Problem-Solution Mapping for Forward and Reengineering
on Architectural Level

Matthias Riebisch, Stephan Bode, and Robert Brcina
Iimenau University of Technology
P.O. Box 100565
98684 limenau, Germany
{matthias.riebisch|stephan.bode|robert.brcina}@tu-ilmenau.de

ABSTRACT

Software architectures play a key role for the development
and evolution of software systems because they have to en-
able their quality properties such as scalability, flexibility,
and security. Software architectural decisions represent a
transition from problem space with quality goals and re-
quirements on one side to solution space with technical so-
lutions on the other side. Technical solutions are reusable el-
ements for the work of the architect as for example patterns,
styles, frameworks and building blocks. For long-term evo-
lution of the systems, an explicit mapping between goals and
solutions is helpful for expressing design knowledge and fun-
damental decisions. Such a mapping has to bridge between
the fields of requirements engineering, software architectural
design, and software quality thus enabling reuse. In this pa-
per the Goal Solution Scheme is discussed, which maps qual-
ity goals and goal refinements to architectural principles and
solutions. The paper extends the approach from the previ-
ously discussed forward engineering to re-engineering activ-
ities thus covering evolutionary development processes. The
evaluation of the approach has been performed in several
case studies and projects including a large industrial one.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering; K.6.3 [Management of Computing and
Information Systems]: Software Management—software
development, software maintenance

General Terms

Design, Documentation

Keywords

Software architecture, software evolution, reengineering, qual-
ity goals, decision support, traceability, reuse

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

IWPSE-EVOL' 11, September 5-6, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0848-9/11/09 ...$10.00.

1. INTRODUCTION

Today’s software systems have to fulfill highly complex re-
quirements. They have to enable a long lifetime to business
processes and products, while frequent changes of require-
ments and the environment have to be performed—for exam-
ple regarding business processes, organizational structures,
or technical platform. There is a strong need for long-term
evolution of these software systems, because an end of sup-
port or a replacement by a newly developed system would
cause extreme risks and high costs. For all kinds of software
systems, quality requirements, such as flexibility, scalability,
usability, and security, bear even more risk than functional
requirements, because they can hardly be implemented after
making the major design decisions.

Software architectures play an important role for such
complex software systems. They reduce the development
risks by enabling early assessments of the fundamental de-
cisions on technical solutions, especially for those regarding
the quality properties of a software system. Software ar-
chitectures help to manage the systems’ complexity, for ex-
ample, with organizational support for the development pro-
cess, as well as with a representation of the design knowledge
and of the most crucial decisions. They represent the tran-
sition from goals and requirements in the so-called problem
space to technical implementations in the so-called solution
space.

For long-term evolution of systems, software architectures
constitute a critical factor. They have to enable evolution
because they safeguard basic decisions as well as they sup-
port changes in a well-organized way. On the other hand,
during the sequence of changes a software architecture has
to be protected from the so-called architectural decay [35].

Many tasks for the implementation of changes during evo-
lution are related to dependency relations among the differ-
ent artifacts of the problem space and the solution space, for
example, between quality goals and functional or technical
solutions. The dependencies are so important because the
evolution of a software system is performed along the path
of the dependencies. If goals or requirements are changed,
dependent features, components, interfaces etc. have to be
changed as well. All decisions during forward engineer-
ing and reengineering have to consider these dependencies.
Unfortunately, existing approaches do not sufficiently sup-
port the representation of explicit dependency relationships.
However, there is a need especially for an explicit represen-
tation of the dependencies between quality goals and archi-
tectural solutions, because it is a prerequisite to compre-
hension, evaluation, and utilization by tools, similarly to

other model-based approaches. It forms a basis for impact
and coverage analyses to predict the effort for change imple-
mentation. This information provides a great support for
architectural decision-making both for forward and reverse
engineering, thus giving assistance for evolution. Further-
more, it represents architectural knowledge on properties of
architectural solutions.

This paper presents a concept and solution for an explicit
representation of dependencies between quality goals or re-
quirements and a catalogue of architectural solutions by a
mapping between them. This mapping shall support long-
term evolution of the systems by expressing design knowl-
edge and fundamental decisions explicitly, and therefore en-
able its reuse. The mapping is implemented as a layered
structure of a catalogue, which we call Goal Solution Scheme
(GSS). It has been introduced and discussed with a forward
engineering perspective and different quality goals in earlier
works [4, 7, 36]. In the paper we extend the scheme by a
reengineering perspective to widen its application for evolu-
tion. In this way the GSS supports an integration of forward
and reverse engineering activities. We explain the general
structure and the utilization of the Goal Solution Scheme
together with its establishment and evaluation. This is dis-
cussed with case study examples for architectural refactor-
ing. The approach has been evaluated in a case study within
a large industrial project.

The rest of the paper is organized as follows: Section 2
discusses works related to the mapping of the GSS and the
explicit representation of dependencies. Section 4 describes
the general structure of the Goal Solution Scheme as a con-
cept for the mapping between problem and solution space.
Sections 5 and 6 explain the utilization of the scheme for
goal-oriented architectural design and reengineering. Sec-
tion 7 discusses the establishment and evaluation of the GSS,
and Section 8 deals with tool support. Finally, Section 9
concludes the paper and shows directions for future work.

2. RELATED WORKS
2.1 Architectural design methods

Several architectural methods emphasize the analysis of
functional and non-functional requirements of the problem
space and the design considering them in the solution space.
Architectural analysis is especially well-supported by the
Global Analysis method of Hofmeister et al. [20]. The pro-
posed means influence factors and issue cards allow a map-
ping of requirements to design concepts. For the synthesis
of the solution concepts Bosch’s Quality Attribute-oriented
Software ARchitecture (QASAR) method [8] and the Attri-
bute-Driven Design (ADD) method [2] can be applied. ADD
and QASAR especially deal with the realization of quality
requirements through architectural transformations and ar-
chitectural tactics, respectively. None of these works, how-
ever, enforce an explicit mapping between the requirements
and solutions via dependency relations.

