
Towards Comprehensive Modelling by Inter-Model Links
Using an Integrating Repository

Matthias Riebisch, Stephan Bode, Qurat-Ul-Ann Farooq, Steffen Lehnert
Ilmenau University of Technology; Ilmenau, Germany

{matthias.riebisch|stephan.bode|qurat-ul-ann.farooq|steffen.lehnert}@tu-ilmenau.de

Abstract—Model-based development techniques enable a
high efficiency and the mastering of complexity. For many
domains more than one model has to be used to express the
relevant information. Many methods use different models
without a tight coupling, with a high risk of inconsistencies.
Other approaches are based on metamodel extension or uni-
fied metamodels, with a limited tool support as consequence.
We present an approach for the interconnection between
several models in a joint repository by means of dependency
relationships. The interconnection is shown between UML
models, BPMN models and feature models by examples for
variable workflows in mobile systems. The presented ap-
proach is implemented by the EMF-based repository
EMFTrace, with XML for model representation. Dependen-
cies are determined either automatically by a rule set or
manually by explicit references.

Keywords-inter-model dependencies; model inter-
connection; repository; dependency; traceability; model-based
development

I. INTRODUCTION
Software developers have to notice that requirements

to software systems have become more and more complex
over the years. One of the major challenges consists in the
mastering of this complexity. Additionally, there is strong
need for efficiency of software system development and
evolution. Model-based development provides information
on a higher level of abstraction, which helps master the
complexity. Tool support for analysis, comprehension,
decision-making as well as for the generation and valida-
tion of software solutions operates on the models and helps
to satisfy the needs.

There are several modelling languages e.g. UML and
BPMN to represent different aspects of a system. Howev-
er, it is important to provide an integrated representation of
these aspects to enable a comprehensive coverage for the
developer. To fulfil the above-mentioned needs several
possibilities can be applied.. (1) One option could be the
establishment of new modelling languages to represent the
necessary aspects. However it would hardly be possible to
make it widely accepted and supported. (2) A much more
promising approach is the extension of existing modelling
languages, which requires extensible metamodels. Unfor-
tunately, this demands for changes in the tool infrastruc-
tures and can lead to less support by tool vendors. (3) To
integrate the different aspects of a system, an alternative
approach is to represent the relations between models as a

separate model and integrate it into the modelling envi-
ronment, thus keeping the tool support.

In this paper we present an approach to integrate sever-
al models. The contribution of our work includes the defi-
nition of explicit relations implemented as links, the defini-
tion of link types as well as the definition of a rule set for
the identification of these links. In our approach we focus
on the utilization of well-established and standardized
modelling languages, and use the concept of inter-model
links to maintain relations between these models. We im-
plement the concept by storing links in a repository exter-
nal to the model-specific tools. In the repository the rele-
vant elements of all related models are linked thus treating
inter-model links and intra-model links in the same way.
The links are determined and established by rules in order
to achieve a high precision and recall. The approach is
evaluated by an application in several case studies.

II. MODEL INTERCONNECTION IN GENERAL
For software and system development, models are used

to represent parts of the real world in the environment of a
system, both for a description of the problem as well as of
the solution. The representation is limited to the relevant
aspects to master the complexity of the real world. There-
fore, models provide information about some entities of
the real world and about their relevant properties. Accord-
ing to the different uses of the models, several aspects are
of interest. These aspects are usually represented by differ-
ent models. For software development for example, UML
provides a structural and a behavioural view with several
models for each of them.

If the representation is restricted to a use of well-
established modelling languages such as UML, Entity Re-
lationship Models (ERM), and BPMN, there are several
advantages. The well-established modelling languages are
usually the best suited ones for the representation of the
most common issues. They are widely accepted, and usual-
ly skilled personnel for their usage and tools for their sup-
port are available.

