approaches are specific for component-based
regression testing.

Design Level Approaches using Sequence and Class diagrams: These approaches takes sequence and
class diagrams as input for regression testing.

 27	

Design Level Miscellaneous Approaches: These approaches are the design level approaches which do not
fall into any above mentioned category.

In the following, we present the analysis of each criterion using for each classification of approaches
mentioned above. Each criterion contains a corresponding analysis table and a “critical Issues” section
highlighting the major findings of the analysis of the criterion.

1. Analysis of Criterion 1 & 2–Testing Level & Model Coverage
The criteria states which input models and test specification language the approaches use, and what levels
of testing the approaches address? The inquiries other then inquiry 4 are more elaborative then analytical.
These are used to understand the nature of the approaches better. Table 3 presents the analysis of the
selected approaches for these criteria. According to Table 3, from the total 17 approaches selected for the
analysis, 7 of the approaches deal with system level testing, 2 approaches are about component-based
testing, 4 approaches are integration level approaches and 7 approaches can be applied at unit level.

Most of the approaches do not use any particular test specification language for the test representation.
Most of the approaches specify test in their custom styles. However, one approach uses JUnit for test
specification and one use a XML-based representation of the test cases. The corresponding critical issues
section contains the critical points extracted in the light of analysis.

Table 3: Analysis of Model-based Regression Testing Approaches for the Criterion “Testing Level” & “Model
Coverage”

Approaches▼ Study ID▼

In
q-

1:
 W

ha
t i

s t
he

 te
st

in
g

le
ve

l a
dd

re
ss

ed
 b

y
th

e
ap

pr
oa

ch
?

 In
q-

2:
 T

he
 a

pp
ro

ac
h

co
ve

rs
 st

ru
ct

ur
al

m

od
el

lin
g

di
ag

ra
m

s,
be

ha
vi

ou
ra

l m
od

el
lin

g
di

ag
ra

m
s o

r b
ot

h

In
q-

3:
 W

ha
t a

re
 th

e
in

pu
t

m
od

el
s u

se
d

by
 th

e
ap

pr
oa

ch
?

 In
q-

4:
 W

ha
t i

s t
he

 te
st

sp

ec
ifi

ca
tio

n
la

ng
ua

ge

us
ed

 b
y

th
e

ap
pr

oa
ch

?

 Testing Level Model Coverage

Specification Level
Approaches (Activity-

based)

Study-1: (Gorthi et
al., 2008)

System Level Behavioural Only Structured Activity

diagram None

Study-2: (Chen et
al., (a), 2002,2003) System Level Behavioural only Activity Diagram None

Study-3: (Silva et
al., 2010)

Functional
Testing using

Category
partition

Both structural and
behavioural

Main artefact(Activity

diagram) others (
Class Diagram and
Sequence Diagram)

None

Approaches involving
Both Specification and

Design Artefacts

Study-4: (Mansour
et al., 2007, 2011)

Unit, Integration
and System

Level

Behavioural and
Structural both

Interaction Overview
Diagram, Sequence

Diagram, Class
Diagram

None

Study-5: (Briand et
al., 2002, 2003,

2009)
System Level Behavioural and

Structural both

Use case Diagram,
Sequence Diagram,

Class Diagram
None

 28	

Study-6: (Deng et
al., 2004)

Black-box
system testing

Behavioural and
Structural both

Use case Diagram,
Class Diagram,

Sequence Diagram,
Activity Diagram,

State Chart

None

Design Level
Approaches (State-

based)

Study-7: (Chen et
al., (b), 2007, 2009) Unit Level Behavioural Only

EFSM (Extended
Finite State Machine),

SDL
None

Study-8: (Korel et
al., 2002) Unit Level Behavioural Only EFSM None

Study-9: (Beydeda
et al., 2000) Unit Level Behavioural Only

Class State Machine
and

None

Study-10: (Farooq
et al., 2007, 2010)

Unit and
Integration Level

Behavioural and
Structural both

Class Diagram, State
Machine XML

Design Level
Approaches (Sequence

diagram and Class
diagram)

Study-11: (Ali et
al., 2007) System Level Behavioural and

Structural both

Class Diagram,
Sequence Diagram

None

Study-12:
(Pilskalns et al.,

2006)

System Level
Testing of UML

designs

Behavioural and
Structural both

Class Diagram,
Sequence Diagram, None

Study-13:
(Naslavsky et al.,
2007, 2009, 2010)

Unit and
Integration Level

Behavioural and
Structural both

Class Diagram,
Sequence Diagram

JUnit for
concrete test

representation.
Study-14: (Jeron et

al., 1999, 2000)
Integration

Testing Structural Class Diagram None

Design Level

(Component-based)

Study-15:
(Muccini et al., (b),
2005, 2006, 2007)

Component-
based Testing

Behavioural and
Structural both

Sequence Diagram,
Component Diagram,

State Machine
(FSP Algebra)

None

Study-16: (Wu &
Offet, 2003)

Component
Level

Behavioural and
Structural both

Class Diagram, State
Chart, Collaboration

Diagram
None

Design Level
Approaches

(Miscellaneous)

Study17: (Martins
et al., 2005) U nit Testing Behavioural Only

Activity Diagram for
a class

implementation logic
None

Critical Issues–Testing Level and Model Coverage:
The existing MBRT approaches use no standard test specification language such as TTCN or U2TP.
They only use ad-hoc test representations and in most of the cases test specifications are very abstract
and how these abstract test cases will be later mapped to the concrete test cases is unclear.

2. Analysis of Criterion 3–Support for Regression Testing
Steps

This criterion shows how much support for the regression testing steps discussed in section II.A is
provided by the existing MBRT approaches. Table 4 presents the analysis of the selected MBRT
approaches for the inquiries of the criterion. For the discussion on the critical findings of the analysis
please refer to the corresponding critical issues section.

 29	

Table 4: Analysis of MBRT Approaches for the criterion "Support for Regression Testing Steps"

Approaches▼ Study ID▼

In
q-

5:
 B

as
el

in
e

te
st

su

ite
 e

st
ab

lis
hm

en
t

In
q-

6:
 C

ha
ng

e
id

en
tif

ic
at

io
n

(s
ee

C

rit
er

ia
 4

)

In
q-

7:
 C

ha
ng

e
im

pa
ct

an

al
ys

is
 (s

ee
 C

rit
er

ia
 5

)

In
q-

8:
 R

eg
re

ss
io

n
te

st

se
le

ct
io

n
(s

ee
 C

rit
er

ia
 7

)
 In

q-
9:

 R
ep

ai
r b

ro
ke

n
te

st
 c

as
es

In
q-

10
: t

es
t r

es
ul

t
an

al
ys

is

Specification Level
Approaches

(Activity-based)

Study-1:
(Gorthi et al.,
2008)

Not discussed Not discussed No Impact
Analysis

Yes
(risk and
cost
based)

No No

Study-2:
(Chen et al.,
(a), 2002,2003)

Not discussed Not discussed No Impact
Analysis

Yes
 (risk and
cost
based)

No No

Study-3: (Silva
et al., 2010)

Functional test
cases generated
by TDE-UML
using category
partitioning
method

Yes (online
change
identification)

Yes Yes
(obsolete,
reusable,
re-
testable)

