
 Problem-Solution Mapping

for Evolution Support of Software Architectural Design

Matthias Riebisch

Ilmenau University of Technology

matthias.riebisch@tu-ilmenau

Abstract: Software architectures constitute a crucial

factor for the development and evolution of software

systems because they have to sustain their quality

properties like flexibility, scalability, or security. A

software architecture has to reflect the transition from

the problem space with quality goals and requirements

on one side to the solution space with technical solu-

tions on the other side. A mapping between goals and

solutions shall enable long-term evolution of the sys-

tems by expressing design knowledge and fundamental

decisions explicitly. The gap between the fields of

requirements engineering, software architectural design

and software quality has not yet been closed. This

paper discusses the Goal Solution Scheme, which maps

quality goals and goal refinements to architectural

principles and solutions. Its application in forward and

re-engineering activities is shown, as well as its estab-

lishment. The concept has been evaluated in various

projects including industrial case studies.

1 Introduction

Enterprise software systems have to fulfil highly com-

plex requirements. They have to support business pro-

cesses with a long lifetime, while they frequent chang-

es have to be performed – for example regarding busi-

ness rules, organizational optimization or technical

platform. There is a strong need for long-term evolu-

tion of these software systems, because an end of sup-

port or a replacement by a newly developed system

would cause extreme risks. Even for embedded soft-

ware systems because of their increasing complexity

there is a growing need for evolution. For both classes

of software systems, quality requirements such as flex-

ibility, scalability, usability, and security bear even

more risk than functional requirements, because they

can hardly be implemented after making the major

design decisions.

Software architectures play an important role for

complex software systems. They help to manage the

systems’ complexity, for example by organizational

support for the development process, and by a repre-

sentation of the design knowledge as well of the most

crucial decisions. Software architectures reduce the

developments risks by enabling early assessments of

the fundamental decisions on technical solutions, espe-

cially for those regarding the quality properties of a

software system. They represent the transition from

goals and requirements in the so-called problem space

to technical implementations in the so-called solution

space.

Regarding evolution, the role of software architec-

ture is two-fold. A software architecture enables evolu-

tion because it safeguards basic decisions as well as it

supports changes in a well-organized way. On the other

hand, a software architecture has to be maintained

during the sequence of changes to prevent the so-called

architectural decay.

In this paper, an explicit mapping from goals and

requirements to architectural solutions is established by

dependencies. An explicit representation of these rela-

tionships enables comprehension, evaluation, and utili-

zation by tools, similarly to other model-based ap-

proaches. For this mapping, the Goal Solution Scheme

has been introduced. In the paper the general structure

and the utilization of the Goal Solution Scheme is dis-

cussed, together with its establishment and evaluation.

2 Related Works

Several architectural methods emphasize the analysis

of non-functional requirements [HN00] and the

design considering them, for example Bosch’s Quality

Attribute-based Software Architectural (QASAR)

method [Bo00] and the Attribute-Driven Design

(ADD) method [BK02]. Goal-oriented requirements

engineering approaches–such as NFR and i*–model

so-called softgoals and their refinement in a Softgoal

Interdependency Graph (SIG). The SIG has been

standardized in the User Requirements Notation (URN)

[CP09]. These approaches facilitate a goal-oriented

refinement and assignment towards architectural de-

sign. However, bridging the gap between the two re-

search areas is still a critical issue [GE06] especially

when quality requirements change. For a mapping

between different aspects–in a similar way to the Soft-

goal Interdependency Graph–there are further ap-

proaches for example the quality models [MR04] and

the Failure Mode Effect Analysis [FM49]. For a map-

ping based on impact analysis, Galster et al. [GE10]

developed a method similar to our previous work

[BR10].

3 Goal Solution Scheme

The Goal Solution Scheme GSS was developed to

represent the mapping between elements of the prob-

lem space and those of the solution space during evolu-

tionary software development. Its leading idea is in-

spired by the model-based design paradigm: to repre-

sent dependencies in an explicit way. The relationships

between the elements of the scheme form a graph with

a structure similar to a tree. In the ideal case, the rela-

tionships between elements of different layers would

be 1 to 1 relations; however in real situations the ef-

fects of scattering and tangling cannot be prevented

completely. The layers (Fig. 1) correspond to stages of

the development process and contain the elements of

these stages. Each relationship between elements ex-

presses a dependency: a change of one element requires

changes of its related elements. The relationship’s

weight expresses the impact.