For their utilization, the relevant models have to be in-
terconnected, which can be performed by links between
their model elements [13]. For categorization we can dis-
tinguish between two types of relations:
• links between corresponding elements, which represent

the same entity of the real world, and
• links between related elements, which represent related

entities of the real world.
The model elements that have to be related are of a

broad variety. All models to be included and their relevant

model elements contribute to the set of model elements.
The set of link types to be considered firstly consists of all
types of relations, which are represented by the models.
Secondly, dependencies have to be represented explicitly
because they are not – or not completely – expressed by
some models. Thirdly, traceability links have to be repre-
sented because they constitute dependencies that have
been traversed by the developer during engineering activi-
ties, and that have to be explored to understand the inten-
tions of a solution. Furthermore, some real world entities
can be represented in more than one model, because the
scope of some models overlap. For example, an actor is
represented in use case models of the UML as well as in
many other models.

Metamodels describe available model elements, rela-
tions between them as well as constraints of the respective
modelling language. For relations between elements of
different models, the different metamodels have to be con-
sidered. A unified treatment of the relevant model ele-
ments is necessary to enable access to them. In our ap-
proach an additional, external repository is defined which
covers all relevant model elements that have to be consid-
ered. Its metamodel represents the minimal set of defini-
tions of the covered models. Figure 1 shows the external
repository as the barrel below with its interconnection to
other models managed by separate tools represented by
boxes. Tool aspects are discussed later in section IV.

Regarding the implementation of relations between

model elements we have to distinguish between linking
different elements within one model – which is usually
performed by so-called intra-model relations available in
the model’s metamodel – and the so-called inter-model
links between elements of different models. These rela-
tions can be established in two general ways.

Firstly, there is the way of establishing references be-
tween the elements of different models. The references can
be formally defined in terms of syntax and semantics.
They can be evaluated by tools and methods without am-
biguity. Our approach follows this way.

Secondly, relations can be identified based on the
names of identifiers of model elements. One option is the
use of similarities between names as criteria, which can be
determined by string comparison algorithms, as for exam-
ple those of the field of information retrieval. The other
option consists in the criterion of a relatedness of the con-
cepts, which can be determined for example by an ontolo-

gy. Such an approach is often used in the field of
knowledge engineering. The claim of approaches of this
type is, that every entity and relation can be modelled in a
very flexible way. Many ontology-based approaches repre-
sent all relevant information by these means regardless of
established modelling languages specialized for different
aspects. However there is the drawback of limited rigour
compared to usual modelling languages. For example there
is no syntactic definition to distinguish between different
types of model elements and relations. Due to ambiguity,
these approaches enable a limited access for tools for anal-
ysis, validation, and utilization of the information.

Nevertheless, in our approach we make some use of
ontologies, but limited to those aspects, which cannot be
expressed by the existing modelling languages. We use
ontologies similarly to glossary and thesaurus to represent
relations with natural language expressions for example in
requirements specifications, for which no formal syntax
can be applied.

For cooperative work as required for practical projects,
a versioning of models, model elements and links is re-
quired. For this purpose, a unified treatment of intra-model
and inter-model links is necessary.

To fulfil the above-mentioned requirements, we have
decided for an external repository, which covers all rele-
vant model elements of the considered models, as well as
their intra-model and the inter-model links. They are treat-
ed in the same way to provide a unified access. We are
aware of the challenges related to this decision, such as
cross-model consistency and synchronization of changes.

III. MODEL INTERCONNECTION FOR WORKFLOW
DOMAIN

For an effective discussion of the approach, concrete
models and interconnection have to be considered instead
of general ones. We present the approach for the develop-
ment of highly flexible systems using workflow modelling
for a decentralized application including mobile devices as
processing platform.

A. Case study: workflow systems for mobile platform
For illustration we present examples from a case study

out of the workflow systems domain. The system supports
service and maintenance personnel in the engineering in-
dustry by coordination and remote access using mobile
devices. The system in its current state constitutes a proto-
type, which is developed in cooperation by industrial and
academic partners. The development effort accounts for
about 300 person months. The major challenges consist in
scalability, flexibility, and platform independence. As plat-
form technology, web services run on Apache ODE, XML
based models including BPMN and BPEL, and specialized
mobile devices, such as MoPad1, are used. In the examples
in this paper we show a cut-out for information acquisition
via general-purpose and specialized mobile devices.

1 http://www.tonfunk.de/en/produktlinien.html

!
!
!

"#$%&!
!
!
!
!
!

!
!
!

'()#*+,!
!
!
!
!
!

!
!
!

(#-.!
!
!
!
!
!

!
!
!

