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Abstract—Testing process-based information systems is cost
intensive and challenging due to rapid technological advance-
ment and increasing complexity of processes. A number of
existing process-based test generation approaches use process
code for test generation. They operate on lower levels of ab-
straction and start the test activity later in the development cy-
cle, which is not feasible. Other model-based testing approaches
focus only on the individual behavior of a process. They do
not consider the structural aspects and process interactions;
thus, are not able to capture different test views. In this
paper, we present a model-driven test generation approach
that uses UML class and component diagrams to model
the structural aspects, and BPMN collaboration diagrams
to model the collaborative behavior of business processes.
Models from both views are used as input to generate the test
specifications, which are expressed as of UML 2 Testing profile
(U2TP) elements. To identify the correspondences between the
process structure, behavior and the test view, we analyze the
semantics of UML, BPMN, and U2TP. We developed mapping
rules to realize these correspondences for the generation of
U2TP test specifications from UML and BPMN models. Our
mapping rules are implemented as model transformations using
the VIATRA model transformation framework. We illustrate
the approach using an example scenario to demonstrate its
applicability.

Keywords-MDA; Model-driven Testing; BPMN; U2TP; Busi-
ness Process Test Generation.

I. INTRODUCTION

Testing enterprise software systems is essential to ensure
the quality of the systems supporting the underlying busi-
ness processes. However, due to the increasing complexity
of processes and rapid technological advancement, testing
requires high effort and huge investments. Furthermore,
early testing is required to save project costs. This can be
achieved by deriving the test specifications from the process
design specifications. However, most of the existing business
process-based testing approaches use low level artifacts
for test generation, such as process code or web service
description language (WSDL) [1][2][3][4], which is often
not available in the early phases of software development.

To deal with this issue, Model-driven testing (MDT) [5]
for enterprise business processes has been introduced [6][7].

It enables the test generation from the high level process
models instead of process code; thus, enabling testing ac-
tivity in the early phases of the development life cycle.
This results in reduced costs and cross platform portability
of the test suites. Model-driven testing uses the concept of
model transformations to transform the platform independent
design models into platform independent test suites. Later,
concrete test specifications or test code can be generated
from these test models [5]. Hence, to support the model-
driven test generation for process-based information sys-
tems, there are three major requirements; (1) the availability
of a platform independent process modeling language, (2)
the availability of a test modeling language to support test
visualization and documentation, and (3) the support for
model transformations for the test generation.

In this paper, we present a model-driven test genera-
tion approach for process-based information systems. To
meet the first requirement, the artifacts required to model
different views of process-based information systems are
to be analyzed [8]. These different system views include
the Process View, Resource/Structure View, Behavior View,
and the User Interface view [8][9]. The existing model-
based testing approaches in the literature only focus on the
behavioral view of the processes for the test generation.
However, the information from other system views can
also be used to generate parts of the test specification.
For example, the structural system view can be modeled
using the UML class diagram and component diagram. The
information about the system structure can be obtained from
these models to generate the test architecture and test data
[10].

In our approach, to model the process and behavior view
we use BPMN collaboration diagrams, while modeling the
structural view of the system using the UML component and
class diagrams. Both UML and BPMN are standards from
the Object Management Group (OMG)[11], [12]. We use
the process modeling guidelines from the UML-based Web
Engineering (UWE) [13] approach and the Service Oriented
Architecture Modeling Language (SoaML) [14].



To fulfill the second requirement, which is support for
the test modeling, we use U2TP [10], which is also a
test modeling standard from OMG. U2TP covers several
important test modeling issues, such as, modeling the Test
Architecture, Test Behavior, Test Data, and Test Time. In
this paper, we focus primarily on the generation of U2TP
test architecture and test behavior for business process-
based testing. Finally, to support the third requirement, we
identify the correspondences between the design artifacts
and test models and develop the mapping rules using these
corresponding elements. These mappings are defined by an-
alyzing the semantics of the BPMN collaboration diagrams,
UML class and component diagrams, and the U2TP test
models. The mapping rules are implemented in the form
of model transformations. We used Viatra Transformation
Control Language (VTCL), which is a model transformation
language provided by the VIATRA model transformation
framework [15] for the implementation of our transforma-
tions. The rest of this paper is organized as follows.

