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Abstract—Changes play a central role in software evolution,
where the types of changes are as multifarious as their
consequences. When changing software, impact analysis and
regression testing are required to preserve the quality of the
system. However, without a consistent classification of types of
change operations, a well-founded impact analysis methodology
cannot be developed. Existing works which analyze and apply
change types are typically limited to a certain aspect of
software, e.g. source code or architecture. They also lack a thor-
ough investigation of change types, which lead to duplicated
proposals and the absence of a consistent taxonomy. In this
paper, we review the usage of change types for impact analysis
and regression testing, and illustrate how both activities are
affected by different types of changes. Therefore, we outline
how existing work deals with different types and granularities
of changes. Our main contribution is a generic, graph-based
description of changes which distinguishes between atomic and
composite change types. We show how existing change types
and classifications can be mapped onto our proposed approach
and change taxonomy. Finally, we illustrate how our proposed
change types can support real developer activities, such as
refactorings, impact analysis, and regression testing.
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I. INTRODUCTION

Changes are an essential part of software development
and reflect the evolution of software systems. The reasons
for changes are as multifarious as their different types.
Software has to adapt to new hardware, new middleware,
new requirements, and even changing legal circumstances.
Changes on the other hand constitute high risks, as they
may result in new bugs and decline the quality of software
[1]. Frequent changes can lead to an erosion of software
architectures and increase the drift between source code and
architecture.

Impact analysis can be applied to support evolutionary
changes, by improving comprehension, understanding of
side effects, and ensuring the completeness of changes
[1]. Understanding the different types of changes allows
better understanding and reacting on the actual change, for
example, when performing maintenance tasks. Furthermore,
understanding changes is essential for understanding the
evolution of a software system. An assessment of the impact
of a certain change requires explicit information about the
nature of the change, about the type of the involved artifacts,

as well as about dependency relations between the artifacts.
This paper deals with the changes as the first part of these
requirements. Likewise, analyzing change types can help
with identifying test cases which should be rerun during
regression testing [2]. Based on impact analysis and regres-
sion testing, developers are able to better understand and
actually change the software. Additionally, it enables project
managers to determine the costs of a proposed change and,
if necessary, to take appropriate measures.

We reviewed existing literature, which is concerned with
change types. Our review covered the fields of impact
analysis, regression testing, refactoring, and reengineering.
As a first result, we noticed that most studies lack a
comprehensive investigation of change types, including the
comparison to related work. We identified a lot of duplicated
work in terms of proposed change types and change type
taxonomies, which are inconsistent to each other. Therefore,
we felt the need for thoroughly comparing existing work,
deriving a new taxonomy of changes, and showing how to
map existing work onto our developed taxonomy.

Our contribution is fourfold. First, we review how dif-
ferent change types influence impact analysis and regres-
sion testing, by examining how approaches deal with the
different types. Based on our review of existing literature,
we propose a set of atomic change types and show how
composite change types can be modeled as sequences of
atomic operations. The concept of atomic and composite
changes is further embedded in a taxonomy of change types,
which is the second contribution. Third, we demonstrate how
typical engineering activities, such as refactorings, can be
mapped on our atomic and composite change types. Last,
we illustrate how rule-based impact analysis and regression
testing can benefit from well-defined change types, provided
in this paper. The remainder of this paper is organized as
follows. We begin with analyzing existing work on change
types (Section II), before preparing the ground for our
new taxonomy by introducing the concept of atomic and
composite changes (Section III). We then introduce our
taxonomy for change types (Section IV), illustrate how real
changes can be mapped onto our concept (Section V), and
further show how rules for impact analysis and regression
testing can be modeled using our change types. Finally,
Section VI concludes the paper and outlines further work.



II. CHANGE TYPES IN RESEARCH AND PRACTICE

A. Impact Analysis

In this section, we review studies which have been pub-
lished in the field of software change impact analysis. We
selected studies that introduce change type classifications or
list change types as a base of their analysis.

The work of Kung et al. [3] is focused on impact
analysis in object oriented class libraries. Thus, they analyze
library changes and support the following change types: the
addition and deletion of classes, interfaces, methods, vari-
ables, method parameters, and control statements. Further,
they support type, value, and accessibility changes of data
members, and return type changes of methods. However,
the authors do not support all types of changes, e.g. the
declaration of a method or variable as constant. Also, they
do not consider complex operations, such as the extraction
of a method or merging two classes.