/01&232!
!
!
!
!
!

!
!
!

4567+8!
/+0+953:!

!
!
!
!
!

!
!
!

$2+&702!
#1928!

!
!
!
!
! ;#-!

<2=165&10>!"#$?&102!"@85=62!A+629!!
2B,501B:2B&!

#1928!
2C=81020!

!
"#$D0+@2!

!

Figure 1. Model interconnection via external repository

B. Requirements for extended modelling
For the case study, BPMN workflow models have to be

extended in multiple ways. Firstly, structural information
has to be represented, such as the organizational structure
of a service enterprise and of customer companies, system
architectures of the technical systems to be maintained,
and the information structure of the service knowledge.
Instead of extending the workflow models it was decided,
that this information is to be represented by related struc-
tural models using UML, for example by class and com-
ponent diagrams. Secondly, variability of the workflow

models has to be expressed, according to different variants
of the system. Again, the decision was not to extend the
workflow models but to establish references to feature
models instead. Thirdly, terms and there relations are rep-
resented by an ontology in order to bridge between natural
language documents, requirements specifications, and
models.

C. Introducing Variability into BPMN Models
The extension of BPMN models by variability is used

here to give another example of model interconnection –
between BPMN process diagrams and feature models. The
extension of BPMN by variability is not discussed in detail
because it is out of the scope of this paper. To represent
variability for different variants of the system, a light-
weight approach for workflow variability is applied. Vari-
able BPMN modules are defined by a model element
group. A variant out of a set of mutually exchangeable
variants is defined as a group with equivalent interfaces –
in terms of both control flow and message flow – within
the set. In Figure 2 there are two groups for the variants
withSearchAssistant and withoutSearchAssistant (framed

D
at

en
ba

se
 re

gi
st

...

GetKeywordList

R
em

ot
e

se
rv

ic
e

un
it

Se
rv

ic
e

te
ch

ni
ci

an

Revise search
requestRevise search request

H
an

dh
el

d

Submit revised search
request

Submit search
request for
feedback

withSearchAssistant

Retrieve related search phrases or keywords

Timeout database retrieval

FeatureSelection-SearchAssistant-Fork

withSearchAssistant

withoutSearchAssistant

FeatureSelection-SearchAssistant-Join

Submit search request

withoutSearchAssistant

Message Timeout database retrieval

Selected databases

Search expression

H
an

dh
el

d

Submit revised search
request

Submit search
request for
feedback

withSearchAssistant

Retrieve related search phrases or keywords

Timeout database retrieval

FeatureSelection-SearchAssistant-Fork

withSearchAssistant

withoutSearchAssistant

FeatureSelection-SearchAssistant-Join

Submit search request

withoutSearchAssistant

Message Timeout database retrieval

Se
rv

ic
e

te
ch

ni
ci

an

Revise search
requestRevise search request

withSearchAssistant withoutSearchAssistant

Search expression

Selected databases

FeatureSelection-SearchAssistant-Fork

FeatureSelection-SearchAssistant-Join

Submit revised search
request

Submit search
request for
feedback

Revise search
request

GetKeywordList

available keyword set

Revised search request

Message Timeout database retrieval

Retrieve related search phrases or keywords

Timeout database retrievalTimeout database retrieval

Revise search request

Submit search request

withSearchAssistant

withoutSearchAssistant

Figure 2. Business process diagram Information Acquisition with two variants modeled as groups

!"#$%&'($")'*+,-.-($")

/'0'1'.2)
.2'%*3))

/$*,&2"0)
.0$%'42)

/$*,&2"0)
0%'".#2%)

/$*,&2"0)
.252*($"))

6,2%7)
829"-($"))

/'0').$,%*2.)
':'-5'1-5-07)
32;)

<2'%*3)
'..-.0'"0)

=**2..)
*$"0%$5)

/$*,&2"0)
&'"'42&2"0)

.7.02&)

Figure 3. Feature model

with a dashed-and-dotted line). A model element gateway
constitutes the so-called hot spot that controls the instantia-
tion of one variant out of the set. The gateway is designat-
ed by a link to the feature Search assistant to show that it
controls the instantiation instead of the control flow. Fig-
ure 3 shows the corresponding part of the feature model,
with Search assistant as a variable feature.