No No

Approaches
involving Both

Specification and
Design Artefacts

Study-4:
(Mansour et
al., 2007, 2011)

Not discussed Partial(
Change
Definitions not
provided)

Yes Partial
(only
affected)

No

No

Study-5:
(Briand et al.,
2002, 2003,
2009)

Yes it is referred
to a previous
approach

Yes Yes Yes No

No

Study-6:
(Deng et al.,
2004)

Rules for All
branch,
boundary and
Faulty testing
are discussed

No Very
Limited

No No No

Design Level
Approaches (state-

based)

Study-7:
(Chen et al.,
(b), 2007,
2009)

Yes (As the
work is a
continuation of
Korel et al.
technique)

No Yes(Partial,
only intra
model)

Yes (Only
affected
test cases
are
identified)

No No

Study-8:
(Korel et al.,
2002)

Yes No Yes (Partial
only intra-
model)

Yes (Only
affected
test cases
are
identified)

No No

Study-9:
(Beydeda et
al., 2000)

Yes

No

Only
between
specification
and source
code

Yes (Only
affected
test cases
are
identified)

No No

Study-10:
(Farooq et al.,
2007, 2010)

Yes, but manual
test generation
using transition
tree method

Yes Yes Yes
(obsolete,
reusable,
re-
testable)

No No

 30	

Approaches▼ Study ID▼

In
q-

5:
 B

as
el

in
e

te
st

su

ite
 e

st
ab

lis
hm

en
t

In
q-

6:
 C

ha
ng

e
id

en
tif

ic
at

io
n

(s
ee

C

rit
er

ia
 4

)

In
q-

7:
 C

ha
ng

e
im

pa
ct

an

al
ys

is
 (s

ee
 C

rit
er

ia
 5

)

In
q-

8:
 R

eg
re

ss
io

n
te

st

se
le

ct
io

n
(s

ee
 C

rit
er

ia
 7

)
 In

q-
9:

 R
ep

ai
r b

ro
ke

n
te

st
 c

as
es

In
q-

10
: t

es
t r

es
ul

t
an

al
ys

is

Design Level
Approaches

(Sequence diagram
and Class diagram)

Study-11: (Ali
et al., 2007)

Not discussed Partial Yes Yes No

No

Study-12:
(Pilskalns et
al., 2006)

Yes, UML
design testing
producing UML
test cases

yes Yes Yes
(obsolete,
reusable,
new)

No No

Study-13:
(Naslavsky et
al., 2007, 2009,
2010)

Sequence
diagram based
test generation.

yes Yes yes No No

Study-14:
(Jeron et al.,
1999, 2000)

Integration
testing using

test dependency
graph

No No Limited
Discussion

No No

Design Level
Approaches

(Component-
based)

Study-15:
(Muccini et al,
2005, 2006,
2007)

Study-16:
(Wu & Offet,
2003)

Not discussed No Partial
(Intra-model
only)

New,
retestable

No No

Design Level
Approaches

(Miscellaneous)

Study17:
(Martins et al.,
2005)

Paths of a
Behavioral

Control Flow
Graph (BCFG)

yes No Yes No No

Critical Issues–Support for RTS:

1. The existing regression testing approaches do not consider two important steps of the
regression testing; how the selected test should be repaired and analyzed.

2. A lot of the approaches provide limited support for change identification and impact
analysis as well (see criterion change identificationVI.D.3 and impact analysis VI.D.4
for further details.)

3. Analysis of Criterion 4–Change Identification
Change identification is an important activity in regression testing. This section provides the
analysis of the inquiries corresponding to the change identification for the selected MBRT
approaches. The analysis is presented in Table 5. For the critical issues refer to the corresponding
critical issues section.

 31	

Table 5: Analysis of the MBRT Approaches for the criterion "Change Identification”

Approaches▼ Study ID▼

In
q-

11
:

D
oe

s t
he

 a
pp

ro
ac

h
pr

ov
id

e
so

un
d

ch
an

ge

de
fin

iti
on

s f
or

 m
od

ifi
ca

tio
ns

 in

th
e

sy
st

em
?

 In
q-

12
:

H
ow

 m
an

y
ch

an
ge

ty

pe
s w

er
e

co
ns

id
er

ed
 b

y
th

e
ap

pr
oa

ch
?

In
q-

13
:

D
oe

s t
he

 a
pp

ro
ac

h
di

sc
us

se
s t

he
 c

ha
ng

e
de

te
ct

io
n

m
ec

ha
ni

sm
 a

nd
 ru

le
s f

or

ch
an

ge
 d

et
ec

tio
n

be
tw

ee
n

di
ff

er
en

t v
er

si
on

s o
f t

he

sy
st

em
?

Specification Level
Approaches (Activity-based)

Study-1: (Gorthi et
al., 2008)

No Add, delete, modify No

Study-2: (Chen et al.,
(a), 2002,2003)

No Modify No

Study-3: (Silva et al.,
2010)

No Add, delete, modify Yes (using time
stamps and edit
time monitoring)

Approaches involving Both
Specification and Design

Artefacts

Study-4: (Mansour et
al., 2007, 2011)

No Modify Yes

Study-5: (Briand et
al., 2002, 2003, 2009)

Yes Addition of elements,
Deletion of elements,
Modifications of
element properties

Study-6: (Deng et al.,
2004)

No Modify No

Design Level Approaches
(state-based)

Study-7: (Chen et al.,
(b), 2007, 2009)

No Add ,delete, modify No

Study-8: (Korel et al.,
2002)

No Add ,delete

No

Study-9: (Beydeda et
al., 2000)

No Modify No

Study-10: (Farooq et
al., 2007, 2010)

Yes Add ,delete, modify Yes

Design Level Approaches
(Sequence diagram and Class

diagram)

Study-11: (Ali et al.,
2007)

Yes (Only a limited set) Modify No

Study-12: (Pilskalns et
al., 2006)

Yes Add, delete, modify Yes

Study-13: (Naslavsky
et al., 2007, 2009,
2010)

Yes Add, delete, modify
(using EMFCompare)

Yes

Study-14: (Jeron et
al., 1999, 2000)

No No No

Design Level Approaches
(Component-based)

Study-15: (Muccini et
al, 2005, 2006,2007)

Yes Add, delete, modify

Study-16: (Wu &
Offet, 2003)

No Add, delete, modify No

Design Level Approaches
(Miscellaneous)

Study17: (Martins et
al., 2005)

No Add, Remove Yes

 32	

Critical Issues–Change Identification:
1. Most of the approaches do not provide the sound change definitions to detect the

changes in the models. If a change is not defined it cannot be detected later.
2. The existing MBRT approaches only consider the primary change types (Add, Delete,

and Property Modification) and the effect of other complex change types discussed in
section II.A.2 is not considered by any of the approaches.

3. A lot of approaches also do not discuss the rules for change identification between
two versions of the system.

4. Analysis of Criterion 5–Impact Analysis

As discussed earlier, impact analysis is one of the most important activities in the regression
testing. This section presents the analysis of the selected approaches for their capabilities to
support impact analysis. Table 6 presents the analysis of the MBRT approaches for different
inquiries corresponding to the impact analysis. The corresponding critical issues section
discusses the critical findings of the analysis.

