
Towards Optimization of Design Decisions for Embedded
Systems by Exploiting Dependency Relationships

Matthias Riebisch, Alexander Pacholik, Stephan Bode

Ilmenau University of Technology, Germany
{matthias.riebisch | alexander.pacholik | stephan.bode}@tu-ilmenau.de

Abstract: Design decisions for the development of embedded systems demand for
a consideration of complex goals and constraints. In order to reduce risks and
optimize the design, model-based approaches are needed for an explicit
representation of goals and constraints as well as for early assessments. The
explicit representation of dependencies is required to make design decisions in a
reasonable way. Existing works do not sufficiently support the mapping between
problem space and solution space together with a consideration of technological
constraints. In this paper the Goal Solution Scheme approach developed for
software architectural design is extended for the development of embedded
systems considering specific needs for flexible decisions late in the development
process. The adaptation of the approach for the relevant goals and development
steps of embedded systems is illustrated by its application in a case study of a
complex embedded system project.

1 Introduction

During the last years the complexity of embedded software systems has steadily
increased. Embedded systems have to satisfy numerous goals simultaneously. This
situation results from the systems’ integration into heterogeneous environments –
regarding both technology and organization. They have become more and more critical
for the success of products and services. Furthermore, there is a constant need for
optimization and change, together with a high pressure for cost reduction. For example,
cost aspects could demand for a change from a hardware- to a software-implementation
of a feature at a later point in the development process. To manage complexity and risk,
and to provide the required flexibility for late changes of implementation decisions,
model-based approaches have been introduced. Model-based development processes
help to reduce the risks and to increase the efficiency by providing support with methods
and tools.

Decisions during the design process play a key role for the satisfaction of the various
goals. Unfortunately, there are competing or even conflicting goals. For optimization, all
relevant goals have to be satisfied and balanced. However, method and tool support does
not cover all types of goals. Furthermore, there are complex dependencies between the
decisions, which limit the set of possible alternatives for a decision – the so-called
decision space. The missing comprehension of the dependencies hampers decision-
making. To solve this problem, an explicit modelling of these dependencies can provide

a base for both effective tool support and the developer’s comprehension of the decision
space. The modelled information has to cover:

• Goals and preferences. Especially quality goals have to be covered because they can
hardly to be achieved by later changes of the implementation.

• Constraints. In the case of embedded systems, a high number of constraints have to
be met by solution instruments. For example, certain hardware is not supported by a
model-based platform. These constraints restrict the decision space.

• Solution instruments. The potential elements of a solution – even partly abstract
ones such as patterns and heuristics – as well as process patterns such as
refactorings have to be represented with preconditions for their application and with
their impact on goals.

Due to the high risk of the design decisions, a goal-oriented, iterative development
procedure together with early assessments is required. Model-based approaches enable
such assessments and help to minimize the risks. Other means for risk reduction are
(a) simulation – especially for the goals performance and computing power – and
(b) prediction – especially for performance and reliability.

The contribution of this paper consists in a model-based, goal-oriented approach, which
uses dependency relationships to represent a mapping between problem space and
solution space. In this paper the formerly introduced Goal Solution Scheme [Bo09] is
adapted to the embedded systems domain. For this adaptation, new mechanisms for the
selection of a solution and for decision-making – namely preconditions and constraints –
are introduced, together with additional goals and solution instruments. For illustration,
the application of the scheme is shown by an example from a large-scale case study.

2 State of the Art

Modelling techniques for competing requirements and goals together with their
refinement and resolution have been developed in the Goal-Oriented Requirements
Engineering, such as the NFR framework with the Softgoal Interdependency Graph, the
i* notation, and the standardization as the User Requirements Notation (URN) [CP09].
The strengths of these approaches consist in their support for the elicitation of
requirements and their priorities, the discovery of conflicts, the conflict resolution and
scoping, and the support for the classification of the goals. However, they insufficiently
consider the transition to the solution space, because the impact of solutions on goals as
weights is not sufficiently represented. Furthermore, constraints for the applicability of
solutions are not covered.

Support for multi-criteria decision-making is provided by various approaches developed
for economy [Tr00]. Several approaches apply a decision matrix to visualize and
compare criteria and options, similar to the House of Quality matrix of the Quality
Function Deployment method [BR95]. The strength of these approaches consists in the
various ways of visualization, which provide support for a manual selection by
weighting different factors. Unfortunately, the support for a classification of solution

alternatives regarding the goals is rather limited, and the consideration of the transition
to the solution space by representing the impact of solutions on goals is missing.
Furthermore, these approaches are developed to assist human decision-making, and they
do not sufficiently support a tool-based or even model-based one.

