
Tackling the Challenges of Evolution in Multiperspective Software

Design and Implementation

Steffen Lehnert

Ilmenau University of Technology
Ilmenau, Germany

steffen.lehnert@tu-ilmenau.de

Matthias Riebisch

University of Hamburg
Hamburg, Germany

riebisch@informatik.uni-hamburg.de

Abstract

The design and implementation of software require the
usage of different perspectives and views to cope with
its static structure, dynamic behavior, and require-
ments. Artifacts of different views are dependent on
each other and subject of frequent changes. Anticipat-
ing those changes becomes difficult, as most impact
analysis approaches are not designed to work in multi-
perspective environments. They treat artifacts of dif-
ferent perspectives in isolation, which tends to intro-
duce further inconsistencies and faults. In the related
research area of consistency checking, the problem of
multiple views has been addressed for a long time and
solutions have been developed. We aim on combining
the predictive capabilities of impact analysis with the
approach of multiperspective consistency checking, to
bridge the gap between artifacts of different views. We
propose an approach which facilitates impact analysis
of different UML models and Java source code. Our
approach is based on impact propagation rules, which
analyze traceability relations between software arti-
facts and the type of change applied by a developer.

1 Introduction

Studying the ”ripple effects” of changes [6] is in the
focus of research in software evolution for many years.
Various techniques have been proposed to predict and
assess the impacts of changes, e.g. slicing [3], history
mining [7] or probabilistic analysis [2]. The major-
ity of those approaches is limited to a certain type of
software artifacts only, e.g. source code or static UML
models. However, software artifacts do not evolve in
isolation and ripple effects spread over the boundaries
of the different views of software. Insufficient impact
analysis increases the drift between high-level design
and implementation, as well as gaps between differ-
ent views in general. On the other hand, a consider-
able effort has been invested in studying consistency
checking in the light of multiperspective software de-
sign, e.g. [5]. Although able to analyze multiple
different artifacts, current consistency checking ap-
proaches are not able to predict the impacts of future
changes, nor do they facilitate cost or time estima-

tions. Thus, merging impact analysis with the con-
cept of multiperspective consistency checking yields
several improvements, aiding change prediction and
consistency maintenance likewise. Expanding impact
analysis beyond isolated views increases its ability to
forecast cost estimations, and it helps developers to
better understand which artifacts require rework ac-
cording to a change. Improved impact analysis on the
other hand results in fewer inconsistencies, if artifacts
of different views are addressed adequately, thus re-
ducing the effort required for consistency checking.

2 Multiperspective Impact Analysis

Impact analysis faces two major challenges when ap-
plied in multiperspective environments. First, depen-
dent artifacts of different views must be joined and
treated in a unified manner to enable multiperspective
analysis. Secondly, it requires an impact propagation
technique which is capable of analyzing multiple dif-
ferent artifacts, emerging from the different perspec-
tives. Addressing the first challenge can be accom-
plished by mapping all artifacts on a unifying frame-
work and using an integrating repository for manag-
ing all artifacts, which is further explained in Section
3. Using this common basis allows us to tackle the
second challenge. The ripple effects of changes can
be computed by impact propagation rules, which are
able to address arbitrary artifacts. Our impact propa-
gation rules analyze dependency relations which exist
between artifacts to determine if and how a change
propagates to related artifacts, according to the type
of relation and type of applied change. Likewise, con-
sistency management can be accomplished by apply-
ing consistency checking rules [5] on the models. Fig-
ure 1 illustrates the steps required for impact analysis,
consistency management, and steps required for both
activities (dashed lines). To enable this kind of anal-
ysis, we first need to elicitate the dependencies which
exist between the various models and record them in
a structured way. We achieve this by applying trace-
ability mining rules which transform dependency re-
lations into traceability links. Our traceability mining
rules analyze the structure, the names, and relations

 Mapping to unified
framework

Import into
repository

Traceability
mining

Change type
classification

Impact rule
application

Consistency rule
application

Figure 1: Overview of our approach.

between model elements, and are able to determine
the type of relation which exists between them [1].
The second part of our propagation approach requires
a structured treatment of change types. In previous
work [4] we defined a set of change types on which
real reengineering activities can be mapped upon. Us-
ing this set of changes, we defined a catalog of more
than 140 change operations of different granularity,
e.g. changing the return type of a method or merg-
ing UML components. Having both, traceability links
and change types, we define a set of impact propaga-
tion rules which are used to compute the propagation
of changes. Our rules are then applied in a recursive
manner, until all impacted elements have been identi-
fied. An exemplary impact propagation rule is shown
in Listing 1. Impacted elements can then be handed
over to developers to perform a deeper inspection, or
they are used to prepare cost and time estimations
based on the amount and types of affected elements.