Table 6: Analysis of the MBRT Approaches for the criterion "Impact Analysis”

Approaches▼ Study ID▼

In
q-

14
:

H
ow

 th
e

tra
ce

ab
ili

ty
 b

et
w

ee
n

se
ve

ra
l

de
si

gn
 a

nd
 te

st
 a

rte
fa

ct
s w

as

es
ta

bl
is

he
d

In
q-

15
:

D
oe

s t
he

 a
pp

ro
ac

h
pe

rf
or

m
 im

pa
ct

 a
na

ly
si

s?

 In
q-

16
:

D
oe

s t
he

 a
pp

ro
ac

h
co

ns
id

er
 th

e
de

pe
nd

en
cy

ty

pe
s?

Specification Level
Approaches (Activity-based)

Study-1: (Gorthi et al.,
2008)

No Traceability No Impact Analysis None

Study-2: (Chen et al.,
(a), 2002,2003)

Explicit (Traceability
Matrix)

No Impact Analysis None

Study-3: (Silva et al.,
2010)

Explicit traceability links
are established

Supported using
traceability links
(between artefacts,
models and test cases)

Not discussed

Approaches involving Both
Specification and Design

Artefacts

Study-4: (Mansour et
al., 2007, 2011)

Implicit Traceability Between class
diagram, IOD and SD

Study-5: (Briand et
al., 2002, 2003, 2009)

Implicit, (using sequence
matching)

Between CD, SD and
UC

Study-6: (Deng et al.,
2004)

No Traceability Very few and abstract
rules for impact
analysis

None

Design Level Approaches
(state-based)

Study-7: (Chen et al.,
(b), 2007, 2009)

No Traceability Intra-model

Study-8: (Korel et al.,
2002)

No Traceability Intra-model

 33	

Critical Issues–Impact Analysis:

1. Most of the regression testing approaches do not support the concept of explicit traceability,
i.e., traceability is not maintained at the time of test generation so that it could be used to
perform impact analysis later during regression testing.

2. Some approaches provide the traceability, most of them use ID and name comparison to find
the relations which is a week approach and might miss many relations.

3. A lot of MBRT approaches either do not support impact analysis or support impact analysis
within one diagram. The relations between several diagrams are considered only in a few
approaches.

4. Most of the approaches do not consider different types of dependencies. The type of
dependency can affect the way selected test should be treated later. Only a few approaches
consider control and data dependencies for intra-model impact analysis.

5. Analysis of Criterion 6–Platform Independence
This section provides the analysis of selected approaches for the criterion Platform independence. The
criterion considers the platform independence of input models and test specification models and the
implementation platform. Table 7 presents the analysis of the criterion for the selected approaches.
Further issues are discussed the corresponding critical issues section.

Study-9: (Beydeda et
al., 2000)

No Traceability Intra-model
Study-10: (Farooq et
al., 2007, 2010)

Implicit Traceability Inter-model (Between
CD and SM)

Design Level Approaches
(Sequence diagram and Class

diagram)

Study-11: (Ali et al.,
2007)

Implicit Traceability
Between CD and SD

Study-12: (Pilskalns et
al., 2006)

Implicit traceability Inter model (CD, SD
OMDG, test cases)

Use dependency

Study-13: (Naslavsky
et al., 2007, 2009,
2010)

Explicit Traceability (in
form of a traceability
model).

Between SD and CD Not discussed

Study-14: (Jeron et
al., 1999, 2000)

None No Impact Analysis Contractual and
Implementation
Dependencies

Design Level Approaches
(Component-based)

Study-15: (Muccini et
al, 2005, 2006, 2007)

Implicit
Study-16: (Wu &
Offet, 2003)

No Traceability Intra Model Control and data
dependencies
(within same
model)

Design Level Approaches

(Miscellaneous)
Study17: (Martins et
al., 2005)

Implicit traceability No Impact Analysis None

 34	

Table 7: Analysis of the MBRT Approaches for the criterion "Platform Independence”

Approaches▼ Study ID▼

In
q-

17
: D

oe
s t

he
 a

pp
ro

ac
h

us
e

pl
at

fo
rm

 in
de

pe
nd

en
t

sp
ec

ifi
ca

tio
n

an
d

de
si

gn

m
od

el
s?

In
q-

18
: D

oe
s t

he
 a

pp
ro

ac
h

su
pp

or
t p

la
tfo

rm
 in

de
pe

nd
en

t
te

st
 m

od
el

lin
g?

In
q-

19
: D

oe
s t

he
 T

oo
l

su
pp

or
t/i

m
pl

em
en

ta
tio

n
pr

ov
id

ed
 b

y
th

e
ap

pr
oa

ch
 is

sp

ec
ifi

c
to

 so
m

e
pl

at
fo

rm
?

Specification Level
Approaches (Activity-

based)

Study-1: (Gorthi et
al., 2008)

Yes (Extended Activity
Diagram)

Test Modelling not
discussed (Only test
paths which are
platform
Independent)

No implementation

Study-2: (Chen et al.,
(a), 2002,2003)

Yes (Activity Diagram) Test Modelling not
discussed (Only test
paths which are
platform
Independent)

No implementation

Study-3: (Silva et al.,
2010)

Yes (Activity, sequence
and Class diagram)

Test Modelling not
supported (Custom
test procedures,
containing test steps
and data bindings)

TDE/UML developed
in Java, also available
as in-house eclipse
plug-in by SIEMENS
corporation

Approaches involving Both
Specification and Design

Artefacts

Study-4: (Mansour et
al., 2007, 2011)

Yes (UML) Test Modelling is not
supported (test paths
depicting sequence of
methods)

No Implementation

Study-5: (Briand et
al., 2002, 2003, 2009)

Yes (UML) Test Modelling not
supported
(Tests are in form of
action sequence
triplets)

Java 2 Platform,
POET Object Server
Suite, However UML
meta model
implementation is
developed internally

Study-6: (Deng et al.,
2004)

Yes (UML) Test Modelling not
supported and form
of the test cases is not
discussed

No Implementation

Design Level Approaches
(state-based)

Study-7: (Chen et al.,
(b), 2007, 2009)

Yes, SDL is platform
Independent

Test Modelling is not
discussed (Probably
in form of SDL
sequences)

No Implementation

Study-8: (Korel et al.,
2002)

Yes Test Modelling is not
discussed (Probably
in form of
sequences)

No Implementation

Study-9: (Beydeda et
al., 2000)

No (CSC is not a
standard artefact and
CSIG is constructed
using both source code
and specification)

Tests are not platform
independent, contain
source code
information

No Implementation

Study-10: (Farooq et
al., 2007, 2010)

Yes (UML) Yes
XML representation
of state test sequences

Java based
Implementation in
Eclipse platform,
UML2 plug-in for
Eclipse

 35	

Design Level Approaches
(Sequence diagram and

Class diagram)

Study-11: (Ali et al.,
2007)

Yes (UML) Test Modelling is not
supported (test paths
depicting paths of
CCFG)

No Implementation

Study-12: (Pilskalns et
al., 2006)

Yes (UML) Test Modelling not
supported (test cases
are in form of graph
tuples)

No Implementation

Study-13: (Naslavsky
et al., 2007, 2009,
2010)

Yes (UML) Test Modelling is not
supported. Abstract
test cases are
sequences of
sequence diagram.