Support for mapping between problem and solution space is provided to some extent by
all design methodologies. Strongly related approaches in the field of software
architectural design are QASAR [Bo00] and ADD [BK02]. They do not sufficiently
support the establishment of solutions and the explicit representation of dependencies to
goals and constraints.

A classification of solutions is provided by various catalogue approaches, such as Design
Pattern catalogues [GH95],[BM96] or the various component catalogues. Unfortunately,
most of them do not provide a classification regarding goals. Furthermore, a
representation of preconditions for the applicability of tool-based preselection is missing.

For the development of embedded systems, system-level synthesis approaches have been
developed. They require as input an executable specification, constraints, and target
platform templates; and they apply design space exploration and synthesis to derive
‘optimally’ suited hardware architecture and functional deployment [St10]. However,
design decisions on this base require a complete tool chain for synthesis together with
platform template databases. Incomplete models and uncertainties in the design prevent
the application of such techniques.

A broad literature base provides principles and solution instruments as contributions to
system development. The principles for performance optimization in embedded systems
design [Wa05] constitute an example. The approach presented in this paper extends
these works with a classification regarding goals, which enables their inclusion into layer
III and IV of the Goal Solution Scheme (see section 4).

3 Problem Statement

To support design decisions for embedded and software intensive systems, the model-
based approach has to fulfil the following objectives:

• Represent the design space and manage its complexity. Decisions in this domain
have to fulfil complex requirements and various mutual constraints. The set of
possible solutions is influenced by methods and principles from different research
fields.

• Manage situations of missing information. By nature, a design process for a
technical system is characterized by incomplete requirements, references to
components with yet undefined properties, and missing knowledge about the
satisfiability of requirements.

• Provide support for flexibility. Due to the mutual constraints and the need for
optimization, decisions are wanted to be postponed as far as possible. This covers
decisions on platform technology such as hardware and software.

• Facilitate a goal-oriented evaluation of the solutions. Due to the high risks and
the need for optimization, solutions have to be evaluated as early as possible.

The explicit representation of dependencies in the Goal Solution Scheme, together with
its integration in a decision-making process, shall fulfil these objectives.

4 Goal Solution Scheme

For a support of goal-oriented development, a mapping between problem space and
solution space is necessary. In iterative development processes, the establishment of
decisions and the evaluation of their results are firmly related. The Goal Solution
Scheme has been developed to represent a mapping between elements of both spaces by
explicit relationships. The layers of the scheme (see Figure 1) correspond to stages of the
development process and contain the elements of these stages. Each relation between
elements expresses a dependency: a change of one element requires changes of its
related elements. A weight added to the relationship expresses its impact, which can be
positive or negative. As additional relations, preconditions for the applicability of
elements of the solution space are managed, however they are not represented
graphically. The layers I and II as well as project constraints represent the problem
space, while layers III and IV represent the solution space.

Quality Goals

Subgoals

Solution Principles

Solution Instruments

I

II

III

IV

Figure 1: Layers of the Goal Solution Scheme

Layer I covers the top-level goals, such as security, performance, portability, and
maintainability – for embedded systems frequently extended by energy consumption,
size, and cost. Layer II represents the subgoals. The transition I – II represents a goal
refinement, which is derived from quality models, cost models, or similar. The subgoal
level facilitates the resolution of trade-off situations between competing goals.

Layer III covers solution principles for a design regarding the different goals. The
transition II – III represents the mapping from the problem space to the solution space.
The relations represent the impact of a solution principle on the related goals. Examples
for positive and negative impact will be discussed in the next section of the paper.

Layer IV contains solution instruments at different levels of abstraction. Examples are
building blocks, patterns, reference architectures, and tools for analysis and code
generation. The transition III – IV provides a classification of the instruments regarding

the principles – and thus regarding the goals. The relations represent the impact of a
solution principle on the related goals. In this way, layer IV represents the design space
as a set of solutions with properties regarding goals and constraints. The information on
layers III and IV as well as the impact relations to the layers above have been acquired
and incrementally improved during previous projects [Bo09].