Section II discusses the related work and analyzes the
strengths and weaknesses of business process-based test-
ing approaches. Section III provides an overview of our
approach. Section IV discusses our model-driven test case
generation approach in detail and also presents the mapping
rules for the test generation. Section V conferes the imple-
mentation details and Section VI illustrates the application
of the approach on an example scenario. Finally, Section
VIII concludes the paper and discusses the future directions
of our work.

II. RELATED WORK

Most of the process-based test generation approaches de-
rive the test cases from the process code. These approaches
either generate test paths directly from the code, based on
data and control flow information [16], [17], or translate the
code into formal specifications languages like Petri-nets [2],
[3], [18], to perform the model checking and test derivation.
One of the major disadvantages of these approaches is that
the tests cannot expose the deviations from the functional
specifications, as the tests are directly derived from the code.
Moreover, the testing activity can only be started after the
development is complete, which increases the cost as well
as the time allocated to the testing phase.

Werner et al. [4] use the WSDL process specifications
for the test generation. They only consider the interfaces of
the processes; thus, generate only black box test cases from
them and do not consider the internal control flows or data
flows of the system.

There are a few approaches focusing on model-based test
generation for process-based systems. Bakota et al. [1] use
a graph like notation for the process specification, where the
nodes of the graph represent activities with distinct input and
output parameters. The category partition method is used
to derive test data for individual activities. They generate

the test paths based on the data values and then convert
them into the test frames. The approach presents interesting
concepts but targets only the data-based process specification
languages. The process models in BPMN support many
additional activity types and events and they should also
be considered during the test generation.

Heinecke et al. [19] present an approach for test genera-
tion, where a process is specified using activity diagrams.
However, like Bakota et al, Heinecke et al. also do not
support event-based process specifications for the test gen-
eration. The major distinctions of our approach from the
approaches of Heinecke et al. and Bakota et al. are that we
not only support events and various activity types during
the test generation, we also use the concept of holistic
modeling and test generation. Thus, we focus not only on the
behavioral aspects, but also consider the structural aspects
of the tests during the test generation.

Yuan et al. [7] present a model-driven test generation
approach for process-based systems. Our approach is also
using the same foundations as Yuan et al., however, their
work is only an initial idea and lacks details regarding the
test generation activities and the rules. Moreover, their work
focuses only on the test architecture generation and lacks
the test behavior generation aspect.

The model-based test generation approaches for testing
business processes discussed in this section, do not consider
a holistic view of the system during the test generation
and rely only on behavioral artifacts, such as graphs or
activity diagrams. However, as discussed earlier, the artifacts
representing different views of a process-based system can
provide input to generate different test views and thus,
should be considered during the test generation. In the next
section, we present our holistic model-driven approach that
uses the artifacts from the structural, behavioral and process
views of the system for the test generation.

III. OVERVIEW OF THE APPROACH

To perform effective model-based testing of process-
based systems, the first step is to select an appropriate
modeling methodology, and model the system architecture
and business processes. After that, a quality assurance (QA)
analyst can review the models for testability. This includes
checking the models for completeness and validating any
constraints required to generate the test specification. In the
next step, a test generation tool can generate abstract test
specifications using these models. We discuss these steps in
detail in the following subsections.

A. Business Modeling using UWE and SoaML

As discussed earlier, we model the system architecture
and the processes using the UWE [13] and SoaML [14]
approaches. Since the focus of this paper is on the test
generation by analyzing process interactions and structural



aspects of the system, we briefly discuss the artifacts we use
from these approaches and their specifics.

The UWE approach originally uses an activity like model
to model the processes. However, instead of using that, we
use BPMN collaboration diagrams and process diagrams to
model the behavior of interacting and atomic processes. To
model the structural aspects of the system, we use the UML
class diagram. Using the UWE approach, each process itself
is modeled as a class with a stereotype «ProcessClass» and
the data and resources of the system are modeled as classes
with a stereotype «entity». From the SoaML approach, we
use the component models to define the high level structure
of process-based systems.

As discussed earlier, once the models are complete, they
should be analyzed for testability. Testability is an important
property of the model because a less testable model can
results in poor test cases. The testability requirements of
our approach are discussed in the following.
→ Completeness: The artifacts used as input are complete

and all the processes have their corresponding struc-
tures defined in the corresponding UML class diagram.

→ Since handling of multiple entry and exit points is
complex, we restrict a collaboration diagram to exactly
one start and end node within one pool to reduce
additional complexity

→ To ease the testing, we restrict each Pool in the collab-
oration diagram, to have a corresponding component in
the component diagram with well defined interfaces for
access. A lane can map to a process class or a service
class in the UML class diagram.