Java-based
implementation using
Eclipse plugins.
(EMFCompare, ATL
and UML2 Plugins for
Eclispe)

Study-14: (Jeron et
al., 1999, 2000)

Yes UML Test Modelling not
supported

No Implementaion

Design Level Approaches
(Component-based)

Study-15: (Muccini et
al,2005, 2006, 2007)

Study-16: (Wu &
Offet, 2003)

Yes (UML) Test Modelling not
supported

No Implementation

Design Level Approaches
(Miscellaneous)

Study17: (Martins et
al., 2005)

Yes(UML) Test Modelling not
supported

No Implementation

Critical Issues–Platform Independence:

1. The concept of test modelling which supports platform independent test suites is not
supported by the existing model-based regression testing techniques.

2. Almost all the prototype implementations provided by the approaches are compliant to the
Java platform and support for other platforms is not provided by the approaches

6. Analysis of Criterion 7–Efficiency
This criterion analyzes the efficiency of the approaches by analyzing the reduction capabilities
and by considering the ability of test suite classification of the selected approaches. Table 8
presents the analysis of the selected approaches for the corresponding inquiries. The
corresponding critical issues section highlights the general issues considering the evaluation of
the approaches for efficiency.

Table 8: Analysis of the MBRT Approaches for the criterion "Efficiency”

Approaches▼ Study ID▼

In
q-

20
: h

ow
 m

uc
h

re
du

ct
io

n
is

 a
ch

ie
ve

d?

In
q-

21
: D

oe
s t

he

ap
pr

oa
ch

 p
ro

vi
de

 so
m

e
ef

fe
ct

iv
e

cl
as

si
fic

at
io

n
fo

r
th

e
re

gr
es

si
on

 te
st

se

le
ct

io
n?

Specification Level Approaches Study-1: (Gorthi et al., Not Discussed (Added ,Affected) test

 36	

(Activity-based) 2008)

cases

Study-2: (Chen et al., (a),
2002,2003)

Approx 70% (Added, affected and
Prioritized safety tests)

Study-3: (Silva et al., 2010) Not discussed Obsolete, Reusable, Re-
testable &New

Approaches involving Both
Specification and Design Artefacts

Study-4: (Mansour et al.,
2007, 2011)

92-100% Affected

Study-5: (Briand et al.,
2002, 2003, 2009)

 Obsolete, reusable and re-
testable

Study-6: (Deng et al., 2004) Not Discussed Not Discussed

Design Level Approaches (state-
based)

Study-7: (Chen et al., (b),
2007, 2009)

83-99.09 % Affected

Study-8: (Korel et al.,
2002)

83-99 % Affected

Study-9: (Beydeda et al.,
2000)

Not Discussed Affected

Study-10: (Farooq et al.,
2007, 2010)

Up to 63% Obsolete, reusable and re-
testable

Design Level Approaches
(Sequence diagram and Class

diagram)

Study-11: (Ali et al., 2007) Not Discussed

Study-12: (Pilskalns et al.,
2006)

93 % New, Reusable, Obsolete

Study-13: (Naslavsky et
al., 2007, 2009, 2010)

Not discussed Obsolete, Reusable and
Retestable

Study-14: (Jeron et al.,
1999, 2000)

Not discussed Affected

Design Level Approaches
(Component-based)

Study-15: (Muccini et al,
(a), 2005, 2006)

 Retestable, New

Study-16: (Wu & Offet,
2003)

Not Discussed Modified and New

Design Level Approaches
(Miscellaneous)

Study17: (Martins et al.,
2005)

Varies version to version Reusable, Retestable,
Obsolete

Critical Issues–Efficiency:
Although some MBRT approaches report the reduction achieved by applying their approaches on the
case studies. However this reduction depends on how much modifications they considered and how
complex were the case studies. To evaluate the reduction capabilities of the approaches, the
approaches should be empirically analysed with the same set of the approaches.

7. Analysis of Criterion 8–Maturity and Support
This criterion evaluates the maturity and support provided by the MBRT approaches by focusing on three
main issues; case studies or evaluations, standard compliance and available documentation and support.
Table 9 shows the results of the analysis of the selected approaches. We discuss the critical issues related
to this criterion in the corresponding critical issues section.

 37	

Table 9: Analysis of the MBRT Approaches for the criterion "Maturity and Support”

Approaches▼ Study ID▼

In
q-

22
: I

s t
he

 a
pp

ro
ac

h
ev

al
ua

te
d

on
 a

ny
 c

as
e

st
ud

y
or

 d
oe

s a
ny

ex

pe
rim

en
ta

l e
va

lu
at

io
n

w
as

 p
re

se
nt

?

In
q-

23
: I

s t
he

 a
pp

ro
ac

h
co

m
pl

ia
nt

 to
 th

e
st

an
da

rd
s

fo
r i

np
ut

 m
od

el
s?

In
q-

24
: I

s t
he

 a
pp

ro
ac

h
co

m
pl

ia
nt

 to
 th

e
st

an
da

rd
s

fo
r t

es
t s

pe
ci

fic
at

io
ns

?

In
q-

25
: W

ha
t i

s t
he

de

gr
ee

 o
f d

oc
um

en
ta

tio
n

an
d

su
pp

or
t?

Specification Level
Approaches (Activity-

based)

Study-1: (Gorthi
et al., 2008)

retail system case
study, 342 Test
cases
MEDIUM

Partial
Compliance
(Activity like
notation with
extensions)

No Standard
Compliance

One Conference
Paper

Study-2: (Chen et
al., (a),
2002,2003)

3 IBM WEB
SPHERE
Components, 306
test cases):
MEDIUM

Partial
Compliance
(Activity like
notation with
extensions)

No Standard
Compliance

Two Conference
Papers
One Master’s
Thesis

Study-3: (Silva et
al., 2010)

None Activity diagram
with extended
properties

No Standard
Compliance

One Conference
Paper

Approaches involving
Both Specification and

Design Artefacts

Study-4:
(Mansour et al.,
2007, 2011)

(Evaluation on
three different case
studies. Max Test
suite size is 90
MEDIUM)

UML 2.0 (full
Compliance)

No Standard
Compliance

A conference
paper
A journal paper

Study-5: (Briand
et al., 2002, 2003,
2009)

LARGE(596 test
cases)

UML(full
Compliance)

No Standard
Compliance

A Conference
Paper
A journal Paper
A technical
Report

Study-6: (Deng et
al., 2004)

No case study and
evalutaion

UML
(Version
unknown)

No standard
compliance

A conference
paper

Design Level
Approaches (state-

based)

Study-7: (Chen et
al., (b), 2007,
2009)

LARGE
(Models: 6 SDL
models
max No of test
case: 1691)

SDL (Full
Compliance)

No Standard
Compliance

One Conference
Paper
One Journal Paper

Study-8: (Korel
et al., 2002)

Just an example Partial
Compliance
(State machine)

No Standard
Compliance

Conference Paper

Study-9:
(Beydeda et al.,
2000)

Just an example
(Class Account)

Partial
Compliance
(State machine)

No Standard
Compliance

Conference Paper

Study-10:
(Farooq et al.,
2007, 2010)

LARGE
(723 test cases
Enrolment system
Case study)

UML(full
Compliance)

No Standard
Compliance

One Conference
Paper
One Workshop
Paper
Masters Thesis
Tool source code

Design Level
Approaches (Sequence

diagram and Class

Study-11: (Ali et
al., 2007)

(Just an example of
ATM system
No TC: 6)

UML (Full
Compliance)

No Standard
Compliance

A conference
paper

 38	

diagram) Study-12:
(Pilskalns et al.,
2006)

Transcoder
Component of
Battik toolkit
32 Classes and
sequence diagrams
and 52 test cases

UML (Version
Unknown)

No Standard
Compliance

A conference
Paper

Study-13:
(Naslavsky et al.,
2007, 2009, 2010)

PIMS), and the
Aqualush case
studies. Number of
component,
diagrams or test
cases are not
discussed

UML (Version 2) Non standard test
specifications
(Abstract test
cases are written
in Custom format.
For concrete test
cases JUnit is
used.)