As an extension of the Goal Solution Scheme for the embedded systems domain
technological constraints are considered explicitly. It turned out to be necessary to check
if the preconditions for the solutions’ application are fulfilled. These preconditions are
modelled by attributes of solution principles (layer III) and solution instruments (layer
IV). They are evaluated during a preselection step by comparison to the constraints of
the current design task. Only solution principles and solution instruments with fulfilled
preconditions are preselected. In this way the applicable ones are identified. The
preselected candidates are then ranked according to their impact on the relevant goals,
which is derived from the relationships of the transition II – III – IV of the Goal Solution
Scheme. The preselection reduces the number of ranked elements significantly, and thus
reduces the complexity of the decision support task.

As a result, a three-step decision-making process is established (see Figure 2), as an
extension of earlier works [RW07]. Firstly, the goals are defined based on the
preferences of the stakeholders and the constraints and preconditions are identified.
Secondly, the constraints and preconditions are compared to preselect a set of candidate
solution principles and instruments (layer III and IV). Thirdly, the impact values of the
solution principles and instruments and the priorities of the goals are used to calculate
weights for the preselected solution instruments to establish a ranking. The resulting
ranked lists is then presented to the developer as proposed solution instruments.

Figure 2: The decision-making process according to the Goal Solution Scheme

The constraints are identified during the requirements analysis or architectural analysis
phase. The preconditions for the application of the solution principles and instruments
(layer III and IV) are represented by attributes as part of their description within the
scheme. For the sake of effort reduction they are partly generalized for classes of
solution instruments, as shown in the case study. The preconditions are not visualized.

5 Decision Support

To illustrate the utilization of the Goal Solution Scheme in a design decision, an example
from a case study is discussed. The case study deals with the development of a new

version of the control unit of a nanopositioning and measuring machine [Mu09]. The
purpose and the fields of application of this nanopositioning machine are semiconductor
production, biotechnology research, and nano-scale production and research. The
objective of the machine consists in a control of the position and the trajectory of an
object with a high precision and a high positioning speed. To achieve a high resolution
during motions over long distances, classical motion controllers have to be replaced by
dynamic control solutions with a higher control loop frequency, which minimize the
dynamic control error by estimating the nonlinear dominant disturbance, e.g. friction and
stick-slip motion. As a result, the computing requirements increase by orders of
magnitude. The production figures for this machine are low, 100 to 200 units per year
can be expected.

DAC

Embedding System

Distributed Embedded System

ADC
ADC

ADC
Measurement
Correction *

Measurement
Correction *

Measurement
Correction * Topology

Adaption *

Control *

DAC
DAC

DAC

Service
System

* = Algorithms to change

Figure 3: Positioning control unit as an embedded system

The control unit considered here consists of different parts (Figure 3). There are parts for
the correction of the deviation of measured input data, for the adaptation of the topology
of the measuring and positioning environment, a service system as an interface for user
interaction, and the actual controller. The control unit works with blocks for the various
control algorithms. There is a demand for a new version of the machine with an
increased data volume, speed, and complexity of the control. This requests for a
replacement of the formerly used single processor platform by a more powerful one.
Furthermore, the processor has to provide floating-point operations. The control
algorithms are implemented on the base of models using a tool chain with MATLAB
Simulink based code generation [Mu09]. As an alternative, the tool chain supports the
derivation of an implementation as programmable hardware via hardware description
language HDL.

For an illustration of the approach, the decision on the platform technology for the
control unit – implementing the control algorithms – is used as an example. For this
decision there are three major alternatives:

1. Software-implementation using a real-time operating system (RTOS) as platform;
2. Software-implementation applying a static scheduling design, without RTOS;
3. Implementation on a heterogeneous platform with programmable hardware, such as

FPGA or ASIC.

For both alternatives 1 and 2 there is another choice between a multicore processor and a
distributed system as processing platform.

I Quality Goals II Subgoals III Solution Principles IV Solution Instruments

Portability

Cost
minimization

Minimized
memory

consumption

PerformancePerformance

Code
compression

Code
optimization

Abstraction RTOS

Efficiency

Static
scheduling

Expert
optimization

Profiling

Optimizing
Compiler

Parallelization

HDL based
hardware

implementation

Multicore
processing

Distributed
processing

Custom libraries

ASIC

FPGA

Cosmic compiler

Vendor libraries

Performance
oriented

coding styles

VxWorks

Green Hills compiler

eRTOS

Minimized
energy

consumption

Style guide
checker

Embedded Linux

Model-based
code

generation
ChangeabilityChangeability

Legend:
Positive impact
Negative impact

Platform
independence

Code Composer

Figure 4: Goal Solution Scheme of the case study (partly)

The goals and their priorities constitute an input for the considered case study. The goals
and subgoals for the implementation of the control unit result from the objectives of the
nanopositioning and measuring machine:

a. Efficiency regarding performance: real time constraints, high positioning speed for a
high precision – the most important competitive feature of the system;

b. Changeability: the ability to change or replace the positioning algorithms even late
in the development process – highly important for the optimization of the precision
and speed of the control;

c. Portability: exchange of the hardware platform, of the computing platform
(processor), and the communication infrastructure – important;

d. Efficiency regarding minimized energy consumption of the control unit: need for
additional cooling – medium priority, because the control unit could be placed
outside.