Once the models are complete and reviewed by a QA
expert for testability, they can be used to generate the test
specifications. In the next section, we discuss the foundations
of our model-driven test generation approach, and in the later
sections we elaborate the approach in more detail.

B. The Abstract Test Specification Generation

As discussed earlier, we use U2TP for the specification of
the test architecture and test behavior. The following tasks
are to be performed for model driven test generation using
our approach.

1) Generate the test architecture by analyzing the struc-
tural system models, which are in our case UML class
and component diagrams.

2) Transform the test architecture into a class diagram to
support the test visualization.

3) Generate the test behavior from BPMN collaboration
models in the form of test paths. These test paths can
be constructed using path analysis algorithms from the
graph-based test generation approaches using a certain
coverage criterion.

4) In the next step, the generated paths are transformed
into UML activity diagram paths. This transformation

satisfies the second requirement stated in the introduc-
tion section of this paper. At this stage the tester can
analyze each individual test path and add the additional
information, such as test verdicts etc.

Test data can also be generated by using process constraints
and data resources defined in the structural models; however,
the test data generation is out of scope of the current
paper. In the next section, we discuss our model-driven test
generation process and the above discussed tasks in detail .

IV. THE MODEL-DRIVEN TEST GENERATION PROCESS

To generate the test specifications, we adapted the classic
model-driven test generation process by Dai et al. [5]. This
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Figure 1. The Example Software Architecture of a Banking Example

process involves the transformation of a platform indepen-
dent model (PIM) into a platform independent test model
(PIT). The upper part of Figure 1 shows this pattern from
Dai et al. [5], where a PIM model is transformed to a PIT
model.

The lower part of Figure 1 shows our adaptation of the
process for the generation of U2TP test architecture and test
behavior using UML and BPMN models. The test models
in U2TP should cover the structural and behavioral aspects
of the test system. These aspects can be derived from the
structural and behavioral specification of the system. To do
this, we transformed the platform independent UML class
and component diagrams representing the structure and re-
sources of the processes into U2TP test architecture models.
For the test behavior generation, the platform independent
BPMN Collaboration diagrams and process diagrams are
transformed into U2TP test behavior, which represents the
abstract platform independent test specification.

To define these transformations, the mapping relations
between the elements of source and target languages are
to be identified. We identify these mapping relations by
analyzing the correspondences between the relevant ele-
ments of these languages. The elements and semantics of
the UML class and component diagrams, BPMN process and
collaboration diagrams, and U2TP test models are defined
in their respective meta-models[11], [12], [10].

We define the mapping relations in the form of mapping
rules. In principle, a mapping rule realizes a mapping
relation that represents a correspondence between the rel-
evant source model and the target model of a particular
transformation.



We define a mapping rule as a 4 tuple (Source Element,
Target Element, Rule Preconditions, Rule Postconditions),
where the Source Element is an element of the source
PIM model, i.e., UML or BPMN, and the Target Element
is an element in the target PIT model, i.e., U2TP. The
Preconditions define any constraints for the execution of the
rule and the Postconditions define the changes in the state of
the target test models, such as the addition of new elements.
An example of such a rule is presented in Listing 1. In the
next subsections, we discuss both U2TP test architecture and
test behavior generation activities, and the mapping rules we
developed to define the transformations in detail.

A. Generation of U2TP Test Architecture

The test architecture is a representation of the structural
aspects of a test system. To define the test architecture,
U2TP provides several elements. These elements are: System
Under Test (SUT), Test Arbiter, Test Scheduler, Test Context,
and Test Components. To specify the test architecture to
test a process, these elements are required to be specified.
For this purpose, we analyze the elements representing the
process structure and derive the test structure from these
elements.

Source Element : C las s , T e s t package : CDSA

Target Element : C las s , A s s o c i a t i o n : CDTA

P r e c o n d i t i o n s :
1 . ∃Class.C ∈ CDSA

2 . ∃ S t e r e o t y p e . P r o c e s s C l a s s ∈ C
3 . ∃ U2TP . T e s t P a c k a g e (TP | TP ∈ CDTA);
4 . C ∈ TP
5 . ∃ BPMN. C o l l a b o r a t i o n Diagram (CD | CD ∈ C);
P o s t c o n d i t i o n s :
6 . ∃Class.T ∈ CDTA

7 . T . Name=C . Name
8 . ∃ S t e r e o t y p e . SUT ∈ T
9 . ∃Dependency.Import.A ∈ CDTA

1 0 . A ∈ TP,A ∈ T

Listing 1. A Mapping Rule for SUT

To represent the test architecture, U2TP proposes the UML
class diagram notation with stereotypes for the U2TP ele-
ments. We refer to the class diagram representing the test
architecture as CDTA, and the class diagram representing
the system architecture as CDSA in the our mapping rules.
In the following, we discuss, how we derived the test
architecture elements from the UML class and component
diagrams, which represent the system structural aspects.