3 Conference
Papers

Study-14: (Jeron
et al., 1999, 2000)

SMDS Server case
study in
Telecommunication
domain containing
38 classes

UML (Applicable
to any version of
class diagram)

No Standard
Compliance

1 journal paper
and one

conference

Design Level
Approaches

(Component-based)

Study-15:
(Muccini et al,
2005, 2006, 2007)

(15 Components,
number of test
cases not specified
MEDIUM)

Charmy
Language

Study-16: (Wu &
Offet, 2003)

An Example of
ATM system.

UML No Standard
Compliance

A conference
paper

Design Level
Approaches

(Miscellaneous)

Study17:
(Martins et al.,
2005)

Common C++
Library casestudy
(2 classes having
16 and 8 methods)
6 versions of each
class are considered

UML (Version
Unknown)

No Standard
Compliance

A conference
Paper

Critical Issues–Maturity and Support:
1. Although some cases studies are available for evaluating MBRT approaches for their

applicability; however, most of the studies do not evaluate the approaches for
efficiency and reduction. Unavailability of comparative evaluations is also a major
issue in MBRT.

2. Standard compliance, especially for test specification is a major deficiency in the
existing MBRT approaches.

3. The degree of documentation and support is very limited in the existing MBRT
approaches. The only support material available for most of the approaches is a
conference or a workshop paper. Very few approaches also publish their results in a
journal paper which contains relatively more detailed information. However, none of
the approaches provide tutorials or other artefacts to support their approach. Most of
the approaches also do not provide any other kind of documentation and tutorials for
their tools and methodology.

 39	

8. Analysis of Criterion 9–Automation and Tool Support
This criterion evaluates the degree of automation and tool support by the existing MBRT approaches.
Table 10 presents the analysis of the selected approaches for two further inquiries. The approach provides
the algorithmic details of the ideas or not and the ideas or implemented in a tool or not. The corresponding
critical issues section discussed the critical findings of the analysis.

Table 10: Analysis of the MBRT Approaches for the criterion "Automation and Tool Support”

Approaches▼ Study ID▼

In
q-

26
: W

er
e

th
e

id
ea

s d
ef

in
ed

 b
y

so
m

e
al

go
rit

hm
ic

 d
et

ai
ls

 o
r

no
t?

In
q-

27
: D

oe
s t

he

ap
pr

oa
ch

 p
ro

vi
de

 to
ol

su

pp
or

t o
r n

ot
?

Specification level MBRT
Approaches

Study-1: (Gorthi et al.,
2008)

Yes
No

Study-2: (Chen et al., (a),
2002,2003) Yes No

Study-3: (Silva et al.,
2010) Yes

Yes (TDE/UML) by
Siemens Inc.

Approaches involving Both
Specification and Design Artefacts

Study-4: (Mansour et al.,
2007, 2011)

Yes
No

Study-5: (Briand et al.,
2002, 2003, 2009) Yes

Prototype (RTS Tool)

Study-6: (Deng et al.,
2004)

Yes No

Design Level Approaches (state-
based)

Study-7: (Chen et al., (b),
2007, 2009) Yes No

Study-8: (Korel et al.,
2002) Yes No

Study-9: (Beydeda et al.,
2000) Yes No

Study-10: (Farooq et al.,
2007, 2010) Yes Prototype tool

(START)

Design Level Approaches
(Sequence diagram and Class

diagram)

Study-11: (Ali et al.,
2007) Yes No

Study-12: (Pilskalns et
al., 2006)

Yes No

Study-13: (Naslavsky et
al., 2007, 2009, 2010)

yes Eclipse-based prototype tool,
For model comparison
EMFCompare is used.

Study-14: (Jeron et al.,
1999, 2000) Yes No

Design Level Approaches
(Component-based)

Study-15: (Muccini et al,
2005, 2006, 2007) A plugin inside Charmy

environment
Study-16: (Wu & Offet,
2003)

No No

Design Level Approaches
(Miscellaneous)

Study17: (Martins et al.,
2005)

Yes No

 40	

Critical Issues–Automation and Tool Support:
Existing model-based regression testing approaches provide very limited tool support. Most
of the tools are not mature and also not available online.

E. Discussions

In the above section, we presented a detailed analysis of the existing MBRT approaches. The
critical issues corresponding to each analysis criterion are identified and discussed. The critical
issues highlight the areas within MBRT which require further attention from the researchers. In
general, the analysis shows that there is a need of better support of change identification and
impact analysis. Moreover, test automation, standard conformance repair of broken test cases
and test result analysis are the areas where further research is required.

MBRT approaches need to be mature by providing support in form of tutorials and more help
materials to perform the approaches practically. Further, there is a strong need of comparative
empirical evaluations of different categories of MBRT approaches to determine their
comparative reduction capabilities and other factors discussed in section VI.C.

In the next section, we discuss an example of our state-based regression testing approach to
demonstrate how MBRT can be practically applied. Although, we are not resolving the above
mentioned issues in the discussed example but we believe that this example can be useful to
understand the basic concepts of MBRT.

VII. CONCLUSION

In this chapter, we discussed the model-based regression testing (MBRT), its core concepts,
challenges, the state of the art and the emerging trends. We also demonstrated how MBRT fits in
the software development life cycle and we demonstrated the steps involved in MBRT phase.
We discussed the challenges, which MBRT has to overcome to reach a more widespread
application in the industrial practice. Moreover, we give an overview over the challenges of the
emerging model-driven regression testing approaches, which are still in an early stage of
development.

The main contribution of the chapter is provision of a comparative analysis and classification of
the existing MBRT approaches. First we classified the approaches based on the artefacts they
use and whether they are specification-based or design-based MBRT approaches. For this
analysis, we developed comprehensive analysis criteria which contain 9 major evaluation
criterions consisting of 27 inquiries (research questions). The criteria is based on the challenges
in MBRT, we identified earlier in this chapter. We selected 17 studies from the MBRT literature
consisting of 31 research papers. We applied the analysis criteria to compare the selected studies
in detail. We identified the critical issues in existing MBRT approaches for each criterion after

 41	

our analysis. In total, we identified 16 major issues that need to be improved by the MBRT
approaches. This analysis can provide the researchers the reasons to do further research in the
area of MBRT and to choose the issues they should address in their research. For the
practitioners as well, the analysis provides a thorough insight of the strengths and weaknesses for
different classes of the approaches.