In addition to the behavioural aspects, structural as-
pects have to be modelled to represent data structure, sys-
tem architecture and system environment. Figure 4 shows
a cutout from a UML class diagram as an example.

D. Model interconnection concept of the case study
For the case study, links between elements of BPMN

process models, UML class diagrams, feature models and
OWL ontologies are considered. A cut-out is presented in
this paper. Further UML models such as component dia-
gram and deployment diagram are omitted due to space
reasons. Between this set of model elements there are rela-
tions of several types, both inter-model and intra-model
links. Table 1 shows some of the inter-model links be-
tween BPMN process model elements and UML class dia-
gram elements with their link types. There are several fur-
ther link types such as part-of, abstracts, realizes, instanti-
ates, interprets, substitutes, binds, simulates, verifies, tests,
asserts, requires, imports, includes, invokes, calls, replaces,
and conforms, which are of interest for different validation
and utilization activities. For example, the type of a rela-
tion is used to determine the change impact between model
elements.

For the support of various development activities, the
links are staffed with attributes. For traceability links, de-
sign decisions can be represented by attributes that refer to
goal, design alternatives and choice. For dependencies, a
design rule or principle is referenced by another attribute.
For a support of reverse engineering activities, links have a
confidence factor.

For the identification as well as for validation of the

links, rules can be established. Rules for intra-model links
can be defined based on the respective metamodel. Rules
for inter-model links are defined for corresponding ele-
ments from different models (see Table 1 for examples)
and by definitions of design methods, for example between
an message flow in a BPMN process diagram and a UML
class representing a data structure defined for this message.
In the next section an example for the XML implementa-
tion of a rule regarding a relation to an ontology term is
given (Figure 5).

IV. IMPLEMENTATION OF THE CONCEPT FOR THE CASE
STUDY

A. Tool Infrastructure
To implement our concept of model interconnection

via inter-model links we developed a tool called
EMFTrace, which enables traceability links between mod-
el elements [11]. EMFTrace is based on the EMFStore2

2 https://code.google.com/p/unicase/wiki/EMFStoreNavigation

-query : string {unique}
-database : string {unique}
-listOfTables : string [1..*] {order...
-connectionType : string {unique}

Request

<<XSDlist>>
DataBaseList

-name : string
-address

DataBase

-name : string
-type : string
-size : int

Document
<<XSDlist>>
DocumentList

+retrieveInformation()
+planRoute()
+handleApplication()
+makeAppointement()

<<Interface>>
RemoteServiceUnit

+searchFOrSearchExpression...
+getDocuments()

<<Interface>>
InformationDatabase

+getDatabaseList()
+getKeywordsList()

<<Interface>>
DatabaseRegisteryInterface requests

contains

requests

contains
contains

contains

uses

Figure 4. Class diagram with structural models (partly)

Table 1. Dependencies between BPMN process diagram and UML class diagram (partly)

BPMN process diagram element LinkType UML class diagram element
MessageFlow <use> Class [by Message.ItemDefinition.reference] Property
ServiceTask <isDefinedBy> Operation [Message corresponds to an Operation, which corresponds to a ServiceTask]
SendTask and ReceiveTask <use> Class [Message.ItemDefinition.refrence]
DataObject <instanceOf> Class [by ItemAwareElement.ItemDefinition.Reference]
DataObject(isCollection=true) <instanceOf> Class {where the class or any of it parent classes have an association with the attribite

isComposite=true}
DataStore <isDefinedby> Class
Process, Activities and Events <defines> Class [by Property (is a Container of data for the flow elements(processes, activities and

events) and it is not visible in a process)]
DataInput <instanceOf> Class/Property
DataOutput <instanceOf> Class/Property
Property <instanceOf> Class
CallActivity <uses> Operation defined in a class
Process <refines> Operation
DataAssociation <defines>

<transforms>
Class/Property

model repository [10]. It supports storing and versioning
of Eclipse Modeling Framework (EMF)3-based models as
well as their import and export based on XML technology.
With EMFStore Ecore models4 can easily be integrated in
the repository via code generation.