!"#$%&'()*#$+

,"-.*#$+

,*$"&%*/(01%/2%3$4+

,*$"&%*/(5/+&1"64/&+

5

55

555

57

Figure 1: Layers of the Goal Solution Scheme

Layer I contains the top-level quality goals such as

maintainability, evolvability, performance, portability,

reliability, security, and usability. In layer II, there are

the refined goals. The relationships of the transition

between layers I and II represent the mapping of top-

level quality goals to subgoals, similarly to a quality

model.

Layer III contains solution principles from different

research areas with a known impact on quality proper-

ties. Examples for software engineering principles are

modularity and separation of concerns; examples re-

garding security are tamperproofness and verifiability.

Heuristics for problem solution can also be ar-

ranged on this layer. For reengineering, elements repre-

senting a violation of these principles are covered, such

as design flaws, together with metrics for their detec-

tion. The transition from layer II to III represents the

mapping of quality goals or subgoals to solution prin-

ciples with an impact on the goal; and thus the transi-

tion between problem space and solution space. Re-

garding the QASAR method, the introduction of a

functional solution for a so-called non-functional prob-

lem is represented by the dependencies of this transi-

tion. In the case of conflicting goals, resolutions can be

found by an analysis of the dependencies of this transi-

tion—for example by the identification of potential

trade-offs.

Layer IV covers solution instruments of two differ-

ent categories with their relation to solution principles.

Firstly, on this layer architectural solutions for forward

engineering are provided. Patterns, styles, heuristics,

frameworks, and components are examples for ele-

ments out of the architect's stock of solutions, some-

times called toolbox. Secondly, this layer provides

reengineering activities for the removal of design

flaws, such as architectural refactoring patterns. Each

of the instruments of both categories is further de-

scribed by (a) preconditions for applicability, and (b) a

set of impact values regarding solution principles and

quality goals. The relationships of the transition III - IV

represent the impact of architectural solution instru-

ments on the satisfaction of solution principles. These

relationships are used for a classification solution in-

struments regarding their relation to quality goals and

subgoals, as mentioned in section 4 in the second step.

4 Guidance for Goal-Oriented Architec-

tural Design and Reengineering

Evolutionary software development demands for a

combination of forward engineering and reengineering.

The orientation on the goals is crucial for the success

of both. The utilization of the Goal Solution Scheme

for decision-making during architectural design is

performed mainly in the same course for both, consist-

ing of two steps:

Refinement and prioritization of quality goals

regarding architecture. For competing quality goals,

compromises or even scoping can hardly be performed

at the layer of goals. The identification of conflicts and

their resolution is much easier at the layer of subgoals

or solution principles because trade-off effects at these

layers facilitate a clear prioritization. Starting from the

priorities of the goals, the impact values of the relation-

ships between quality goals and subgoals or solution

principles in the GSS are evaluated to calculate the

weights. For example, if the goal maintainability got a

higher priority than performance, the principle modu-

larity and the design patterns Façade and Abstract

Factory get a higher weight than the performance-

related solution Cache. During this step the GSS is

applied in a way very similar to the Softgoal Interde-

pendency Graph mentioned in section 2.

Decision on solution instruments. The architec-

tural decision-making—both for the development of

the first, initial architectural design, or for the later

iterations, or for reengineering—is performed in two

parts, as discussed in earlier works [RW07]. Firstly, a

preselection of the solution instruments is carried out to

identify the applicable ones. For this purpose, the con-

straints of the design task are compared to the prerequi-

sites of the solution instruments of layer IV. Second,

the relationships of the transition II – III – IV of the

GSS are evaluated. The impact values of the solution

principles and architectural solution elements and the

priorities of the goals are used to calculate weights for

the preselected solution instruments to establish a rank-

ing. The resulting ranked lists is presented to the archi-

tect as proposed solution instruments. This second step

of the GSS goes beyond the concept of the Softgoal

Interdependency Graph because the constraints of the

technical solution are considered as a preselection.