2.2 Goal-oriented requirements engineering

Goal-oriented requirements engineering (GORE) approa-
ches, such as the i* framework [42] and the NFR framework
[10], specify so-called softgoals and their refinement in a goal
model called Strategic Rationale (SR) model or Softgoal In-
terdependency Graph (SIG), respectively. The goal models
have been standardized in the User Requirements Notation

(URN) [23]. These approaches facilitate a goal-oriented re-
finement and assignment towards architectural design. They
explicitly model dependencies with different types. How-
ever, the approaches have a focus on requirements engineer-
ing and do not sufficiently support architectural principles
and technical constraints. Bridging the gap between the two
research areas requirements engineering and architectural
design is still a critical issue [17] especially when quality
requirements change.

2.3 Mapping between aspects of problem
space and solution space

For a mapping between different aspects—in a similar way
to the goal models—there are further approaches. For exam-
ple, quality models [21, 22, 12, 41, 28] map quality goals to
metrics, activities, or strategies to support software analysis,
reengineering, design, and maintenance. The Failure Mode
Effect Analysis [40], for example, maps causes to effects.
Regarding a mapping based on impact analysis of patterns
as architectural solutions on software quality, Galster et al.
[18] developed a selection method, which is similar to our
previous work [6]. Nevertheless, a comprehensive mapping
of artifacts from the problem space to the solution space by
explicit dependencies is not supported.

2.4 Traceability

The concept of traceability is especially useful for software
maintenance and evolution because it relates the various
software artifacts during different development stages via
traceability links as explicit dependencies. Thus, it helps,
for example, to improve understandability of the design, to
trace design decisions, or to perform impact analysis of soft-
ware changes. For requirements traceability there are al-
ready important works, e.g., [19, 34, 27, 32], which enable
to trace back the origin of requirements and to document
changes made to them. Further approaches consider link
establishment between requirements and test cases, for ex-
ample, [14, 30].

However, for design traceability—the traceability between
design artifacts and from and to other artifacts—there are
fewer and no comprehensive concepts. Cleland-Huang et
al. [11] present a goal-centric traceability (GCT) approach
to establish traceability links between functional or non-
functional goals and UML class diagrams based on a prob-
abilistic network model. Spanoudakis et al. [38, 39] use a
rule-based approach for traceability links between require-
ments, use cases, and object models. Jirapanthong et al. [24]
extend this approach by traceability links for feature mod-
els and UML diagrams. Filho et al. [15] relate i* models to
UML models.

2.5 Design-quality assessment and improve-
ment

We can classify the approaches for architectural assess-
ments into two groups, the expert-driven and the metrics-
based ones. Many well established approaches from the first
group are based on scenarios, for example, ATAM [25], QAW
[1] and ALMA [3]. They involve stakeholders for the estab-
lishment of the scenarios as the most success-critical step of
the assessment. Then, such an assessment evaluates if the
quality goals are met. The goal orientation of an assess-
ment can be supported by our approach as discussed later
in Section 5.2.

Architectural assessments from the second group apply
metrics, for example, for an evaluation after reengineering
steps. Metrics constitute a major means for quantitative
evaluation of software quality properties. We again divide
the relevant works into two groups. First, there are sev-
eral works on the definition and selection of metrics based
on goal refinement, for example, the mentioned SIG [10] and
the Factor Criteria Metrics (FCM) approach [29]. These ap-
proaches can be used to develop metrics for the evaluation
of software quality properties. Unfortunately, they provide
low support for the interpretation of the evaluation results
regarding an objective and reproducible detection of defi-
ciencies. Furthermore, these approaches focus on the code
level rather than on design and are lacking countermeasures
for the removal of the detected deficiencies. Second, metrics
can be used for the detection of design flaws as, for example,
within the detection strategies of Lanza and Marinescu [26].
They support the derivation of metrics based on symptoms
for design flaws, and the establishment of rules for interpre-
tation. Unfortunately, the level of quality goal refinement
for a reasonable mapping between quality goals and design
flaws cannot be influenced, and no support for improvement
is given by establishing a reference between the detected
flaws and activities for their removal.

3. BRIEF OVERVIEW OVER THE CASE
STUDY

The approach presented in this paper is explained with
an example from a large industrial software project [9]. The
project is here used partly as a case study and for illus-
tration purposes. The project at a large German company
lasts more than five years now and is run by several per-
sons. The project’s domain is enterprise information systems
and it develops and maintains a software system called Data
Management System. This system is used by customers for
the management of security-related business and application
data. The system has a long-term perspective and is ex-
tended regularly by new features because of new customer
requirements. Consequently, the most important goals in
this project are the regular delivery of new versions and the
evolution of the system. Accordingly, evolvability is next to
others the highest ranked quality goal of the project. In the
project, the application of the approach led to a significant
higher efficiency of the determination of flaws and of refac-
torings to repair them. Unfortunately, we have to withhold
further project details due to the competitive situation in
the market. However, we present extracts of the case study
results in the following chapters.

4. GOAL SOLUTION SCHEME

The Goal Solution Scheme (GSS) represents a catalogue
of architectural solutions. The GSS structures them within
a mapping between elements of the problem space and those
of the solution space during evolutionary software develop-
ment. Dependencies for the mapping are represented in an
explicit way. The relationships between the elements of the
scheme form a graph with a structure similar to a tree. In
the ideal case, the relationships between elements of different
layers would be 1 to 1 relations; however in real situations
the effects of scattering and tangling cannot be prevented
completely. Because of the different concepts of problem
space and solution space there is a conceptual gap, which

leads to severe problems for the establishment and the main-
tenance of the relationships between both. To reduce this
gap, two additional layers are introduced between the goals
of the problem space and the solution instruments of the
solution space (Figure 1).