EMFTrace provides an access layer to EMFStore for
the flexible interconnection with external CASE tools.
Figure 1 in section II shows these interconnections by ar-
rows. For the interfaces between EMFTrace and the other
CASE tools XML technology with XSL transformations is
used. EMFTrace constitutes a platform for several CASE
tools: (a) the Eclipse UML2Tools for UML5, (b) Visual
Paradigm6 for UML and BPMN, (c) the Eclipse-based
jUCMNav7 for modelling requirements with the User Re-
quirements Notation (URN) [8], (d) Protégé8 for ontolo-
gies modelled with OWL, and (e) EMFfit an own tool im-
plementation supporting architectural analysis according to
[7]. Additional CASE tools, such as a toolbox with
knowledge for system development or validation tools for
traceability link evaluation, can easily be integrated.
EMFTrace just has to be extended by additional EMF-
based metamodels in the EMFStore repository and by ad-
ditional XSL transformations.

For the actual dependency identification EMFTrace
uses a rule-based traceability approach. Therefore, we in-
tegrated additional metamodels into EMFStore to maintain
and store traceability links and rules directly in the reposi-
tory. The traceability metamodel provides explicit support
for modelling a hierarchy of dependency types. The types
are stored in specialized catalogues inside EMFStore and
hence implicitly are subject of model versioning. The met-
amodel for traceability rules offers a similar concept of
rule catalogues to manage a set of rules efficiently and is
based on similar approaches as proposed in [18] and [19].
However, we combined our rule-based concept with in-
formation retrieval techniques to improve dependency
detection. For applying the rules to find model relations
and represent them as traceability links, EMFTrace con-
tains a rule engine.

3 http://www.eclipse.org/modeling/emf/

4 http://www.eclipse.org/modeling/emf/?project=emf
5 http://www.eclipse.org/modeling/mdt/?project=uml2

6 http://www.visual-paradigm.com/
7 http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/

8 http://protege.stanford.edu/

B. Model interconnection implementation
For each of the model types BPMN, UML, OWL and

feature model a metamodel is implemented with Ecore to
be compatible with the Eclipse Modeling Framework and
with EMFStore. In this way editor code for elementary
model manipulation can be generated. Using EMFStore
the models can be stored and versioned, and an XML rep-
resentation can be derived as well. To integrate concrete
model instances of the different types, e.g. a BPMN model
from Visual Paradigm, the XML representation of the ex-
ternal tools has to be transformed into EMFStore’s XML
format using XSLT templates. The import and export pro-
cedure using XSLT has been encapsulated in EMFTrace
functionality.

All relevant parts of the metamodels of the different
modelling languages are covered by the Ecore model in
EMFStore and EMFTrace. For UML and BPMN, all mod-
el elements of the valid standard are covered. However,
the XML export of different CASE tools contains addi-
tional information that is kept separately instead of import-
ed to the repository.

Using the features of EMFTrace the different models
can be integrated into one model repository to establish
dependency links by applying rules. Some dependency
links for the diagrams of the example are shown in Table
1. Further examples are
− Gateway FeatureSelection-SearchAssistant-Fork

(BPMN process model) <realizes> Feature Search as-
sistant (Feature model)

− Component RemoteServiceHandheld (UML compo-
nent model) <realizes> Pool Remote service unit
(BPMN process model)

− Term Role-based access control (Ontology) <defines>
Use Case Assign rights (UML model) <realizes> Fea-
ture Access control (Feature Model)

C. Link determination and discovery
Import interfaces of EMFTrace provide the creation of

intra-model links within the repository. For the establish-
ment of inter-model links, rules are applied. There are
rules for the identification of corresponding model ele-
ments as well as rules for the discovery of inter-model
dependencies.