The difference of reengineering decisions between

those of pure forward engineering consists in the use of

design flaws, bad smells and similar violations of solu-

tion principles instead of the solution principles them-

selves (layer III). For example, the design flaw Feature

Tangling represents a violation of the solution principle

Separation of Concerns. If this design flaw got a high

weight during prioritization, the related metrics and

interpretation rules are applied to determine affected

parts of the system. The removal of the design flaws is

performed by solution instruments (layer IV) such as

refactorings. A decision for an appropriate refactoring

is realized in the mentioned two steps: At first, the

situation of each affected part is compared to the pre-

conditions of the solution instruments for preselection;

then the preselected refactorings are ranked regarding

to their impact on the design flaw. The ranked list is

proposed to the architect.

5 Establishment and Evaluation of the

Scheme

The layers and transitions of the Goal Solution Scheme

represent information from different sources which

demand for differing ways of establishment and eval-

uation.

Literature review. A considerable number of solu-

tion elements together with rules and constraints for

their applicability can be derived from literature, for

example from catalogues of design patterns and archi-

tectural styles (layer IV). Knowledge about the refine-

ment can be gathered from software quality standards

and quality models (transition I – II). Various solution

principles are covered by textbooks for the different

disciplines of computer science (layer III). Examples

for software engineering are design principles like

encapsulation, modularity and separation of concerns.

Furthermore, there are experience reports on the appli-

cation of architectural solution elements with infor-

mation on their impact on quality goals (transitions II –

IV).

Acquisition of experiences from experts. Soft-

ware architects can contribute additional solution ele-

ments for the further population of layer IV of the

scheme. They can provide detailed information on the

impact of the elements on quality goals to extend the

relationships of the transition III - IV. Furthermore they

can add information on constraints for the applicability

of specific configurations and solution elements. Expe-

rienced architects are able to revise and improve the

relationships and the weights within the GSS.

Iterative evaluation and improvement. The input

to the GSS from the first two ways has to be considered

as hypotheses because of the missing evaluation. To

evaluate and to verify the hypotheses, the GSS has

been applied in various case studies and projects, in-

cluding the reengineering of the large robot software

framework called Robot Software Ilmenau (RSI). The

RSI project covered additional layer I quality goals like

security and scalability. This addition as well as revi-

sions during the evaluation affected the structure of the

sub-goals (layer II) and the relationships including their

weights. Furthermore, the revisions affected all transi-

tions of the GSS. Moreover, a refinement of the me-

thodical guidelines for the application of the GSS in

both forward and reengineering occurred.

The application of the GSS in reengineering pro-

jects resulted in an addition of further reengineering

strategies along with updated interpretation rules for

the metrics for flaw detection and for the ranking of the

reengineering activities. The additions occurred with

two different characteristics: (1) Some new or updated

reengineering strategies have been developed starting

from (and driven by) quality goals. (2) New reengi-

neering strategies have been developed, which were

driven by specific design flaws and which were estab-

lished during legacy code analysis.

During refinement and evaluation in the series of

projects a decreasing rate of changes and updates to the

GSS could be observed. This effect has been interpret-

ed as an increasing level of maturity of the GSS. Be-

yond the evaluation in projects, empirical studies are

planned to evaluate the content of the GSS regarding

specific issues.

6 Tool support

Tool support is essential for the development of com-

plex systems. Even for academic research, tools are a

prerequisite for complex case studies. The presented

concepts are applied in activities of architectural design

and reengineering driven by quality goals. For these

activities, a prototype tool is currently under develop-

ment. It supports four main scenarios: (1) Architec-

tural design: The developer enters prioritized quality

goals (layer I), enters constraints, and obtains a ranked

list of proposals for architectural styles and patterns

(transition II – III – IV). (2) Reengineering: The de-

veloper enters prioritized quality goals, and obtains a

ranked list of violations of principles i.e. design flaws

(layer II). These flaws guide the next step of determi-

nation of reengineering activities (transition III – IV)

and the related metrics. (3) Extension of the toolbox

(layer IV): The architect adds a new architectural solu-

tion instrument with its impact on solution principles

(transition III – IV) and possibly on quality goals and

subgoals, and he is assisted by rearranging the classifi-

cation of the toolbox by adjusting the set of weighted

relationships. (4) Revision of the relationships’ im-

pact factors of all transitions of the GSS: An expert

architect enters a set of prioritized quality goals and

examines the resulting set of proposed solution instru-

ments (layer IV). He selects the improper ones and

adds missing ones, and the set of impact factors of the

concerned relationships is adjusted accordingly. This

tool is based on the repository EMFTrace which was

developed for an explicit representation of dependen-

cies between different models and artefacts of the de-

velopment process, such as goal models, requirements

specifications, as well as design models, configura-

tions, and source code. The metamodel of the reposito-

ry covers all relevant model elements of the considered

models as well as the dependencies. It is based on the

Eclipse Modelling Framework EMF.