The crossing arrows in the figure indicate the existence of
many relationships between elements of the scheme. Each
relationship expresses a dependency, such as a refinement
between goals: a change of one element requires changes of
its related elements. The relations between the layers fur-
ther represent a positive or negative impact of elements from
the solution space on elements of the problem space. The
relationship’s weight expresses this impact and is utilized
during decision-making. Furthermore, the dependencies can
be represented as traceability links established during de-
sign. These traceability links can carry design decisions.

i ! Quality Goals !

] '7_'&'_'_'!'\7 ___\'_'_' Problem
I subgoas e
NI INT

: Solution Principles I)
______ e o ——pmm e — Solution
FIAXNINN Space
"V Solution Insruments |

Figure 1: Layers of the Goal Solution Scheme

Layer I is part of the problem space and is named Quality
Goals. Since it is usually harder to realize the quality goals
for a software system than its functionality, these quality
goals should be modeled explicitly, as also proposed by the
GORE approaches. Layer I contains the top-level quality
goals of a project, such as evolvability, performance, reliabil-
ity, security, and usability.

Layer II is called Subgoals and still represents the prob-
lem space. This layer was introduced to reduce the men-
tioned gap between problem and solution space by goal re-
finement. Consequently, in layer II the refined quality goals
are represented, such as confidentiality, integrity, and avail-
ability for the top-level goal security as well as time behavior
and resource utilization for the top-level goal performance.

The relationships of the transition between layers I and II
represent the mapping of top-level quality goals to subgoals,
similarly to a quality model. Figure 2 shows an example of
layer I and II with quality goals from the case study. The
top-level quality goals are refined into subgoals, which is
modeled using URN. The refinement is based on existing
quality models, such as ISO 9126. Priorities according to
customer preferences can later be assigned to the top-level
quality goals and the refined goals. Then layer II can be
used for balancing goals and even for conflict resolution.

Security

Performance

Understand-
ability

Figure 2: Case study example for transition I-II

Layer III and IV represent the solution space. Layer III
Solution Principles has been introduced with the intention to
reduce the gap to the problem space. It is much easier to
identify the impact on quality goals for principles and then
for solutions than directly for solutions, because most prin-
ciples have been developed with a clear intention regard-
ing quality goals. Consequently, this layer contains solu-
tion principles with a known impact on quality properties—
according to the meaning of the term principle as “A rule
used to choose among solutions to a problem. [...] A funda-
mental essence, particularly one producing a given quality”!.
Solution principles exist in various research areas. Typically,
they can be found in textbooks of an area. Examples for so-
lution principles on software engineering are low structural
complexity, loose coupling, and separation of concerns; ex-

"http://en.wiktionary.org/wiki/principle

amples regarding security are tamperproofness and verifia-
bility. For reengineering purposes, a violation of principles
is incorporated as elements to layer 111, such as design flaws
and so-called Bad Smells [16]. These elements are incorpo-
rated as a package together with metrics and interpretation
rules for the detection of each of them (as shown in Fig-
ure 4). Furthermore, heuristics for problem solution can be
arranged on layer III.

The transition between problem space and solution space
is manifested in the transition from layer II to III because
it represents the mapping of quality goals or subgoals to so-
lution principles. The relationships represent the impact.
Since this transition belongs to the core of every design
methodology, corresponding concepts can be found, for ex-
ample, in ADD as the tactics. The QASAR method men-
tions the need to solve a non-functional problem by a func-
tional (technical) solution but does not provide a concept
for it. The introduction of layer III constitutes a major con-
tribution of the GSS because principles play an important
role both for forward and reverse engineering, as discussed in
the next two sections. Regarding prior works, the principles
layer constitutes a significant enhancement in comparison to
the GORE approaches. Figure 3 shows a cutout of the case
study example for the transition from layer II to III.

Softgoal) & TR 2llation

Figure 3: Case study example for transition IT-III

Layer IV covers solution instruments of two different cat-
egories with their relation to solution principles. Firstly,
on this layer architectural solutions for forward engineering
are provided. Patterns, styles, heuristics, frameworks, and
components are examples for elements out of the architect’s
stock of solutions, sometimes called toolbox. Secondly, this
layer provides reengineering activities for the removal of de-
sign flaws, such as architectural refactoring patterns. To
cover both categories, the name Solution Instruments was
chosen for this layer. Each of the instruments of both cat-
egories is further described by (a) preconditions for appli-
cability, and (b) a set of impact values regarding solution
principles and quality goals.

A precondition is “A requirement which must be satisfied
before taking a course of action.” Such preconditions or re-

*http://en.wiktionary.org/wiki/precondition

http://en.wiktionary.org/wiki/principle
http://en.wiktionary.org/wiki/precondition

quirements for the applicability of solution instruments (a)
have to match, for example, technical or organizational con-
straints of the project, which allow or disallow the applica-
tion of a solution instrument. For example, in the case study
we can hardly apply a C++ framework because the system
is programmed in Java. Further, constraints could be de-
pendencies between certain development tools and methods.
The preconditions are evaluated for development support as
explained in Sections 5 and 6.

The impact values of the solution instruments (b), are rep-
resented by the relationships of the transition III-IV. These
relationships are used for a classification of solution instru-
ments regarding their support for quality goals and subgoals,
as mentioned in Section 5.3. Relationships and impact val-
ues are determined as discussed in an earlier work [6].

Figure 4 shows an example of transition III-IV from the
case study. In the figure the solution principles are refined
with the help of typical design flaws that would hurt the
principles. For example, for a good separation of concerns
there should be low feature tangling and low feature scatter-
ing. This can be measured by the metrics feature tangling,
feature scattering, isolated features, and isolated entities.
The measured values for the metrics have to be interpreted
by rules, which determine if the solution principle is hurt
(cf. Section 6.1). The principles of layer III are related to
solution instruments, in this case reengineering activities,
which help to improve the realization of the principles. This
positive influence is expressed with a specific impact value
and modeled with an impact relation of the type help. Ex-
amples for instruments that positively influence low feature
tangling are to restructure components by decomposition [31]
or to restructure features by merging [33].