impact rule (Model a , Model b , Change c)
report b as affected when

a . type == ”UML: Component”
b . type == ”UML: Class ”
c . type == ”Rename component”
c . t a r g e t == a
b . r e l a t i onTo (a) == ”Refinement”

end

Listing 1: A simple impact propagation rule

3 Tool Support and Evaluation

As we are concerned with impact analysis between
different UML models and Java source code, we chose
the EMF-framework1 as the common basis for our ap-
proach. We extended our prototype case tool EMF-
Trace2 for the purpose of multiperspective analysis.
The tool is based on the EMFStore3 repository and
provides means for executing SQL-like rules to mine
traceability relations among models [1]. Our rule-
concept has been extended to carry out the task of
rule-based impact analysis as explained in Section 2.
Importing the required UML models and Java source
code is achieved as depicted by Figure 2. We import
UML models from two different CASE tools and con-
vert their XMI-based output to an EMF-based Ecore
representation using XSLT. Java source code is im-
ported using the Ecore-mapping features provided by
the MoDisco4 tool environment. We are currently

1http://eclipse.org/modeling/emf/
2http://sourceforge.net/projects/emftrace/
3http://www.eclipse.org/emfstore/
4http://www.eclipse.org/MoDisco/

conducting a case study to evaluate our approach with
a system comprised of 16500 UML model elements
and Java source code artifacts. We compare the re-
sults of our approach against manual inspections, to
obtain the figures for recall and precision.

Eclipse IDE Visual Paradigm

Java XMI

Eclipse UML2 Tools

MoDisco XSLT

EMFTrace

EMFStore EMF EMF

Figure 2: Our tool environment.

4 Conclusion

We outlined typical problems of impact analysis ap-
proaches when confronted with multiperspective soft-
ware designs, and proposed to merge impact analysis
with multiperspective consistency checking to tackle
the challenges of software evolution. Using the EMF
framework, we are able to map different static and dy-
namic UML models and Java source code on a com-
mon base to allow for multiperspective analysis. We
extract dependencies from the models, which in com-
bination with the type of applied change, serve as in-
put for our rule-based impact propagation approach.
Depending on the type of relation between two models
and the change type at hand, our rules then determine
further change propagation. We implemented our ap-
proach in a prototype tool and are currently perform-
ing a first case study to evaluate its performance.

References

[1] S. Bode, S. Lehnert, and M. Riebisch. Comprehensive
model integration for dependency identification with
EMFTrace. In Workshop on Model-Driven Software
Migration (MDSM 2011), pages 17–20, 2011.

[2] M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta.
An eclectic approach for change impact analysis. In
32nd ACM/IEEE Int. Conf. on Software Engineering,
pages 163–166, 2010.

[3] K. B. Gallagher and J. R. Lyle. Using program slic-
ing in software maintenance. IEEE Transactions on
Software Engineering, 17(8):751–761, August 1991.

[4] S. Lehnert, Q.-U.-A. Farooq, and M. Riebisch. A tax-
onomy of change types and its application in software
evolution. In 19th Annual IEEE Int. Conference on
the Engineering of Computer Based Systems, 2012.

[5] T. Sunetnanta and A. Finkelstein. Automated consis-
tency checking for multiperspective software specifica-
tions. In Workshop on Advanced Separation of Con-
cerns (ICSE2001), 2001.

[6] S. S. Yau, J. S. Collofello, and T. M. McGregor. Ripple
effect analysis of software maintenance. In Computer
Software and Applications Conf., pages 60–65, 1978.

[7] T. Zimmermann, P. Weissgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. IEEE Transactions on Software Engineering,
31(6):429–445, June 2005.

	wsr2012_submission_001
	wsr2012_submission_002
	Introduction
	Study Method
	Problems
	Conclusion

	wsr2012_submission_003
	wsr2012_submission_004
	wsr2012_submission_005
	wsr2012_submission_006
	wsr2012_submission_011
	wsr2012_submission_012
	Introduction
	Semi-automatic Pattern Removal
	To Remove or not to Remove?
	Patterns in Specialised Contexts
	Practical Consequences
	Conclusion

	wsr2012_submission_013
	wsr2012_submission_014
	wsr2012_submission_016
	wsr2012_submission_017
	wsr2012_submission_018
	wsr2012_submission_019
	wsr2012_submission_020
	wsr2012_submission_021
	wsr2012_submission_022
	wsr2012_submission_024
	wsr2012_submission_025
	wsr2012_submission_026
	wsr2012_submission_027
	wsr2012_submission_028
	wsr2012_submission_029
	wsr2012_submission_030
	wsr2012_submission_031
	wsr2012_submission_032
	wsr2012_submission_033