Goal (a) performance got the highest priority by the stakeholders. Goal (b) changeability
got a high priority, whereas goals (c) and (d) are not discussed further in this paper.
Goal (a) is twice as important as goal (b). Therefore, using the well-known analytic
hierarchy process, the resulting priorities are 0.66 for goal (a) and 0.33 for goal (b).

During the decision-making, constraints and preconditions are evaluated. Constraints
that were identified during requirements analysis and architectural analysis include
dependencies between certain development tools, methods, and available hardware.

Preconditions control the preselection. For our example, some of the various
preconditions for solution instruments have been generalized to classes (see Table 1).
According to the constraints of the project and to those derived from previous decisions,
a subset of the available solution instruments is preselected for a further evaluation.
We removed the ASIC alternative due to cost and risk. Furthermore we decided to
restrict on target hardware and tool chains, which are already available for the
development project, more precisely C6000 series floating point DSPs from texas
instruments and Virtex V and Spartan III series FPGAs from Xilinx. Therefore only the
Code Composer compiler and the eRTOS operating system alternative remain.

Table 1: Preconditions for the application of solution instruments (examples, generalized)

Solution instrument Preconditions
RTOS Support by selected processor
Compiler Support for selected processor
Profiling Support by selected processor
Vendor library Support for selected compiler
Vendor library Support for selected processor
FPGA Support by HDL vendor and tool chain
ASIC Support by HDL vendor and tool chain
ASIC Cost: minimum number of units

The next step of the application of the Goal Solution Scheme consists in a consideration
of the solution principles (layer III) for the discussed goals. Due to space reasons, only a
part of the solution principles is covered by the example (see Figure 4). For the subgoal
performance we consider the solution principles as the ones with a positive impact: code
optimization, static scheduling design, and parallelization. Related to them there are
more solution principles optimizing compiler, hardware implementation, distributed and
multicore processing. A related solution principle with a negative impact is RTOS
because of the overhead. The solution principle performance oriented coding style is not
considered further because the preconditions for its applications are not fulfilled. For the
goal changeability two subgoals platform independence and abstraction are relevant.
For platform independence, layer III provides the solution principles model-based code
generation, HDL based hardware implementation, and – with a negative impact – code
optimization. For abstraction, the solution principles RTOS and static scheduling (with a
negative impact) are the related ones.

There is a trade-off situation between the competing goals (or subgoals) performance
and changeability, which is represented in the Goal Solution Scheme by mutually
negative impact relations on layer III (dashed lines in Figure 4). The explicit
representation of the modelled dependencies in the scheme facilitates the resolution of
this competition during the decision-making. In our example there are two solution
principles with a positive impact on both goals, static scheduling and HDL based
hardware implementation. Model-based code generation and HDL based hardware
implementation have a positive impact on platform independence and further on
changeability because of the support of the tool chain. Static scheduling is supported by
model-based code generation due to a derivation of related models by the tool chain.

The impact of RTOS to model-based code generation is negative because a special
support of a certain RTOS by code generators is rarely available. Furthermore, the
relation between model-based code generation and distributed processing shows a
negative impact because special support for distribution and configuration by code
generators is rarely available. These and the other dependencies lead to higher scores of
the solution principles model-based code generation and HDL based hardware
implementation compared to other ones such as RTOS. This results in a higher ranking of
the related solution instruments as proposed solutions for the design decisions.

For the given GSS the impact values between solution instruments and goals have been
calculated by backward propagation (for details on the calculation procedure see
[BR10]). The resulting matrix contains values between -1 and 1, where the minimum-
maximum magnitude ratio is 1:5. Thus the resulting matrix is equivalent to a -5 to +5
evaluation scheme. By multiplying the Matrix with the goal priorities, the final impact
values of solution instruments result. The final ranking (best to worst) is as follows:
static scheduling, FPGA, multicore processing, distributed processing, vendor libraries,
profiling, optimizing compiler, custom libraries, and eRTOS.