5. APPLICATION OF THE SCHEME FOR
GOAL-ORIENTED ARCHITECTURAL
DESIGN

For the application of the Goal Solution Scheme during
architectural design we assume a general development pro-
cedure with activities for requirements engineering, archi-
tectural analysis, architectural synthesis, and architectural
evaluation. This procedure is extended by the GSS with
goal orientation to decisions of different types.

5.1 Refinement and prioritization of quality
goalsregarding architecture

For competing quality goals, compromises or even scoping
can hardly be performed at the layer of goals. The identi-
fication of conflicts and their resolution is much easier at
the layer of subgoals or solution principles because trade-off
effects at these layers facilitate a clear prioritization. Start-
ing from the priorities of the goals, the impact values of the
relationships between quality goals and subgoals or solution
principles in the GSS are evaluated to calculate the weights.
For example, if the goal evolvability got a higher priority
than performance, the principle modularity and the design
patterns Facade and Abstract Factory get a higher weight
than the performance-related solution Cache. During this
step the GSS is applied in a way very similar to the goal
models of the GORE approaches mentioned in Section 2.
As an extension to the existing approaches, the resulting
relationships between quality goals and subgoals are the ba-

sis for the ranking and selection of solution principles and
solution instruments as explained in Section 5.3.

5.2 Guidancefor architectural design and ar-
chitecture assessment

The GSS can support both architectural design and archi-
tecture assessment to improve their goal orientation. Due to
the dominant part of human activity in both development
steps, motivation on quality is important here. Goal ori-
entation and a mapping of the goals to means of guidance
for solution development constitutes an important contri-
bution to a high-quality architecture. The GSS provides
weights for quality goals and subgoals. Moreover, solution
principles can be proposed to architects as a guidance during
architectural decision-making. The proposed solution prin-
ciples can guide decisions similarly to rules and metaphors.
For example, consider the quality goal security. In secu-
rity engineering one common solution principle is to build
a manimal trusted computing base. Following this principle
guides the developer to design a system that follows the ver-
ifiability principle and therefore supports the integrity and
confidentiality of the data to be secured (cf. Figure 3, see
also [4]).

For architecture assessments, quality goals have to be ap-
plied as well. They have to influence the criteria and the pro-
cedure of assessing a software architecture. Of course, the
GSS can be applied here during goal refinement. Further-
more, the mapping to solution principles can be applied as
transformation of the goals into the solution space. Scenario-
based assessment approaches, such as ATAM or ALMA, re-
quire for quality-oriented scenarios as a success-critical in-
put. The GSS can help the architect during the establish-
ment of scenarios. With solution principles—together with
design flaws as their counterparts—in mind, it is much easier
for the architect to elaborate scenarios with a strong orien-
tation on the relevant goals. For example, for the quality
goal modifiability a loose coupling is an important design
principle to follow. A suitable scenario for ATAM or ALMA
established with this design principle in mind, could be a
change scenario which determines the impact of a changed
input field on the software system.

Furthermore, similarly to Section 5.1 and Section 6, a
goal-oriented procedure can be applied to establish metrics,
which are used for the evaluation of the conformity to de-
sign principles and the absence of design flaws from layer 111
of the GSS. For example, the compliance to the previously
mentioned solution principle loose coupling can be evalu-
ated with the metrics fan-in and fan-out for a component.
Accordingly this indicates the degree of modifiability of the
component. A design flaw hampering modifiability through
a tighter coupling between classes would be, for example, a
deep inheritance hierarchy, which could be determined with
the metric depth of inheritance tree (cf. Figures 3 and 4).

5.3 Decision on solution instruments

The architectural decision-making—both for the develop-
ment of the first, initial architectural design, or for the later
iterations, or for reengineering—is performed in two parts,
as discussed in earlier works [37, 36]. Firstly, a preselec-
tion of the solution instruments is carried out to identify
the applicable ones. For this purpose, the constraints of the
design task are compared to the preconditions of the solu-
tion instruments of layer IV. Only solution instruments with

\ Layer IlI: Solution Principles

No cyclic
dependencies
between classes

or components
Metrics&Rules:

I
/ Low structural /
complexity And

Number of classes or
components in cycles

Restructuring of
classes by splitting

Restructuring of
classes by demotion

Restructuring of

Low feature
tangling
Metrics&Rules:
Feature Tangling,
Isolated Features,
Isolated Entities

components by
decomposition

Restructuring of

Separation of
concerns And

features by merging

Low feature

scattering
Metrics&Rules:
Feature Scattering,
Isolated Features,
Isolated Entities

focscscacscescscscacacanans
'
'

ObjOrientedProglLang. :

components by
inversion

Restructuring of
features by splitting

Flat inheritance

hierarchy

Metric&Rule: Depth
/Loose couplingAnd of inheritance tree

Loose coupling
Metric&Rule:
Fan-In-Fan-Out

|
l
| _—
! : ObjOriented | [Move
: : Proglang. : | method
|)(
! Refac- [Or
toring of [—— ri)éi?océ
classes [N
Extract

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
Restructuring of :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
class !
|
|

Key ———— Refinement EHelp

Impact
Relation

' Precondition

! Precondition

Instrument

Figure 4: Case study example for transition ITI-IV

fulfilled preconditions are preselected (cf. Section 4 Layer
IV). In this way the applicable ones are identified. Sec-
ond, the impact relations of transitions II-III and III-1V
of the GSS are evaluated. The impact values of the solu-
tion principles and architectural solution instruments, such
as patterns, and the priorities of the goals are used to calcu-
late a partial order for the preselected solution instruments
to establish a ranking by applying the weighted arithmetic
mean. The resulting ranked list is presented to the architect
as proposed solution instruments. This second step of the
GSS goes beyond the concept of the goal models because
the constraints of the technical solution are considered as a
preselection. The preselection step reduces the number of
ranked solution instruments significantly, and thus reduces
the complexity of the design decision task.