The change type taxonomy proposed by Li and Offut [4]
contains add, delete, and accessibility changes of classes,
methods, and attributes, as well as value-change operations
of attributes. As in the work of Kung et al. [3], some change
types are missing, for example final, static or const modifier
changes. Likewise, Li and Offut neglect any complex change
operations which are typical for software maintenance and
evolution tasks.

Fluri and Gall [5] distinguish between declaration and
body part changes in object oriented software. The proposed
concept of atomic change types is build on an analysis of
elementary tree edit operations (add, delete, and substitute),
which are mapped on four atomic types, as defined by
Fluri and Gall: insert, delete, update, and move. The change
types are instantiated for classes, methods, and attributes
in Java, which is based on abstract syntax trees. Fluri and
Gall perform a thorough investigation of changes on code
level; however, they limit their work on atomic change types
only. In practice, more complex change operations are likely
to occur, e.g. when refactoring a class or a method. Thus,
investigating atomic change operations only is not sufficient
for supporting developers. The authors further introduce
the concept of change significance, i.e. they are evaluating
change types based on the severity of their impact. So
far, this analysis has been conducted on Java source code
only, and might not be generalizable to other programming
languages or to architectural design models. Finally, the
authors analyze change types for their potential of affecting
the functionality of a software system, which they refer to
as functionality-preserving.

Another taxonomy of change types is presented in the
work of Feng and Maletic [6], who are concerned with
impact analysis in component-based software architectures.
The authors propose a classification scheme which distin-
guishes between atomic changes (add a method, add an
interface, remove a method, remove an interface) and com-

posite changes (e.g. ”create a new, empty interface and add
a method to it”). Their proposed taxonomy is very limited in
its applicability, as only the addition and deletion of entities
is supported, but no updates of values or properties.

Sun et al. [7] propose a taxonomy for atomic source
code changes developed for the Java programming language,
which plays a central role in their impact analysis approach.
The authors support atomic change operations on classes,
methods, and attributes, such as add, delete, accessibil-
ity modification, and others. However, the authors neglect
method body changes, statement changes, and, similar to
approaches discussed above, complex change types.

Co-evolution patterns are a useful source for impact
analysis, as co-changing entities are likely to be affected by
changes of related entities. Xing and Stroulia [8]–[10] devel-
oped an approach to enable the model-based differencing of
UML class models, with the overall goal of detecting class
co-evolution patterns. The developed UMLDiff tool supports
the detection of add, delete, move, rename, and signature
changes of classes, methods, and attributes. The category of
signature changes, however, is too coarse-grained, as many
different types belong to this category, such as the addition
of method parameters or return type changes, as shown in
the work of Sun et al. [7]. Some composite change types
are also not considered by Xing and Stroulia, for instance
the split and merge operations.

Gupta et al. [11] developed a dynamic impact analy-
sis approach, which is built on a classification of change
types. The authors distinguish between four different types
of changes: functional changes (changed statements which
affect functions), logical changes (control-flow changes),
structural changes (the addition or deletion of code entities),
and behavioral changes (e.g. change of execution order,
change of program entry and exit). However, their classifi-
cation is ambiguous and not based on real change types. For
example, the deletion of a class affects the structure but also
the functionality of the system, since the functionality which
was implemented by this class was deleted. Therefore, we
doubt that this classification scheme is applicable and useful
in practice, as the authors did not provide concrete examples.

B. Regression Testing

Störzer et al. [12] propose JUnit/CIA as an extension to
JUnit, which is based on the Chianti tool developed by Ren
et al. [13], [14]. Both tools depend on the early work of
Ryder and Tip [2], who are concerned with impact analysis
and regression testing, and introduced sets of atomic change
operations. Ryder and Tip, as well as Störzer et al., utilize the
semantics of change types to determine affected test cases.
The proposed classification of change types is comprised of
atomic operations such as the addition of classes.

The majority of studied, model-based regression testing
approaches uses add and delete as primary change types
for change identification. The details of these approaches



and the change types they use can be found in our previous
work on the analysis of regression testing approaches [15].
Some model-based regression testing approaches also use
modify as another change type. An entity or model element
is referred to as modified, if any of its properties is changed
[16], [17]. This is similar to the change type property update
in our change taxonomy, as presented in Section III-C.