Following the general design proposed in [18] and
[19], our rules for dependency discovery and link determi-

<TraceRule RuleID="TraceRule61" Description="Find similarities between UML-Components and OWL-Classes">
<Elements Type="Class" Alias="e1"/>
<Elements Type="Component" Alias="e2"/>
<Conditions Type="And">

<BaseConditions Type="NotNull" Source="e2::umlID"/>
<LogicConditions Type="Or">

<BaseConditions Type="Contains" Source="e1::IRI" Target="e2::name"/>
<BaseConditions Type="Contains" Source="e1::abbreviatedIRI" Target="e2::name"/>

</LogicConditions>
</Conditions>
<Actions ActionType="CreateLink" LinkType="Overlap" LinkSource="e1" LinkTarget="e2"/>

</TraceRule>

Figure 5. XML Rule for links between corresponding elements UML component and OWL class [11]

nation comprise three parts as listed below, whereas each
part is responsible for a certain task:

Element definition: What models are effected by the rule?
Query: How are models related?
Result definition: What should be done with related

models?
The rules can be edited in the repository or created with an
XML editor. Figure 5 shows an example rule for the corre-
sponding elements UML component and OWL class,
which results in a traceability link of the type overlap.

D. Link exploitation: examples for utilization
The links constitute an important part of the infor-

mation represented by the models. Due to our concept of
an identical treatment of intra-model and inter-model links,
their exploitation does not demand any changes of meth-
ods and algorithms. Moreover, the extended set of links
enables more ways, a greater depth, and a more compre-
hensive scope of their exploitation. Here some examples:

Variability. For a family of products with variability
regarding workflows, the development of a new product
demands an instantiation of the workflow model. This can
be performed automatically by a configuration if the varia-
ble groups according to the selected features. For our case
study, the definition of a product without the feature
Search assistant (Figure 3) would lead to a configuration
of the process model (Figure 2) with the group with-
outSearchAssistant. The configured workflow model can
be transformed to a BPEL model and can be executed
without manual effort.

Workflow execution. A linkage between workflow
models and structural models by references enables a more
sophisticated workflow control. For example, a condition
regarding the organizational unit, in which a service engi-
neer currently works, is used to control the selection of the
queried databases for information acquisition (part of the
case study, but not covered by Figure 2.

Evaluation of design quality. Traceability links can
be used to calculate metrics for design quality criteria,
such as modularity, separation of concerns and complexity
[3].

Deployment. Architectural models representing the
deployment view for example using UML deployment
diagrams can be used to control the execution of BPEL
fragments. References between a BPMN service task in a
process diagram and a computing device in a UML de-
ployment diagram can be used to control the configuration
of a workflow system.

Analysis and validation. Relations between require-
ments specifications, requirements models such as UML
use case diagrams, test specifications and similar can be
evaluated to check coverage and consistency.

V. RELATED WORK
The approaches for model integration and multi view

modelling [1] are strongly related to our work. Jossic et al.
[9] presented a transformation-based approach to establish
links between models. They defined an equivalence func-

tion to establish the links between models by matching the
similarities of the models. In our approach we are also
using rules to discover the traceability links, however, our
rules not only rely on the notion of similarity but also con-
sider structural information of the models and many differ-
ent links types.

Eramo et al. [5] also used the concepts of multi view
integration, however, they store the correspondences be-
tween several models as relations within models. This
leads to model pollution and is not a feasible option for us.

Repositories typically support model-based develop-
ment by providing a shared place for automated model
management and versioning. As a basis for our approach
we considered seven model repository projects. The main
decisive criteria for their evaluation were maturity, sup-
ported features as synchronisation of changes, extensibil-
ity, usability, and available documentation. The CDO
Model repository9 and EMFStore were evaluated to be the
most suitable repositories for our approach to link EMF-
based models. Finally, EMFStore was chosen as the model
repository providing the basis for EMFTrace.

Since we want to link models expressed with model-
ling languages as BPMN, UML, or OWL we need corre-
sponding metamodels. These metamodels need to be rep-
resented as Ecore models to cooperate with the EMF-based
repository. The Eclipse Model Development Tools (MDT)
provide such an implementation of UML as an Ecore
model with their UML2Tools project. For BPMN such an
Ecore model is available as well.

A contrary approach to ours is the Unicase project10
which is also based on EMFStore. Unicase relies on a gen-
eral unified metamodel comprising several artefacts from
different development phases such as requirements, use
cases, UML models, or project planning schedules. In this
way it inherently provides traceability support. However, it
does not support the complete standardized UML meta-
model and no well-established modelling tools. Instead,
the approach forces the developer to rely on the one Uni-
case tool, which seems not to be applicable in practice.
Unicase does not fit to the needs of our project because it
does not support BPMN.