6. APPLICATION OF THE SCHEME FOR
GOAL-ORIENTED REENGINEERING
ON ARCHITECTURAL LEVEL

During reengineering, the GSS can significantly improve
the efficiency of the development activities by a clear pri-
oritization according to the relevant quality goals through
decision support. In this section we will show the appli-
cation of the GSS within a refactoring-oriented reengineer-
ing procedure according to the works of Demeyer et al. [13]
and Fowler [16]. Such a procedure is performed iteratively.
It consists of the major steps (1) identification of relevant
solution principles, (2) determination of design flaws vio-
lating them, (3) determination and application of refactor-
ings for improvement—together with integration and test
activities—and (4) evaluation of the improvement in order
to plan and control a next cycle. Usually most activities

within these steps including the decision-making have to be
performed by reengineering experts. In large projects, there
are two limitations: the experts constitute a rare resource
thus limiting the amount of outcome, and the decisions are
made in a subjective way. By the application of the GSS,
the decisions are based on the prioritized goals and on the
impact of the design flaws and refactorings on them, thus on
more objective criteria. Furthermore, the metrics and rules,
which are provided together with design flaws and refactor-
ings, enable a partial automation of the detection activities,
thus reducing the role of the experts.

Regarding the application of the GSS, the difference of
reengineering decisions compared to those of pure forward
engineering consists in the use of design flaws, Bad Smells,
and similar violations of solution principles instead of the
solution principles themselves (layer III).

6.1 Identification of relevant solution princi-
ples and deter mination of flaws

The identification of quality deficiencies, such as design
flaws and so-called Bad Smells, are usually done by reengi-
neering experts during system analyses, for example, in a
top-down procedure from system level down to code anal-
yses. For an increased efficiency of the reengineering task,
the identification is focussed on the most relevant flaws. The
relevant ones are those that violate the most important solu-
tion principles. The GSS supports this identification step by
providing a relationship for each flaw to those solution prin-
ciple in layer III for which it represents a typical violation.
On the base of the impact relations of solution principles
(layer I1T) to goals (layer I and IT), the prioritized goals con-
trol the identification of the most relevant principles, and of
the design flaws violating them.

As an example from the case study, the solution principle
separation of concerns got a high relevance, which lead to
a high rank for the principle low feature scattering (cf. Fig-
ure 4). The design flaw feature scattering was determined.
The occurrences of the design flaws within an inspected soft-
ware are determined by the use of metrics and rules, which
are provided by the GSS together with the design flaws.
These metrics, and the rules and thresholds for interpre-
tation of the metric results were developed by experts as
explained in Section 7.2. For the case study example the
relevant metrics are isolated features (IF), isolated entities
(IE) and feature scattering (FSCA). A rule for the detection
of a design flaw in textual representation is the following:
Feature scattering of components is strong if [IE =0 and IF =0
as a precondition and if FSCA > 0. Further information on
the establishment of flaws, metrics, and rules can be found
in [9].

In this way, the GSS constitutes a repository for design
flaws including rules for determination, which an expert
can provide for an application by reengineers throughout a
project or even for a company. Moreover, the GSS describes
the impact of the flaws on the quality goals (transition II-IIT)
and enables a flaw identification in a more objective way—
by a systematic consideration of the prioritized quality goals
of a project.

6.2 Refactoring for improvement

Quality improvement in the course of reengineering can
be performed in an ad hoc way—manually by experts—or
in methodical way by using the GSS. A refactoring repre-

sents a sequence of change operations that lead to a cer-
tain improvement of a quality property without changing
the overall behavior [16]. Decisions about refactorings to
be applied for flaw removal can be made by an expert, or
in a more objective way by considering the causes and the
quality impact of the determined flaws. The GSS provides
refactorings in layer IV related to design flaws in layer III,
which are removed by them. Each refactoring is provided
together with preconditions for its applicability, and with
rules for the decision if the actual cause of the flaw is ad-
dressed by this refactoring. For each relevant flaw, a decision
on the refactorings to be applied is performed in two steps
similarly to those for forward engineering, see Section 5.3.
First, all refactorings are excluded from further evaluation,
for which the preconditions of applicability or the matching
to the flaws’ causes are not fulfilled. Second, the remaining
refactorings are ranked by priority, considering their impact
on the quality goals. Afterwards, refactorings are applied—
possibly supported by development tools. The next steps
for implementation are then integration of the changes and
test. They are not especially adopted by the GSS.

For the case study example with the design flaw feature
scattering, the refactorings restructuring of components by
inversion or restructuring of features by splitting constitute
possible means for improvement. The rule related to this
refactoring helps to identify if the cause for the flaw can
be removed by this refactoring. Inversion of components is
the more expensive solution. Here, the refactoring splitting
of features is applicable because the metrics showed that
isolated features and isolated entities do not occur (compare
to the rule in Section 6.1) and that a splitting of features is
possible considering variability constraints.

6.3 Evaluation of the improvement

After the implementation of the determined refactoring,
an evaluation regarding the quality goals is necessary to plan
the next iteration of the reengineering process. The GSS can
be applied to select metrics for evaluation if (or which of)
the goals are satisfied. The metrics assigned to the relevant
design flaws (layer III) can be applied for this evaluation.
The relevance of a design flaw is determined using the pri-
orities of the goals (layer I and IT) and the impact of the de-
sign flaws (or those of the solution principles hurt by them)
on these goals (transition II-IIT). The metrics’ results can
be evaluated by applying the rules for flaw determination,
which are assigned to the relevant design flaw.

7. ESTABLISHMENT, EVOLUTION AND
EVALUATION OF THE SCHEME

The layers and transitions of the Goal Solution Scheme
represent information from different sources which demand
for differing ways of establishment and evaluation.

The establishment of the scheme should be performed by
an expert, who has experience with the implications of so-
lution instruments and principles on quality goals, with ar-
chitectural design, and reengineering. With his expertise
a mapping between goals and solutions is established, and
weights for the impact relations are determined. In this way
the expert can establish reengineering strategies for the re-
moval of detected design flaws. The subjective character
of expert estimations regarding the impact values can be
reduced by performing them on a detailed level and then

aggregating the results. Of course it is necessary to achieve
(i) a relative accuracy of the estimations on detail level and
(i1) an aggregation operation that dampens estimation er-
rors rather than amplifying them. A further improvement
regarding objectivity is possible by including the opinion of
several experts.