6 Conclusion and Future Work

In this paper, decisions for embedded system design are discussed as transitions from
problem space to solution space with dependency relationships as links. By an explicit
representation of these dependencies in the presented Goal Solution Scheme, the
treatment of complex goals, constraints, and dependencies during the decision-making
process is simplified. A resolution of competing goals and a simultaneous consideration
of multiple design principles and candidate solutions by a developer are facilitated. The
application of the Goal Solution Scheme is explained by decision-making examples from
a larger case study.

As future work, the extension of the Goal Solution Scheme by more solution principles
regarding performance, parallelization, and distributed system design is intended.
Furthermore, cost as a major goal shall be included. Related to this goal, principles and
procedures for economic decisions have to be analyzed, formulated and incorporated
into the layers III and IV of the scheme. Other next steps involve the extension of the
tool support for the selection of a broader variety of solution instruments regarding their
technological constrains, for example of more real-time operation systems and libraries
with their options for profiling and code optimization, and of the various programmable
hardware technologies and products with their concrete dependency relations to tool
support. With a high coverage of dependencies between the relevant solution
instruments, the method of goal-oriented design shall be integrated with the concept of
system synthesis [St10] for a certain platform.

7 Acknowledgements

The research on model-based decision methods has been partly funded by the federal
state Thuringia and the European Regional Development Fund ERDF through the
Thüringer Aufbaubank under grant 2007 FE 9041. The project of the nanopositioning
and measuring machine has been partly funded by the German Research Council DFG
under grant SFB 622.

8 References

[BK02] Bass, L.J.; Klein, M.; Bachmann, F.: Quality Attribute Design Primitives and the
Attribute Driven Design Method. In (F. van der Linden Ed.): Proc. Workshop Software
Product-Family Engineering PFE2001, Springer, Berlin, 2002, pp. 169-186.

[Bo00] Bosch, J.: Design and Use of Software Architectures. Addison Wesley, New York, 2000.
[Bo09] Bode, S.; Fischer, A.; Kühnhauser, W.; Riebisch, M.: Software Architectural Design

meets Security Engineering. In: Proc. 16th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS2009), San Francisco,
CA, USA, April 13-16. IEEE CS, 2009, pp. 109-118.

[BR10] Bode, S.; Riebisch, M.: Impact Evaluation for Quality-Oriented Architectural Decisions
Regarding Evolvability. In: M.A. Babar and I. Gorton (Eds.): 4th European Conference
on Software Architecture (ECSA2010), LNCS 6285, Springer, 2010, pp. 182-197

[BR95] Barnett, W.D.; Raja, M.K.: Application of QFD to the software development process.
International Journal of Quality & Reliability Management, Vol. 12, No 6, 1995, pp.24–
42

[BM96] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.: Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. Wiley. 1996.

[CP09] Chung, L.; do Prado Leite, J.: On Non-Functional Requirements in Software
Engineering. In Borgida, A. et al. (Eds.): Conceptual Modeling – Foundations and
Applications. Springer, Berlin, 2009, pp. 363–379.

[GH95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995

[Ma10] MATLAB and Simulink, The Mathworks, Inc. http://www.mathworks.com, 3 Dec 2010
[Mu09] Müller, M.; Amthor, A.; Fengler, W.; Ament, C.: Model-driven Development and Multi-

processor Implementation of a Dynamic Control Algorithm for Nanomeasuring
Machines. In: Journal of System and Control Engineering (JSCE), Vol. 223, No 3, 2009,
pp. 417-429, Prof. Engin. Pub., London.

[RW07] Riebisch, M.; Wohlfarth, S.: Introducing Impact Analysis for Architectural Decisions.
Proc. ECBS2007, IEEE CS, 2007, pp. 381-390.

[St10] Streubühr, M.; Gladigau, J.; Haubelt C.; Teich, J.: Efficient Approximately-Timed
Performance Modeling for Architectural Exploration of MPSoCs. In Borrione D. (Ed.):
Advances in Design Methods from Modeling Languages for Embedded Systems and
SoC's, LNEE 63. pp. 59-72, Springer Netherlands, 2010.

[Tr00] Triantaphyllou, E.: Multi-Criteria Decision Making: A Comparative Study. Kluwer,
Dordrecht, 2000.

[Wa05] Wasson, C.S.: System Analysis, Design, and Development: Concepts, Principles, and
Practices. Wiley, 2005.

	1 Introduction
	2 State of the Art
	3 Problem Statement
	4 Goal Solution Scheme
	5 Decision Support
	6 Conclusion and Future Work
	7 Acknowledgements
	8 References