Furthermore, we presented our own approach for state-based regression testing as a concrete
example on how MBRT works in practical scenarios. To conclude we suggest, based on the
analysis presented in this chapter, that the lack of tool support, standard conformance especially
for test specification, limited focus on the impact analysis and change identification, and the lack
of documentation are the major hindrances in the practical application of MBRT and the
utilization of its full potential. Research should be conducted in the above mentioned areas to
improve the quality and applicability of model-based regression testing approaches.

VIII. REFERENCES

Abramson, D., Sosic, R., & Brisbane, K. R. (1996). A Debugging and Testing Tool for
Supporting Software Evolution. Journal of Automated Software Engineering , 3, 369-390.

AGEDIS (2002), Last accessed (April 2011), Automated Generation and Execution of Test Suites for
DIstributed Component-based Software, Available at: http://www.agedis.de/downloads.shtml

Ali, A., Nadeem, A., Iqbal, M. Z.Z., & Usman, M. (2007). Regression Testing Based on UML
Design Models. Pacific Rim International Symposium on Dependable Computing, IEEE , 0, 85-
88.

Anquetil, N., Grammel, B., da, G. L., R., J. A., Khan, S., & Arboleda, H. (2008, June).
Traceability for model driven, software product line engineering. In Proceedingsof ECMDA
Traceability Workshop, 77-86.

Arnold, R., & Bohner, S. (1996). Software Change Impact Analysis (1st ed.). Wiley-IEEE
Computer Society Press.

ATL, Model Comparison (Last accessed:April 2011), Meta-model comparsion and model migration,
Available at: http://www.eclipse.org/gmt/amw/usecases/compare/

Bachmann, F., Bass, L., & Klein, M. (2002). Illuminating the fundamental contributors to
Software Architecture Quality. Technical Report, Carnegie Mellon Institute, Pittsburgh.

Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I. & Williams, (2008) Model-driven Testing
using UML Testing Profile. ISBN 978-3-540-72562-6, Springer Verelag.

Baldwin,C.Y & Clark. K.B. 1999. Design Rules: The Power of Modularity Volume 1. MA,
USA, MIT Press, Cambridge.

 42	

Beydeda, S., & Gruhn, V. (2001). Integrating White- and Black-Box Techniques for Class-Level
Regression Testing. In Proceedings of 25th Annual International Computer Software and
Applications Conference, Chicago, Illinois, 357.

Binder, R. V. (1999). Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Professional.

Bohner, S.A. & Arnold, R.S. (1996), “Software change impact analysis”, Wiley-IEEE

BPMNEclipse (Last accessed: April 2011), UML meta-model implementation for eclipse,Available at:
http://www.eclipse.org/modeling/mdt/?project=bpmn2

Briand, L. C., Labiche, Y., & He, S. (2009). Automating regression test selection based on UML
designs. Information and Software Technology. , 51 (1), 16-30

Briand, L. C., Labiche, Y., & Yue, T. (2009). Automated traceability analysis for UML model
refinements. Information and Software Technology , 51, 512-527.

Briand, L.C., Labiche, L., Buist, K., Soccar, G. (2003). Automating Impact Analysis and
Regression Test Selection Based on UML Designs. Software Quality Engineering Laboratory,
Carleton University, Technical Report, TR SCE-02-04.

Briand, L., Labiche, Y., & Soccar, G. (2002). Automating Impact Analysis and Regression Test
Selection Based on UML Designs. In Proceedings of the International Conference on Software
Maintenance, IEEE Computer Society, 252.

Briand, L., Labiche, Y., O'Sullivan, L. & Sowka, M. (2006). Automated impact analysis of UML
models. Journal of Systems and Software, 79, 339-352

Chen, Y. (2002). Specification-based Regression Testing Measurement with Risk Analysis.
School of Graduate Studies and Research, Carleton University, PhD Thesis.

Chen, Y., & Probert, R. (November 2003). A Risk-based Regression Test Selection Strategy. In
Proceeding of the 14th IEEE International Symposium on Software Reliability Engineering, 305-
306.

Chen, Y., Probert, R. L., & Sims, D. P. (2002). Specification-based regression test selection with
risk analysis. In Proceedings of the 2002 conference of the Centre for Advanced Studies on
Collaborative research, IBM Press, 1.

Chen, Y., Probert, R. L., & Ural, H. (2007). Regression test suite reduction using extended
dependence analysis. In Proceedings of Fourth international workshop on Software quality
assurance: in conjunction with the 6th ESEC/FSE joint meeting, ACM, 62-69.

Chen, Y., Probert, R. L., & Ural, H. (2009). Regression test suite reduction based on SDL
models of system requirements. Journal of Software Maintenance and Evolution: Research and
Practice , 21 (6), 379-405.

 43	

Chen,Y., Probert,R.L., & Ural, H. (2007). Regression test suite reduction using extended
dependence analysis. In Fourth international workshop on Software quality assurance: in
conjunction with the 6th ESEC/FSE joint meeting (SOQUA '07). ACM, New York, NY, USA,
62-69.

Chittimalli, P. K., & Harrold, M. J. (2008). Regression test selection on system requirements. In
Proceedings of the 1st India software engineering conference, ACM Computer Society Press,
ISBN: 0818673842., 87-96.

Deng, D., Sheu, P.-Y., & Wang, T. (2004). Model-based testing and maintenance. In
Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering,
pp. 278-285.

ECL (Last Accessed April, 2011), Epsilon Comparison Language, Available at:
http://www.eclipse.org/gmt/epsilon/doc/ecl/

EMFCompare, (Last Accessed: April 2011), Model Comparsion Tool, Available at:
http://www.eclipse.org/emf/compare/

Engstroem, E., Runeson, P., & Skoglund, M. (2010). A systematic review on regression test
selection techniques. Information and Software Technology , 52 (1), 14-30.

Fahad, M., & Nadeem, A. (2008). A Survey of UML Based Regression Testing. In Intelligent
Information Processing, IV, 200-210.

Farooq, Q. u.-a. (2010). A Model Driven Approach to Test Evolving Business Process based
Systems. In Proceedings of Doctoral Symposium in MODELS 2010, 19-24.

Farooq, Q. u.-a., Iqbal, M.Z.Z., Malik, Z.I., & Riebisch, M. (2010). A Model-Based Regression
Testing Approach for Evolving Software Systems with Flexible Tool Support. In Proceedings of
the 2010 17th IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems, 41-49.

Farooq, Q.-u.-a., Iqbal, M. Z.Z., Malik, Z. I., & Nadeem, A. (2007). An approach for selective
state machine based regression testing. In Proceedings of the 3rd international workshop on
Advances in model-based testing, ACM, 44-52.

Farooq, Q.-u.-a. (November 2007). An Approach for Selective State-machine based Regression
Testing. Mohammad Ali Jinnah University, Islamabad, Pakistan, Available at:
http://www.theoinf.tu-ilmenau.de/~qurat/publications.htm. Masters Thesis.

Filho, R.S.S., Budnik, C.J., Hasling, W.M., McKenna, M., & Subramanyan, R.(2010).
Supporting Concern-Based Regression Testing and Prioritization in a Model-Driven
Environment. IEEE 34th Annual Computer Software and Applications Conference Workshops
(COMPSACW), 323-328.

 44	

Gerth, C., Küster, J.M., Luckey, M., & Engels, G.(2010). Precise detection of conflicting
change operations using process model terms. In Proceedings of the 13th international
conference on Model driven engineering languages and systems: Part II (MODELS'10),
Springer-Verlag, Berlin, Heidelberg, 93-107.