Once a GSS with a mapping of solution instruments to
quality goals has been established with expert knowledge,
developers with less expertise can benefit from this and reuse
the knowledge by the application of the scheme during archi-
tectural design and reengineering as described in Sections 5
and 6. During the application of the GSS in development
projects of different types and domains, feedback has to be
used to achieve improvements and revisions of the mapping.

7.1 Literaturereview

Knowledge about the refinement of quality goals (transi-
tion I-1T) can be gathered from software quality standards
and quality models (cf. Section 2.3). Various solution prin-
ciples and design flaws (layer III) are covered by textbooks
for the different disciplines of computer science. Examples
for software engineering are design principles like encapsu-
lation, modularity, and separation of concerns. A consider-
able number of solution instruments (layer IV) together with
rules and constraints for their applicability can be derived,
for example, from catalogues of design patterns and archi-
tectural styles. Furthermore, there are experience reports
on the application of architectural solution instruments with
information on their impact on quality goals (transitions II-
V).

7.2 Acquisition of experiences from experts

Software architects can contribute additional solution in-
struments for a further population of layer IV of the scheme.
They can provide detailed information on the impact of the
instruments on quality goals to extend the relationships of
the transition III-IV. Furthermore they can add information
on constraints for the applicability of specific configurations
and solution instruments. Experienced architects are able to
revise and improve the relationships and the weights within
the GSS.

To illustrate this for reengineering, we explain the estab-
lishment of design flaws for layer III and refactorings for
layer IV, both with metrics and rules for detection. Dur-
ing architectural assessments and code inspections experts
identify design flaws and other quality deficiencies of a soft-
ware system, to add them into the GSS and assign them to
solution principles they violate. Furthermore, the experts
establish relationships to quality goals and subgoals (layer
IT) on which the design flaws have a negative impact—if not
already expressed by the related solution principles’ relation-
ships to layer II. Together with the addition of the design
flaws to layer III of the GSS, metrics and rules for identifi-
cation have to be established by the experts, for example,
applying the detection strategy approach [26].

For the removal of the design flaws, refactorings have to be
established and added to layer IV of the GSS. According to
the causes of the flaws, there could exist several refactorings
for one flaw. Experts can determine the causes for a design
flaw, and develop refactorings for each cause. Furthermore,
they develop metrics and rules for the identification of the
particular cause to determine the appropriate refactoring
for the flaw. Moreover, they define preconditions for the

application of each refactoring. Refactorings together with
metrics and rules and with preconditions for application are
added to layer IV, with a relationship to layer III to the
design flaw they remove.

7.3 lterative evaluation and improvement

The input to the GSS from the first two ways has to be
considered as hypotheses because of the missing evaluation.
To evaluate and to verify the hypotheses, the GSS has been
applied in various case studies and projects, including the
reengineering of the large robot software framework called
Robot Software Ilmenau (RSI). The RSI project covered ad-
ditional layer I quality goals, such as maintainability and
scalability. This addition as well as revisions during the
evaluation affected the structure of the sub-goals (layer II)
and the relationships including their weights. Furthermore,
the revisions affected all transitions of the GSS. Moreover, a
refinement of the methodical guidelines for the application
of the GSS in both forward and reengineering occurred.

The application of the GSS in reengineering projects re-
sulted in an addition of further reengineering strategies along
with updated interpretation rules for the metrics for flaw
detection and for the ranking of the reengineering activi-
ties. The additions occurred with two different characteris-
tics: (1) Some new or updated reengineering strategies have
been developed starting from (and driven by) quality goals.
(2) New reengineering strategies have been developed, which
were driven by specific design flaws and which were estab-
lished during legacy code analysis.

During refinement and evaluation in the series of projects
a decreasing rate of changes and updates to the GSS could
be observed. This effect has been interpreted as an increas-
ing level of maturity of the GSS. Beyond the evaluation in
projects, empirical studies are planned to evaluate the con-
tent of the GSS regarding specific issues.

8. TOOL SUPPORT

Tool support is essential for the development of complex
systems. Even in academic research, tools are a prerequisite
for complex case studies. The presented concepts are ap-
plied in activities of architectural design and reengineering
driven by quality goals. For these activities, a prototype tool
is currently under development. We call it architect’s tool-
box, because it provides items of various solution principles
(layer IIT) and solution instruments (layer IV) for software
architects and software reengineers, arranged according to
their impact on quality goals (layer I and II). The toolbox
covers two major classes of solution principles: abstract ones
like architectural styles, patterns and refactorings, and exe-
cutable ones like frameworks, components and tools.

This tool is integrated into a tool suite with CASE tools
for several activities of architectural design, with the repos-
itory EMFTrace® [5] as core. EMFTrace was developed for
an explicit representation of dependencies between different
models and artifacts of the development process, such as
goal models, requirements specifications, as well as design
models, configurations, and source code. The metamodel
of the repository covers all relevant model elements of the
considered models as well as the dependencies. It is based
on the Eclipse Modeling Framework EMF.

The toolbox supports four main scenarios:

*http://proinf.de/EMFTrace

http://proinf.de/EMFTrace

(1) Architectural design: The developer enters priori-
tized quality goals (layer I), enters constraints, and obtains a
ranked list of proposals for architectural styles and patterns
(transitions IT-1IT and III-IV).

(2) Reengineering: The developer enters prioritized
quality goals, and obtains a ranked list of violations of prin-
ciples i.e. design flaws including metrics and rules for deter-
mination (layer III). For the identified flaws, a ranked list of
reengineering activities i.e. refactorings (transition ITI-1V)
is proposed according to the quality goals, together with the
related metrics and rules for their application. These reengi-
neering activities are then applied for quality improvement.
The metrics for violations of principles can be applied again
after the reengineering to evaluate the achieved improve-
ment.