In the UWE process modeling approach, a class cor-
responding to a collaborative process is represented by a
stereotype «ProcessClass». Since a Process Class defines
the process representing interactions between several par-
ticipants, it is a candidate class for testing the collaborative
process. This means that this class can be treated as a system
under test or process under test. Hence, we map each Class
with a stereotype «ProcessClass» in the CDSA to a System
under Test (SUT) in the CDTA. This mapping is realized
by the mapping rule presented in Listing 1.

According to the rule, there are three preconditions in the
Preconditions part. The first precondition (Line 1 and 2)
states that a class named C with the stereotype «Process-
Class» should exist in the system architecture class diagram
CDTA. The second precondition (Line 3 and 4) indicates
that a corresponding Test Package should be present in the
test architecture class diagram, and the third precondition
(Line 5) ensures that a BPMN collaboration diagram is
present that corresponds to the process class C. The presence
of a test package is required due to the reason that each test
related element of a particular process class is packaged into
one particular test package for better test organization [5].

In the postcondition part, a type Class T with a stereotype
«SUT» corresponding to the class C is created in the test
architecture class diagram CDTA (Line 6, 7, and 8). Since
elements of a test package require the SUT for the test
execution [5], an import dependency A is created between
the test package TP and the SUT class T (Line 9 and 10).

To map the other elements in the test architecture, such
as the Test Context and the Test Components, we developed
mapping rules like the one shown Listing 1. The rules to
generate the test components are more complex as they
require additional information from the UML component
diagram and the BPMN collaboration diagram. Due to the
space limitations, it is not possible to include all of these
rules in the paper; however, a subset of these rules is
available on our website for additional reading[20]. After
establishing the mappings for the U2TP test architecture,
the next step is to develop the mappings to generate U2TP
test behavior, which is explained in the next section.

B. Generation of U2TP Test Behavior from BPMN Collab-
oration Diagrams

In this section, we discuss our test behavior generation
process and the mapping rules we developed for the test
behavior generation. Our test behavior generation process
comprises of two major tasks; the generation of test paths
from BPMN collaboration diagrams, and the transformation
of these test paths into UML activity diagram test cases. The
generation of the test paths is dependent on the selected
coverage criteria. However, the activity of mapping the
test paths onto the activity diagram test cases should be
independent of the coverage criteria and test path generation
strategies. So that it can be reused with different coverage
criteria and path generation activities. To enable such reuse,
we split our test generation process into three sub activities,
as depicted in Figure 2.

According to Figure 2, the first activity prepares the
BPMN collaboration diagram for test path generation by
extending it with some information required by the path
extraction algorithms. The algorithm we use in this work
uses the distance information for the selection of test paths.
Thus, the distance of each node from the end node is
computed, and the nodes are annotated with this information.
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Figure 2. Test Behavior Generation Activities

The output of this activity is a diagram extended with
distance information. In the second activity, the test paths
are extracted from the extended collaboration diagram based
on some coverage criterion. In this paper, we use the branch
coverage criterion, which is further explained in the next
subsection. Finally, during the third activity, the generated
paths are transformed into UML activity diagrams to support
the visualization and test documentation.

In U2TP, the test behavior can be specified using either the
UML sequence diagrams or the UML activity diagrams. In
this work, we selected the UML activity diagram notation for
the test behavior specification due to its natural similarity to
the process specifications. As discussed earlier, the mapping
activity to map the test paths onto UML activity diagrams
is independent of the test path generation activity; thus,
it can be reused with multiple coverage criteria. In the
following subsections, we discuss the test path generation
and the details of mapping the test paths onto UML activity
diagrams.