Most of the approaches on the interconnection of
BPMN with other models in the literature deal with the
dependencies of process models on other process models.
Most of these dependencies are about order of activities in
a process model, parallelism, alternatives and time de-
pendencies. Grossman [5] and Sell [17] do not deal with
the dependencies of process models on other requirement,
structural design and data models. For the representation
of dependencies, metamodel based and ontology based
approaches are used [17].

Approaches for variability in workflow models such as
BPMN are presented in several works, for example the
ones reviewed in [15].

Furthermore, some approaches in the literature empha-
size the need of considering relations of processes with

9 http://wiki.eclipse.org/CDO

10 http://unicase.org/

other software artefacts such as state machines to represent
object life cycle and other organizational models [2][16].
However, the specific type of dependencies between sev-
eral models and how they can be extracted is not focused.

The most prominent approaches on dependency dis-
covery stem from requirements traceability and model-
driven development [21]. They use traceability links to
express dependencies with auxiliary information for track-
ing the development activities. The concept traceability
links enriched with semantic information such as link
types and attributes is most suitable to explicitly express
model dependencies with additional information needed
for further analyses.

Since model-driven approaches express dependencies
between the models subject to transformations (as for ex-
ample in [4] for BPMN and BPEL), they can be fully au-
tomated. However, they are limited to these transfor-
mations and depend on the expressiveness of the transfor-
mation languages.

Requirements traceability approaches utilize either
rules or information retrieval techniques to create links.
Information retrieval approaches as proposed in [12] or
[14] base their links on similarities between identifiers of
model elements and therefore are easy to adopt to new
models and data. They provide good recall, however, they
lack an appropriate precision. Moreover, the absence of
additional dependency information limits their usability for
dependency detection among models.

In contrast, rule-based approaches seem to be more
promising for inter-model linkage. They require more
work to be adapted to new models or data since new rules
have to be defined, but their precision is well above results
achieved through information retrieval. Therefore they
result in more reliable links. Rule-based approaches as
proposed by [18] and [19] are able to provide auxiliary
information on dependencies, such as the type of the de-
pendency specified by the rule. Well-defined dependency
types are inevitable to identify semantically rich depend-
encies and classify them properly into several groups as
for example proposed in[19]. However, neither of the ap-
proaches is concerned with tracing BPMN and related
models.

VI. CONCLUSION
In this paper we have shown, how separate models can

be used to represent the different relevant aspects of the
real world. As bridges between the models we have pre-
sented cross-model links, which are dependency relations
by nature. Traceability links are covered by this concept
because they are of the same type. The cross-model links
are stored in an external, joint repository with all related
models side-by-side. We have shown this concept for
models of the workflow system domain, for the modelling
languages BPMN, UML, feature model and OWL. For the
determination and the establishment of the links we have
applied rules both for the identification of corresponding
elements in different models and for the identification of
depending elements in different models. The major benefit
of the rule-based determination compared to other ap-

proaches consists in high precision and recall values for
the established links.

VII. FUTURE WORK
The implementation of the concept is an ongoing work.

Further modelling languages have to be included, such as
for requirements and test specification. Furthermore, addi-
tional instruments for a more comprehensive evaluation of
model quality by rules shall be developed. A classification
of link types constitutes another issue relevant for the
evaluation and utilization of the represented information.
Based on them, other means for utilization are subject of
ongoing research, for example for design decision support
and for test case generation. Furthermore, the management
of the modelled information in a distributed way leads to
other challenges to modelling languages and tools: expres-
siveness, synchronization of changes, and analyses for
cross-model consistency.

VIII. ACKNOWLEDGEMENT
The research presented in this paper was partly funded

by the Federal State Thuringia and the European Regional
Development Fund ERDF through the Thüringer Aufbau-
bank with project no. 2007 FE 9041.

IX. REFERENCES

[1] M. Barbero, MD. Del Fabro, and J. Bézivin, Traceability and
Provenance Issues in Global Model Management. In: 3rd
ECMDA-Traceability Workshop. 2007.

[2] M. Bhuiyan, M.M. Zahidul Islam, G. Koliadis, A. Krishna, and A.
Ghose, Managing Business Process Risk Using Rich
Organizational Models, Proc. Computer Software and Applications
Conference, 2007. (COMPSAC-2007), pp. 509-520.