(3) Extension of the toolbox: The architect adds a
new architectural solution instrument (layer IV) with its im-
pact on solution principles (transition III-IV) and possibly
on quality goals and subgoals, and he is assisted with rear-
ranging the classification of the toolbox by adjusting the set
of weighted relationships.

(4) Revision of the relationships’ impact factors of
all transitions of the GSS: An expert architect enters a
set of prioritized quality goals and examines the resulting
set of proposed solution instruments (layer IV). He selects
the improper ones and adds missing ones, and the set of
impact factors of the concerned relationships is adjusted ac-
cordingly.

9. CONCLUSION AND FUTURE WORK

In this paper, we presented the Goal Solution Scheme
(GSS) as a means for goal-oriented architectural design and
reengineering. The GSS provides an explicit mapping from
quality goals and quality requirements to architectural so-
lutions by dependencies. This mapping relates architectural
solution instruments, such as patterns, styles, frameworks,
and tools, regarding their impact on quality goals. In the
same way it relates reengineering and refactoring strategies
to the quality goals. We have discussed, how the GSS is
structured in layers, and how it is applied during forward
and reengineering activities on architectural level. For il-
lustration, examples from a larger industrial case study are
given. Furthermore, concepts for tool support are discussed
to increase the efficiency of goal-oriented activities for estab-
lishment and selection of architectural solutions. Similarly,
tool support for reengineering activities for legacy analysis
and refactoring is discussed based on the scheme. In this
way the Goal Solution Scheme supports an integration of
forward and reverse engineering activities for the sake of
evolution. Furthermore, the establishment and refinement
of the Goal Solution Scheme in industrial case studies and
projects is explained, which results in maturation as well as
in an evaluation.

For future works, the extension of the coverage is planned
by incorporation of additional domains and their major qual-
ity goals, such as distributed systems, high performance sys-
tems, and highly reliable systems. As a continuous task, the
extension of the stock of architectural solution instruments
(layer IV) is performed by addition of patterns, refactorings,
building blocks, tools, and products. Within this task, a con-
tinuous revision of the impact factors (transition II-IV) has
to be performed by acquisition from a quality assessment
of architectural models and whole systems. Furthermore,

a connection of the GSS concept with performance predic-
tion approaches and with system synthesis methods for the
design of embedded systems is considered.

10. ACKNOWLEDGMENTS

The research presented in this paper was partly funded by
the Federal State Thuringia and the European Regional De-
velopment Fund ERDF through the Thiiringer Aufbaubank
with project no. 2007 FE 9041.

11. REFERENCES

[1] M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A.
Stafford, C. B. Weinstock, and W. G. Wood. Quality
attribute workshops (QAWSs), third edition. Technical
Report CMU/SEI-2003-TR-016; ESC-TR-2003-016,
CMU, SEI, August 2003.

[2] L. J. Bass, M. Klein, and F. Bachmann. Quality
attribute design primitives and the attribute driven
design method. In Revised Papers from the 4th
International Workshop on Software Product-Family
Engineering, pages 169-186. Springer, 2002.

[3] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (ALMA). J.
Syst. Softw., 69(1-2):129-147, 2004.

[4] S. Bode, A. Fischer, W. E. Kiihnhauser, and
M. Riebisch. Software architectural design meets
security engineering. In Proc. 16th Int. Conf. and
Workshop on the Engineering of Computer Based
Systems (ECBS 2009), pages 109-118. IEEE, 2009.

[5] S. Bode, S. Lehnert, and M. Riebisch. Comprehensive
model integration for dependency identification with
EMFTrace. In Joint Proc. of the First Int. Workshop
on Model-Driven Software Migration (MDSM 2011)
and the Fifth Int. Workshop on Software Quality and
Maintainability (SQM 2011), pages 17-20.
CEUR-WS.org, Mar 2011.

[6] S. Bode and M. Riebisch. Impact evaluation for
quality-oriented architectural decisions regarding
evolvability. In M. Babar and I. Gorton, editors, Proc.
4th European Conference on Software Architecture,
ECSA 2010, pages 182-197. Springer, 2010.

[7] S. Bode and M. Riebisch. Tracing the implementation
of non-functional requirements. In N. Milanovic,
editor, Non-Functional Properties in Service-Oriented
Architecture: Requirements, Models and Methods,
chapter 1, pages 1-23. IGI Global, 2011.

[8] J. Bosch. Design and use of software architectures:
Adopting and evolving a product-line approach. ACM
Press/Addison-Wesley, 2000.

[9] R. Brcina. Goal-Driven Detection and Correction of
Quality Deficiencies in Software Systems for
Evolvability (in German). PhD thesis, Ilmenau
University of Technology, 2011. (submitted).

[10] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-functional Requirements in Software Engineering.
Kluwer, 2000.

[11] J. Cleland-Huang, R. Settimi, O. BenKhadra,

E. Berezhanskaya, and S. Christina. Goal-centric
traceability for managing non-functional requirements.
In Proc. 27th Int. Conf. on Software Engineering,
2005 (ICSE 05), pages 362-371. IEEE, May 2005.

(12]

(13]

(14]

F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,
and J.-F. Girard. An activity-based quality model for
maintainability. In Proc. 23rd Int. Conf. on Software
Maintenance (ICSM 2007), pages 184-193. IEEE,
2007.

S. Demeyer, S. Ducasse, and O. Nierstrasz.
Object-Oriented Reengineering Palterns. Square
Bracket Associates, Kehrsatz, Switzerland, 2008.

A. Egyed. A scenario-driven approach to traceability.
In Proc. 23rd Int. Conf. on Software Engineering,
(ICSE’01), pages 123-132. IEEE, May 2001.