1) Generate Test paths: To enable the test path generation
from BPMN collaboration diagrams, we use the branch
coverage criterion. This criterion covers all the gateways
in the diagram for all possible outcomes, and covers each
loop once. For computing the test paths, we first compute
the shortest path in the collaboration diagram by using the
Dijkstra algorithm [21]. The reasons for using the Dijkstra
algorithm for computing the shortest path first is that in
our test suite, the first test case will always contain the
shortest execution path. In the case of limited testing budget,
execution of this test case can provide the confidence about
at least one process path execution with the minimum cost
overhead.

For the calculation of other paths in the diagram we use
a Depth First Search (DFS) algorithm with backtracking
[22]. The reason for selecting the DFS is its ability to
cover all the branches of a graph by visiting all child nodes
of a node and to backtrack, when the end node or an
already visited node is found. When a node is added to
a path, all the information of the node is also copied. If
the node corresponds to a send, receive, or service task, the
information about the related pools is also copied with that
task. BPMN collaboration diagrams can contain parallelism
by using the parallel gateways in the diagram. To deal with
it, one of the simplest strategies can be to place all the
branches of the gateway in a sequential order [1]. However,
more complex execution strategies can exist. We are treating
all the branches of a parallel gateway as one test case and

defer the decision of their execution strategies to the concrete
test generation activity. After the generation of the test paths,
the next activity is to map each test path onto a UML activity
diagram, which is discussed in the next section.

2) Transform Test Paths to UMLAD: The transformation
of the test paths extracted in the previous steps to a UML
activity diagram requires the identification and definition
of mappings between the elements of BPMN collaboration
diagram and UML activity diagram. These mappings can be
identified by analyzing the constructs of BPMN collabora-
tion diagram and the corresponding elements in the UML
activity diagram. Based on these correspondences, we de-
velop the mapping rules, which realize the correspondences
or mapping functions.

Source Element : C o l l a b o r a t i o n : Message S t a r t Event
Target Element : A c t i v i t y : I n i t i a l Node , Accep tEven tAc t ion ,

S i g n a l E v e n t , C o n t r o l f l o w
P r e c o n d i t i o n s :
∃ BPMN. Pool (X)∨ BPMN. Lane(X);
∃BPMN. E v e n t S t a r t M e s s a g e (Start | Start ∈ X);
∃UML. A c t i v i t y P a r t i t i o n (AP | AP ∈ X);
P o s t c o n d i t i o n s :
∃ UML. I n i t i a l N o d e (I | I ∈ AP );
∃ UML. A c c e p t E v e n t A c t i o n ( a c c e p t | a c c e p t ∈ AP , name ( a c c e p t )

=name ( S t a r t ) + ’ A c c e p t A c t i o n ’ ) ;
∃ UML. O u t p u t P i n(OP | OP ∈ accept);
∃ UML. T r i g g e r ( t r i g g e r | t r i g g e r ∈ a c c e p t , name ( t r i g g e r ) =

name ( S t a r t ) + ’ T r i g g e r ’ ) ;
∃ UML. S i g n a l E v e n t (te | te ∈ trigger);
∃ Con t ro lF low(cf | cf(I, accept));

Listing 2. An excerpt of the Mapping Rule for Message Start Event

BPMN collaboration diagrams comprise of a set of start,
end, and intermediate nodes, tasks and activities, pools
and lanes, control flows and message flows, gateways, and
several data elements. A mapping function or mapping rule
is required to be defined between each of these elements and
their corresponding activity diagram elements.

In the following, we provide an example of a mapping
rule that maps a start event in BPMN collaboration diagram
to the corresponding activity diagram elements. The start
and end nodes in a BPMN collaboration diagram can be
mapped to the Initial Node and Final Node in the UML
activity diagram. However, BPMN collaboration diagrams
have many different types of start and end nodes, such as,
Message Start Event, Empty Start Event, Timer Start Event,
and many others. Since the UML activity diagram has only
one Initial Node type, it can be mapped to only one type
of start event in BPMN collaboration diagrams, i.e., Empty
Start Event. For the remaining events, more complex patterns
are required to be identified in the UML activity diagrams.

An example of such event is the Message Start Event.



The mapping rule for the Message Start Event is depicted
in Listing 2. According to Listing 2, a Message Start Event
can be mapped to an Initial Node followed by an Accept
event Action in a UML activity diagram. The preconditions
stated in the preconditions part specify that in the BPMN
collaboration diagram, either a Pool or a Lane X exists and
the Message Start Event belongs to that Pool/Lane. The next
precondition is that an Activity partition exists corresponding
to the Pool/Lane X . We map a Pool or a Lane in the BPMN
collaboration diagram to an ActivityPartition element in the
UML activity diagram. This ActivityPartition is a container
for other elements such as Tasks, Events and ControlFlows
in the activity diagram.