[3] R. Brcina, S. Bode, M. Riebisch: Optimisation Process for
Maintaining Evolvability during Software Evolution. In: Proc. 16th
IEEE Conf. Engineering of Computer Based Systems
(ECBS2009), IEEE CPS, 2009, pp. 196-205.

[4] G. Doux, F.Jouault, and J. Bézivin, Transforming BPMN process
models to BPEL process definitions with ATL. In GraBaTs 2009 :
5th International Workshop on Graph- Based Tools, 2009.

[5] R. Eramo, A. Pierantonio, J.R. Romero, and A. Vallecillo, Change
Management in Multi-Viewpoint System Using ASP, Proc. of the
5th Int. Workshop on ODP for Enterprise Computing (EDOC
2008), pp. 433 - 440.

[6] G. Grossmann, M. Schrefl, and M. Stumptner, Modelling inter-
process dependencies with high-level business process modelling
languages. Proc. 5th Asia-Pacific Conf. Conceptual Modelling
(APCCM '08), Australian Comp. Soc., 2008, pp. 89-102.

[7] C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture. Boston, MA, USA: Addison-Wesley, 2000.

[8] ITU-T, Recommendation ITU-T Z.151 User requirements notation
(URN) – Language definition, ITU-T, Nov 2008.

[9] A. Jossic, M. Didonet JP. Del Fabro, Lerat, J. Bézivin, and F.
Jouault, Model Integration with Model Weaving: a Case Study in
System Architecture In: ICSEM'07 - International Conference on
Systems Engineering and Modeling. Israel, March 2007

[10] M. Koegel, and J. Helming, EMFStore: a model repository for
EMF models, in Proc. Int. Conf. on Software Engineering
(ICSE’10). ACM, 2010, pp. 307–308.

[11] S. Lehnert, Software architectural design and implementation of a
repository for cross-model traceability (in German), Diploma
thesis, Ilmenau Univ. of Technology, 2010.

[12] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, Recovering
traceability links in software artifact management systems using
information retrieval methods, ACM Trans. Softw. Eng.
Methodol., vol. 16, no. 4, Article 13, Sept. 2007.

[13] B. Mahr, Position Statement, Models in Software and Systems
Development in ECEASST, 30, 2010. http://journal.ub.tu-
berlin.de/index.php/eceasst/article/view/437

[14] A. Marcus and J. I. Maletic, Recovering documentation- to-source-
code traceability links using latent semantic in- dexing, in Proc.
Int. Conf. on Software Engineering (ICSE’03), IEEE, 2003, pp.
125–135.

[15] I. Montero Perez, A Methodology Fragment For Developing
Families of Business Information Systems. Improving The Design
of Business Families for Service Oriented Architectures, PhD,
Univ. of Seville, 2009.

[16] K. Ryndina, J.M. Küster, and H. Gall, Consistency of Business
Process Models and Object Life Cycles, Univ. Eindhoven, 2006.

[17] C. Sell, M. Winkler, T. Springer, and A. Schill, Two Dependency
Modeling Approaches for Business Process Adaptation, in: D.
Karagiannis and Z. Jin, Eds., Knowledge Science, Engineering and
Management, Springer, 2009, pp. 418-429.

[18] G.Spanoudakis, A. d’AvilaGarces, and A. Zisman,Revising rules
to capture requirements traceability relations: A machine learning
approach, in Proc. Int. Conf. in Software Engineering and
Knowledge Engineering (SEKE 2003). Knowledge Systems
Institute, Skokie, 2003, pp. 570–577.

[19] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause,
Rule-based generation of requirements trace- ability relations, JSS,
vol. 72, no. 2, pp. 105–127, 2004.

[20] G. Spanoudakis and A. Zisman, Software traceability: A roadmap,
in Handbook of Software Engineering and Knowledge
Engineering, C. S. K., Ed. River Edge, NJ: World Scientific
Publishing, 2005, vol. III, pp. 395–428.

[21] S. Winkler and J. von Pilgrim, A survey of traceability in
requirements engineering and model-driven development, Softw.
and Syst. Model., vol. 9, no. 4, pp. 529–565, 2010.