G. A. A. C. Filho, A. Zisman, and G. Spanoudakis.
Traceability approach for i* and UML models. In Proc.
of 2nd Int. Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS’08), 2003.
M. Fowler. Improving the design of existing code.
Addison Wesley, Longman, Inc., Amsterdam, 1999.
M. Galster, A. Eberlein, and M. Moussavi. Transition
from requirements to architecture: A review and
future perspective. In Seventh ACIS Int. Conf. on
Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2006
(SNPD 2006), pages 9-16. IEEE, June 2006.

M. Galster, A. Eberlein, and M. Moussavi. Systematic
selection of software architecture styles. IET Software,
4(5):349-360, Oct. 2010.

0. C. Z. Gotel and A. C. W. Finkelstein. An analysis
of the requirements traceability problem. In Proc.
First Int. Conf. on Requirements Engineering, pages
94-101. IEEE, April 1994.

C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley Longman, 2000.
International Standardization Organisation. ISO/IEC
9126-1 International Standard. Software Engineering —
Product quality — Part 1: Quality models, June 2001.
International Standardization Organisation. ISO/IEC
25010:2011 Systems and software engineering —
Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality
models, 2011.

ITU-T. Recommendation ITU-T Z.151 User
requirements notation (URN) — Language definition,
Nov 2008.

W. Jirapanthong and A. Zisman. Xtraque:
traceability for product line systems. Software and
Systems Modeling, 8(1):117-144, 2009.

R. Kazman, M. Klein, and P. Clements. ATAM:
Method for Architecture Evaluation. Technical Report
CMU /SEI-2000-TR-~004, CMU/SEI, August 2000.

M. Lanza and R. Marinescu. Object-oriented Metrics
in Practice. Springer, 2006.

P. Letelier. A framework for requirements traceability
in UML-based projects. In Proceedings 1st Int.
Workshop on Traceability in Emerging Forms of SE
(TEFSE’02), pages 32-41, Edinburgh, UK, 2002.

R. Marinescu and D. Ratiu. Quantifying the quality of
object-oriented design: the factor-strategy model. In
Proc. 11th Working Conf. on Reverse Engineering,
(WCRE 2004), pages 192-201. IEEE, 2004.

J. A. McCall, P. K. Richards, and G. F. Walters.
Factors in software quality. Technical Report RADC

37]

(38]

(40]

[41]

TR-77-369, Rome Air Development Center, Rome,
NY, USA, 1977.

T. Olsson and J. Grundy. Supporting traceability and
inconsistency management between software artifacts.
In Proc. of the IASTED International Conference on
Software Engineering and Applications, 2002.

D. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM,
15(12):1053-1058, 1972.

F. A. C. Pinheiro. Requirements traceability. In

J. Leite and J. Doorn, editors, Perspectives on
Software Requirements, chapter 5, pages 91-113.
Kluwer, Norwell, MA, USA, 2004.

C. Potts and K. Takahashi. An active hypertext model
for system requirements. In TWSSD ’93: Proceedings
of the Tth international workshop on Software
specification and design, pages 62—-68, Los Alamitos,
CA, USA, Dec 1993. IEEE Computer Society Press.
B. Ramesh and M. Jarke. Toward reference models for
requirements traceability. IEEE Trans. Softw. Eng.,
27(1):58-93, 2001.

M. Riaz, M. Sulayman, and H. Naqvi. Architectural
decay during continuous software evolution and
impact of ‘design for change’ on software
architectures. In D. Slezak, T.-h. Kim, A. Kiumi,

T. Jiang, J. Verner, and S. Abrahao, editors, Advances
in Software Engineering, volume 59 of
Communications in Computer and Information
Science, pages 119-126. Springer, 2009.

M. Riebisch, A. Pacholik, and S. Bode. Towards
optimization of design decisions for embedded systems
by exploiting dependency relationships. In Proceedings
Dagstuhl-Workshop Modellbasierte Entwicklung
eingebetteter Systeme IV (MBEES), pages 11-20.
fortiss GmbH, February 2011.

M. Riebisch and S. Wohlfarth. Introducing impact
analysis for architectural decisions. In Proceedings
14th Annual IEEFE International Conference and
Workshop on the Engineering of Computer Based
Systems (ECBS2007), pages 381-390. IEEE, 2007.

G. Spanoudakis, A. d’Avila Garces, and A. Zisman.
Revising rules to capture requirements traceability
relations: A machine learning approach. In Proc. of
the 15th Int. Conf. in Software Engineering and
Knowledge Engineering (SEKE 2003), pages 570-577.
Knowledge Systems Institute, Skokie, 2003.

G. Spanoudakis, A. Zisman, E. Perez-Minana, and

P. Krause. Rule-based generation of requirements
traceability relations. J. Syst. Softw., 72(2):105-127,
2004.

D. H. Stamatis. Failure Mode and Effect Analysis:
FMEA from Theory to Ezxecution. ASQ Quality Press,
2nd edition, 2003.

S. Wagner, F. Deissenboeck, and S. Winter. Managing
quality requirements using activity-based quality
models. In Proc. of the 6th Int. Workshop on Software
Quality (WoSQ’08), pages 29-34. ACM, 2008.

E. S.-K. Yu. Modelling Strategic Relationships for
Process Reengineering. PhD thesis, University of
Toronto, Toronto, Ontario, Canada, 1995.

	Introduction
	Related Works
	Architectural design methods
	Goal-oriented requirements engineering
	Mapping between aspects of problem space and solution space
	Traceability
	Design-quality assessment and improve-ment

	Brief Overview over the Case Study
	Goal Solution Scheme
	Application of the Scheme for Goal-Oriented Architectural Design
	Refinement and prioritization of quality goals regarding architecture
	Guidance for architectural design and architecture assessment
	Decision on solution instruments

	Application of the Scheme for Goal-Oriented Reengineering on Architectural Level
	Identification of relevant solution principles and determination of flaws
	Refactoring for improvement
	Evaluation of the improvement

	Establishment, Evolution and Evaluation of the Scheme
	Literature review
	Acquisition of experiences from experts
	Iterative evaluation and improvement

	Tool Support
	Conclusion and Future Work
	Acknowledgments
	References