The postcondition part is rather complex. It states that an
Initial Node in the UML activity diagram is created, which
is followed by an AcceptEventAction. The trigger of this
action is a Signal Event. A Control Flow is added between
the Initial Node and Accept Event Action to maintain the
sequential dependency between both. Due to the space
limitations, it is not possible to discuss all the elements and
their respective mapping rules in this paper. However, Table
I depicts a subset of the mappings between the elements of
BPMN collaboration diagram and UML activity diagram.
A complete set of mapping rules is available at our project
website [20]. After each test path is mapped to an activity

Table I
MAPPING SUBSET:COLLABORATION ONTO ACTIVITY DIAGRAM

Collaboration Elements Activity Elements

Pool ActivityPartition

SequenceFlow ControlFlow

Gateway DecisionNode

EmptyTask/None Action

SendTask when target is a non-service
Task or Pool

SendSignalAction

SendTask when target is a service Task CallOperationAction

ReceiveTask AcceptEventAction

A Task calling a ServiceTask CallOperationAction

EmptyStartEvent/EmptyEndEvent InitialNode/FinalNode

diagram, the test case definitions are added to the Test
Context class as test operations in the test architecture class
diagram. The interface of these operations can be generated
by analyzing input data required by each path.

V. TRANSFORMATION IMPLEMENTATION USING VIATRA

We implemented our test generation approach and the
mappings using the model transformation framework VIA-
TRA [15]. VIATRA provides a rule-based language VIATRA
Textual Command Language (VTCL) for the implementation
of model transformation rules. The rule-based structure of
VIATRA makes it suitable for the implementation of our
mapping rules.

The basic construct of VTCL is a Graph Transformation
Rule (GT-Rule). A GT-Rule is comprised of a precondition

part, a postcondition part and an action part. When a
precondition pattern of a GT-Rule is matched in the source
model, it creates an image of the postcondition pattern in the
target model. Our mapping rules can be seen as an abstract
form of a GT-Rule and are easily translatable to the concrete
executable GT-Rules. The models we use to implement
the transformations conform to the meta-models of UML,
BPMN, and U2TP.All the meta models are implemented as
Eclipse plugins using the EMF framework [23].

g t r u l e s i n g l e P o o l ( i n o u t Pool , i n o u t A c t i v i t y ) ={
p r e c o n d i t i o n p a t t e r n i s P o o l ( Pool ) ={
bpmn . metamodel . bpmn . Pool ( Pool ) ;
neg f i n d i s L a n e I n P o o l ( Pool , Lane ) ; }

p o s t c o n d i t i o n p a t t e r n m a t c h P a r t i t i o n T o P o o l ( VisKind ,
P a r t i t i o n , Pool , A c t i v i t y , S t r i n g ) ={

bpmn . metamodel . bpmn . Pool ( Pool ) ;
uml . metamodel . uml . A c t i v i t y P a r t i t i o n ( P a r t i t i o n ) in

A c t i v i t y ;
uml . metamodel . uml . V i s i b i l i t y K i n d ( VisKind ) in P a r t i t i o n ;
uml . metamodel . uml . NamedElement . name ( NamedElem , P a r t i t i o n

, S t r i n g ) ;
uml . metamodel . uml . NamedElement . v i s i b i l i t y ( Vis , P a r t i t i o n

, VisKind ) ; }
a c t i o n {

rename ( P a r t i t i o n , name ( Pool ) ) ;
s e t V a l u e ( VisKind , " p u b l i c " ) ; } }

Listing 3. An excerpt of the GT-Rule in VTCL

Listing 3 presents a GT-Rule for the mapping “Pool maps
to ActivityPartition”, as depicted in the first row of Table
I. The graph transformation rule, “singlePool” shown in
Listing 3 takes a Pool and an Activity as input. The input
Activity is the base element of the activity diagram meta-
model. The rule singlePool consists of a precondition pattern
and a postcondition pattern. The precondition pattern states
that Pool is an element in the BPMN meta-model. The
second line of the precondition pattern checks if there is
a lane inside the pool or not. The postcondition pattern
creates an ActivityPartition inside the element Activity, and
instantiates its properties. In the action part of the GT-Rule,
name of the Pool is assigned to the created ActivityPartition,
and the property “visibilitykind” is specified as public. A
prototype Eclipse plug-in implementing the transformations
is available at our project website[20].