Gorthi, R. P., Pasala, A., Chanduka, K. K., & Leong, B. (2008). Specification-Based Approach
to Select Regression Test Suite to Validate Changed Software. In Proceedings of the 2008 15th
Asia-Pacific Software Engineering Conference,0, IEEE Computer Society, 153-160.

Gotel, O., Finkelstein, A. (1995). Contribution structures Requirements artifacts. , Proceedings
of the Second IEEE International Symposium on Requirements Engineering, 100- 107.

Rothermel, G, & Harrold, M.J. (1994). A framework for evaluating regression test selection
techniques. In Proceedings of the 16th international conference on Software engineering (ICSE
'94). IEEE Computer Society Press, Los Alamitos, CA, USA, 201-210.

Kabaili, H., Keller, R.K., & Lustman, F. (2001). A Change Impact Model Encompassing Ripple
Effect and Regression Testing. In Proceedings of the Fifth International Workshop on
Quantitative Approaches in Object-Oriented Software Engineering, Budapest, Hungary, 25-33

Kolovos,D.S., Paige,R.F., & Polack, F.A.C. (2006). Model comparison: a foundation for model
composition and model transformation testing. In Proceedings of the 2006 international
workshop on Global integrated model management (GaMMa '06), ACM, New York, NY, USA,
13-20.

Laski, J., & Szermer, W.(1992). Identification of program modifications and its applications in
software maintenance, In Proceedings of Conference on Software Maintenance, 282-290.

Leung, H.K.N., & White, L. (1989). Insights into regression testing-software testing. In
Proceedings of Conference on Software Maintenance, 60-69.

Mader,P., Gotel,O., & Philippow,I. (2008). Enabling Automated Traceability Maintenance by
Recognizing Development Activities Applied to Models. In Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE '08). IEEE Computer
Society, Washington, DC, USA, 49-58

Mäder,P., Gotel, O., & Philippow, I. (2009). Enabling Automated Traceability Maintenance
through the Upkeep of Traceability Relations. In Proceedings of the 5th European Conference
on Model Driven Architecture - Foundations and Applications (ECMDA-FA '09), Springer-
Verlag, Berlin, Heidelberg, 174-189.

Mahdian, A., Andrews, A.A., & Pilskalns, O.J. (2009). Regression testing with UML software
designs: A survey. Journal of Software Maintenance and Evolution. 21(4), 253-286.

Mansour, N., & Takkoush, H. (2007). UML based regression testing for OO software. In
Proceedings of the 11th IASTED International Conference on Software Engineering and
Applications (SEA '07), Jeffrey E. Smith (Ed.). ACTA Press, Anaheim, CA, USA, 96-101

 45	

Mansour, N., Takkoush, H. and Nehme, A. (2011), UML-based regression testing for OO
software. Journal of Software Maintenance and Evolution: Research and Practice, 23: 51–68.

MDA (Last accessed: April 2011), Model Driven Architecture,Available at: http://www.omg.org/mda/

Muccini, H. (2007). Using Model Differencing for Architecture-level Regression Testing. In
Proceedings of the 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO '07), IEEE Computer Society, Washington, DC, USA, 59-66.

Muccini, H., Dias, M., & Richardson, J.D. (2006). Software architecture-based regression
testing. Journal of Systems and Software, 79 (10), 1379-1396.

Muccini, H., Dias, M., &Richardson, D.J. (2005). Reasoning about software architecture-based
regression testing through a case study. In Proceedings of the 29th annual international
conference on Computer software and applications conference (COMPSAC-W'05), IEEE
Computer Society, Washington, DC, USA, 189-195.

Muccini, H., Dias,M.S., & Richardson,D.J.(2005). Towards software architecture-based
regression testing. SIGSOFT Software Engineering Notes, 30(4), 1-7.

Naslavsky, L., & Richardson, D.J. (2007). Using traceability to support model-based regression
testing. In Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering (ASE '07). ACM, New York, NY, USA, 567-570.

Naslavsky, L., Ziv, H., Richardson, D.J. (2009). A model-based regression test selection
technique. IEEE International Conference on Software Maintenance ICSM , 515-518.

Naslavsky,L., Ziv, H., & Richardson, D.J. (2010). MbSRT2: Model-Based Selective Regression
Testing with Traceability. In Proceedings of the 2010 Third International Conference on
Software Testing, Verification and Validation (ICST '10). IEEE Computer Society, Washington,
DC, USA, 89-98.

Orso, A., Apiwattanapong, T., & Harrold, M. J. (2003). Leveraging Field Data for Impact
Analysis and Regression Testing. In Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE'03). Helsinki, Finland, 128-137.

Pickin,S., Jard, C., Heuillard,T., Jézéquel, J.M., & Desfray, P. (2001). A UML-integrated Test
Description Language for Component Testing. In Workshop of the pUML-Group held together
with the «UML»2001 on Practical UML-Based Rigorous Development Methods - Countering or
Integrating the eXtremists, 208-223.

Pilskalns, O., Uyan, G., Andrews, A. (2006). Regression Testing UML Designs. 22nd IEEE
International Conference on Software Maintenance ICSM '06, 254-264.

 46	

Pretschner, A., Philipps, L.J. (2001). Model Based Testing in Evolutionary Software
Development. In Proceedings of the 12th International Workshop on Rapid System Prototyping
(RSP '01), IEEE Computer Society, Washington, DC, USA, 155.

Stallbaum,H., Metzger,A., & Pohl, K. (2008). An automated technique for risk-based test case
generation and prioritization. In Proceedings of the 3rd international workshop on Automation of
software test (AST '08). ACM, New York, NY, USA, 67-70.

Traon, Y.L., Jeron, T., Jezequel, J.M., Morel, P.(2000). Efficient object-oriented integration and
regression testing, IEEE Transactions on Reliability, 49(1), 12-25.

U2TP1.0, (July 2005), UML2 Testing Profile, Availeble at: http://www.omg.org/spec/UTP/

UMLEclipse (Last accessed: April 2011), BPMN meta-model implementation for eclipse,Available at:
http://www.eclipse.org/modeling/mdt/?project=uml2

Visser, E., Warmer, J., Deursen, A. V. (2007). Model-driven software evolution: A research
agenda. In Proceedings of International workshop on Model-driven Sofware Evolution held with
ECSMR 2007 .

Wu, Y., &Offutt, J. (2003). Maintaining Evolving Component-Based Software with UML. In
Proceedings of the Seventh European Conference on Software Maintenance and Reengineering
(CSMR '03), IEEE Computer Society, Washington, DC, USA, 133.

Xing, Z., & Stroulia, E. (2004). Understanding Class Evolution in Object-Oriented Software. In
Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC'04),
34-43

Zhang, J. (2004). Supporting software evolution through model-driven program transformation.
In Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications (OOPSLA '04), ACM, New York, NY, USA, 310-311.

IX. ADDITIONAL READING SECTION

Recommended Readings on MBRT Techniques before year 2000

Harrold, M. J. (1998). Architecture-Based Regression Testing of Evolving Systems. Proceedings
of the International Workshop on the Role of Software Architecture in Testing and Analysis
(ROSATEA 1998) , 73-77.