7 Conclusion and Future Work

In this paper, we presented the Goal Solution Scheme,

which supports goal-oriented architectural design and

reengineering. Following the principles of model-based

design, it establishes an explicit mapping from quality

goals and quality requirements to architectural solu-

tions by dependencies. This mapping relates architec-

tural solution elements like patterns, styles, frame-

works and tools regarding their impact on quality

goals. In the same way it relates reengineering and

refactoring strategies to the quality goals. We have

shown, how the Goal Solution Scheme facilitates tool

support for scenarios of goal-oriented establishment

and selection of architectural solutions. Similarly, tool

support for reengineering activities for legacy analysis

and refactoring is provided based on the Scheme. In

this way the Goal Solution Scheme supports an integra-

tion of forward and reverse engineering activities for

the sake of evolution. Furthermore, the establishment

and refinement of the Goal Solution Scheme in indus-

trial case studies and projects is explained, which re-

sults in maturation as well as in an evaluation.

For future works, the extension of the coverage is

planned by incorporation of additional fields and their

major quality goals, such as distributed systems, high

performance systems, and highly reliable systems. As a

continuous task, the extension of the stock of architec-

tural instruments (layer IV) is performed by addition of

pattern, refactorings, building blocks, tools, and prod-

ucts. Within this task, a continuous revision of the

impact factors (transition II – IV) is planned by acqui-

sition from a quality assessment of architectural models

and whole systems. Furthermore a connection of the

GSS concept with prediction approaches is considered,

such as Palladio for performance prediction.

Acknowledgement

The research presented in this paper was conducted

together with the PhD projects of Stephan Bode and

Robert Brcina. It was partly funded by the Federal

State Thuringia and the European Regional Develop-

ment Fund ERDF through the Thüringer Aufbaubank

with project no. 2007 FE 9041.

References

[Bo00] Bosch, J. Design and Use of Software Archi-

tectures. Addison Wesley, New York, 2000.

[BK02] Bass, L.J.; Klein, M.; Bachmann, F.: Quality

Attribute Design Primitives and the Attribute

Driven Design Method. In (F. van der Linden

Ed.): Proc. Workshop Software Product-

Family Engineering PFE2001, Springer, Ber-

lin, 2002.; pp. 169-186.

[BR10] Bode, S., Riebisch, M.: Impact Evaluation for

Quality-Oriented Architectural Decisions Re-

garding Evolvability. In Proc. ECSA2010.

Springer, Berlin, 2010; pp. 182-197.

[CP09] Chung, L.; do Prado Leite, J.: On Non-

Functional Requirements in Software Engi-

neering. In (Borgida, A. et al. eds): Conceptual

Modeling Foundations and Applications.

Springer, Berlin, 2009, pp. 363–379.

[GE06] Galster, M.; Eberlein, A.; Moussavi, M.: Tran-

sition from Requirements to Architecture A

Review and Future Perspective. In Proc.

SNPD’06. IEEE, 2006. pp. 9-16.

[GE10] Galster, M.; Eberlein, A.; Moussavi, M.: Sys-

tematic selection of architectural styles. IET

Softw. Oct 2010, Vol. 4, Issue 5, p.349–360

[FM49] Procedure for performing a failure mode effect

and criticality analysis, MIL-P-1629, United

States Military Procedure, 1949.

 [HN00] Hofmeister, C.; Nord, R.; Soni, D.: Applied

Software Architecture. Addison Wesley. New

York, 2000.

[MR04] Marinescu, R.; Ratiu, D.: Quantifying the

Quality of Object-Oriented Design The Fac-

tor-Strategy Model. Proc. WCRE 2004, IEEE,

2004, pp. 192-201.

[RW07] Riebisch, M.; Wohlfarth, S.: Introducing Im-

pact Analysis for Architectural Decisions.

Proc. ECBS2007, IEEE CS, 2007, pp. 381-

390.

Presented at the conference Software Engineering 2011

(SE2011), Karlsruhe, Germany, 21 - 25 February, 2011