VI. CONCEPT ILLUSTRATION BY EXAMPLE

To illustrate the applicability of our approach, we in-
troduce an example credit request scenario and apply our
approach on it. The left side of Figure 3 depicts an excerpt
of the class diagram of the credit request application. The
diagram contains a class HandleCreditRequestProcess with
a stereotype «ProcessClass». A part of the collaboration di-
agram corresponding to this process class is depicted on the
right hand side of Figure 3. Figure 4 represents the U2TP test
architecture class diagram. The class HandleCreditRequest-
Process with the stereotype «SUT» represents the system
under test, and is derived by applying the mapping rule in
Listing 1. The SUT class has an import dependency to the
test package financial.credit.handlecreditrequestprocess.test



Figure 3. An Excerpt of the Credit Request Collaboration and Component Architecture

financial.credit.handlecreditrequestprocess.test

<<TestCase>> +testPath1()
<<TestCase>> +testPath2()
<<TestCase>> +testPath3()
<<TestCase>> +testPath4()
<<TestCase>> +testPath5()
<<TestCase>> +testpath6()

<<TestContext>>
HandleCreditRequestProcessTC

+startHandleRequestProcess()

<<TestComponent>>
CustomerTestComp

+approveCreditAgreementMock()
+reviewcreditRequestMock()

<<TestComponent>>
CreditAuthorisationOfficerTestComp

+CreditHistoryManagerServiceMo...
+creditHistoryVerificationServiceM...

<<TestComponent>>
CreditHistoryManagerTestComp

+CreditRatingServiceMock()

<<TestComponent>>
RatingServiceProviderTestComp

<<SUT>>
HandleCreditRequestProcess

<<import>>

Figure 4. The Credit Request Test Architecture

as defined in the postcondition of the mapping rule in Listing
1.

The classes with the stereotype TestComponent shown
in Figure 4 are the test components, which are required
to test the process HandleCreditRequestProcess. These test
components are derived from the Pools and Lanes of the col-
laboration diagram and their corresponding structural spec-
ifications defined in the class and component diagrams.Due
to the limited space, these pools are not shown in the
collaboration illustrated by Figure 3.

An example test component in Figure 4 is the CreditHisto-
ryManagerTestComp, which is responsible of processing the
message calls sent by the tasks GetCreditHistory and Save-
CreditRequest in the HandleCreditRequestProcess. The test
components are derived from the pools receiving the mes-
sages.The test component CreditHistoryManagerTestComp
mocks the two services CredithistorymanagerService and
CredithistoryVerificationService. These services are shown
as service classes in the class diagram shown in figure 3.
The test package also contains the Test Context class and
the required test components. The test context class contains
six test cases, which are generated by applying the test
generation steps explained in the Section IV-B. One of such

test paths is depicted with the bold control flow in Figure 3.
The UML activity diagram test case corresponding to this
test path is depicted in Figure 5.

In the activity diagram, the service tasks are assigned
to CallOperationAction, send tasks are assigned to the
SendSignalAction, and receive tasks are assigned to the
AccepteventAction.These mappings are consistent with the
mappings shown in Table I. The sent and received messages
are assigned to the ports of the respective actions in the UML
activity diagram test case. For the sake of simplicity, no data
flows were shown in figure 3, and no ActivityPartitions are
shown in the test case shown in Figure 5.
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VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a holistic model-driven test
generation approach for testing business process-based infor-
mation systems. For the test generation, first we transform
the elements of UML class and component diagrams into
U2TP test architecture elements. After that, we generate
the test behavior by transforming the BPMN collaboration
diagrams into test paths and then transforming these test
paths into U2TP activity diagram test cases. To do this,
we analyzed the elements of BPMN collaboration diagrams,
UML class and component diagrams, and U2TP test models
to identify the corresponding elements and then developed
mapping rules based on them. We implemented the mapping
rules in a prototype, using model transformations provided
by the VIATRA framework. One of the benefits of our
approach is that we used models for the test generation as
well as the test specification, which results in support for
early testing and better test documentation. A limitation of
our work is that at present we do not support the test data
by analyzing the data elements in the BPMN models and
their corresponding structures. However, this is part of our
ongoing work and we plan to address this issue in the future.
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Figure 5. A Test path of the Credit Request Process as UML Activity
Diagram Test Case
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