Hsia, P., Li, X., Kung, D. C., Hsu, C.-T., Li, L., Toyoshima, Y.(1997). A technique for the
selective revalidation of OO software. Journal of Software Maintenance , 9, 217-233.

Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., Kim, Y.-S., et al. (1995). Developing an
object-oriented software testing and maintenance environment. Commun. ACM , 38 (10), 75-87.

 47	

Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., & Chen, C. (1994). Change impact
identification in object oriented software maintenance. In Proceedings of the International
Conference on Software Maintenance, 202-211.

Onoma, A., Tsai, W., Poonawala, M., & Suganuma, H. (1998). Regression testing in an
industrial environment. Communications of ACM , 41 (5), 81-86.

Winter, M. (1998). Managing Object-Oriented Integration and Regression Testing (without
becoming drowned). In Eurostar (Ed.).

Studies Excluded from the Analysis of MBRT Approaches

Biswas, S., Mall, R., Satpathy, M., & Sukumaran, S. (2009). A model-based regression test
selection approach for embedded applications. SIGSOFT Software Engineering Notes , 34, 1-9

Lindvall, M., & Runesson, M. (1998). The visibility of maintenance in object models: an
empirical study. In Proceedings of the International Conference on Software Maintenance, 54-
62.

M., A. S., & Wibowo, B. (2003). Regression Test Selection Based on Version Changes of
Components. In Proceedings of the Tenth Asia-Pacific Software Engineering Conference
Software Engineering Conference , IEEE Computer Society, 78.

Memon, A., Nagarajan, A., & Xie, Q. (2005). Automating regression testing for evolving GUI
software: Research Articles. Journal of Software Maintenance and Evolution, 17 (1), 27-64.

Memon, A.M., Banerjee, I., Hashmi, & N., Nagarajan, A. (2003). DART: A Framework for
Regression Testing "Nightly/daily Builds" of GUI Applications. In Proceedings of 19th IEEE
International Conference on Software Maintenance, 410-419

Mayrhauser, A. v., & Olender, K. (1993). Efficient testing of software modifications. In
Proceedings of the IEEE International Test Conference on Designing, Testing, and Diagnostics,
859-864.

Sajeev, A., & Wibowo, B. (2003). UML Modeling for Regression Testing of Component Based
Systems. Electronic Notes in Theoretical Computer Science , 82 (6), 190-198

X. KEY TERMS & DEFINITIONS (SUBHEAD 1 STYLE)

Baseline and Delta Versions: A baseline is a stable and tested version of the system. The test
suite which was used to test the baseline is often referred to as baseline test suite. A delta version

 48	

of the system is one in which new changes are introduced. It has to be tested using the regression
testing approaches.

Regression Testing: Regression testing is a testing activity which is performed after a change is
introduced into the system. The aim of the regression testing is to reveal the defects introduced after the
changes. The changes introduced in the system are the result of the software evolution. Changes are often
identified by comparing the baseline and delta versions of the system. After the change identification, the
test cases corresponding to the changes are identified from the baseline test suite to retest the system.

Model-based and Model-driven Testing:
Model-based testing uses analysis and design models of a system as input to identify the changes
between different versions of a system. Model-driven testing is a type of Model-based testing
which uses MDA principles such as Platform independent models and platform specific models
as input and model transformations for test generation. Additionally Model-driven regression
testing approaches should also use platform independent test suites and should support the
concept of test modelling.

MBRT: Model-based Regression Testing (MBRT) is a type of regression testing that uses analysis and
design models of baseline and delta versions of the software system for the change identification. The
analysis and design models of the baseline and delta versions are compared to identify the changes
between different versions of the systems. The changes are used later to select the regression test cases.

Traceability: Traceability is ability to specify and preserve the relationship between two entities
of interest. Traceability is often categorized as implicit and explicit traceability. Implicit
traceability is the traceability which exists between two model elements but is not made explicit.
Explicit traceability is the traceability which is discovered and stored/persisted for further reuse.

Change Impact Analysis: Change impact analysis is the process to identify the impact of change in one
artefact on the other related artefacts. The impact analysis is performed by considering the various
dependencies that exists between artefacts in a system.

Abstract test cases and concrete test cases: Abstract test cases are often extracted from the specification
of the system. They cannot be executed often due to the fact that they are derived from a representation
which is at a higher level of abstraction then the actual system code. They need to be translated to the
executable from (concrete test cases) for execution on the system under test.

XI. APPENDIX A

Table 11: The list of selected studies for the analysis

Selected Studies Corresponding Research Papers

Study-1: (Gorthi et al., 2008)

 (Gorthi R. P., Pasala, Chanduka, & Leong,
2008)

Study-2: (Chen et al., (a), 2002,2003)

 (Chen, Probert, & Sims, 2002), (Chen Y. ,
2002)
 (Chen & Probert, 2003)

Study-3: (Silva et al., 2010) (Silva, Budnik, Hasling, McKenna, &
Subramanyan, 2010)

 49	

i http://www-01.ibm.com/software/awdtools/rup/#
ii http://scrummethodology.com/
iii Although this paper consider testing of UML designs itself not the source code but we are not considering any
particular representation of SUT. It can be either source code or executable model; hence, we are including this
study in our analysis as well

Study-4: (Mansour et al., 2007, 2011)

(Mansour & Takkoush, 2007)
(Mansour, Takkoush, & Nehme, 2011)

Study-5: (Briand et al., 2002, 2003, 2009)

 (Briand, Labiche, & He, 2009)
(Briand L. , 2003)
 (Briand, Labiche, & Soccar, 2002)

Study-6: (Deng et al., 2004) (Deng, Sheu, & Wang, 2004)
Study-7: (Chen et al., (b), 2007, 2009)

 (Chen, Probert, & Ural, 2007), (Chen,
Probert, & Ural, 2009)

Study-8: (Korel et al., 2002) (Korel, Tahat, & Vaysburg, 2002)

Study-9: (Beydeda et al., 2000) (Beydeda & Gruhn, 2000)

Study-10: (Farooq et al., 2007, 2010) (Farooq, Q., 2007)
(Farooq, Z., Malik, & Nadeem, 2007),
(Farooq, Iqbal, Malik, & Riebisch, 2010)
Tool Source code: (http://www.theoinf.tu-
ilmenau.de/~qurat/projects.htm)

Study-11: (Ali et al., 2007) (Ali, Nadeem, Iqbal, & Usman, 2007)

Study-12: (Pilskalns et al., 2006) (Pilskalns, Uyan, & Andrews, 2006)iii

Study-13: (Naslavsky et al., 2007, 2009,
2010)

(Naslavsky, Ziv, & Richardson, 2010)
(Naslavsky, Ziv, & Richardson, 2009)
(Naslavsky & Richardson, 2007)

Study-14: (Jeron et al., 1999, 2000) (Traon, Jeron, Jezequel, & Morel, 2000),
(Jaeron, Jaezaequel, Traon, & Morel, 1999)

Study-15: (Muccini et al., 2005, 2006,
2007)

(Muccini(b), Dias, & Richardson, 2005)
(Muccini(a), Dias, & Richardson, 2005)
, (Muccini, Dias, & Richardson, 2006)
 (Muccini, 2007)

Study-16: (Wu & Offet, 2003) (Wu & Offutt, 2003)

Study17: (Martins et al., 2005) (Martins & Vieira, 2005)