C. Requirements Engineering

A taxonomy for requirements changes has been estab-
lished and evaluated by McGee and Greer [18], [19]. Their
work is focused on classifying the different sources of
requirements changes, which the authors refer to as trigger.
The proposed taxonomy is comprised of three main criteria,
namely Change Domain, Trigger, and Uncertainty. However,
their taxonomy does not provide criteria to classify the types
of changes, as they investigate the sources of change.

D. Other Classification Schemes

Modular design and modularizing software is the focus of
the work of Baldwin and Clark [20], who propose a set of
atomic operations for the task of modularizing software. The
authors distinguish between six distinct developer activities:
splitting (convert a single-level design into a hierarchical
design), substitution (replace one design by another), aug-
menting (add a module), excluding (remove a module),
inversion (move a hidden module up in the hierarchy to
make it visible to others), and porting (a hidden module
moves up in the hierarchy and can be used in other contexts).
Their proposed set of operations contains a mixture of
atomic and composite types. However, the atomic operations
are incomplete, as the modification of properties is not
covered. The set of composite operations lack the merge
and the simple move operators.

Mens and Buckley [21], [22] established a taxonomy for
software changes, which also supports the type of change
operation as one classification criterion, which is situated
on their Change support (how) axis. The authors further
distinguish between structural and semantic change types,
where structural changes cover the addition, subtraction,
and alteration (modifying an existing element, e.g. renam-
ing) of software entities. Semantic changes span semantics-
modifying changes, semantics-preserving changes, and re-
structuring activities. Their taxonomy, therefore, provides a
set of atomic operations, but no composite change types.
The concept of distinguishing between structural and se-
mantic changes is interesting, however, it suffers from the
same problems as the distinction of functionality-preserving
changes as introduced by Fluri and Gall [5].

The work of Mäder et al. [23], [24] is aimed at auto-
matically maintaining traceability relations during software
evolution. The authors developed and implemented a rule-
based concept, which reacts on different change types to

update traceability relations among changed entities accord-
ingly. The tool is able to react on elemental operations
and developer activities, which are comprised of elemental
change operations. Elemental change operations span the
addition and deletion of elements, as well as property
modifications. The set of supported developer activities is
comprised of replace, merge, and split operations. It is
however incomplete, as swap and move operations are
missing.

III. TOWARDS A NEW TAXONOMY OF CHANGE TYPES

This section prepares the ground for our change type
taxonomy which is introduced in Section IV. We continue
our previous work on change types for regression testing
[15], and compare it to the work of Fluri and Gall [5].
We extend their tree-based software representation to the
level of labeled graphs, and introduce our concept of atomic
and composite changes, which is the central part of our
taxonomy. We further illustrate how our concept of labeled
graphs can be mapped on the Eclipse Modeling Framework
(EMF) in Section III-B to demonstrate its applicability in
practice.

A. Software - a labeled Graph

We define software as a directed graph of arbitrary
artifacts which may contain circles, i.e. G = (V,E).
Software artifacts, such as UML diagrams or C++ classes
are inserted as nodes (V ) and dependencies between them
are added as edges (E) to the graph, whereas attributes are
added as property labels to the nodes and edges. This kind
of representation stands in contrast to the work of Fluri and
Gall [5], who treat software as a tree (AST). However, it
conforms to most modeling languages, such as UML. The
property labels which can be assigned to nodes and edges
depend on the domain and the purpose for which the graph
shall be used. However, there are two properties which
are independent of domain: the name and the type of an
artifact. Thus, each artifact has at least two properties pj .

∀vi ∈ V : vi = {pj |j ∈ N, j ≥ 2}

Relations which exist between entities can also be en-
hanced with properties pl, such as the type of relation (e.g.
ImplementedBy, Inherits or DefinedBy).

∀ek ∈ E : ek = (a, b, {pl|l ∈ N}), where a, b ∈ V

This generic graph concept is illustrated by Figure 1,
which shows an excerpt of our case study which is intro-
duced in Section V-B. The central node of the graph, the
actual Student Enrollment System, consists of requirements,
architecture, source code, configuration files (not displayed),
and other data sources, which are modeled as nodes (ra-
diused boxes). Possible properties of software artifacts, such
as data types, visibility information, and other modifiers are
all being modeled as property labels (square boxes).
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Figure 1. A small excerpt from our Student Enrollment System case study.

B. Mapping to the Eclipse Modeling Framework (EMF)

In the following short section, we want to demonstrate
that our concept of generic graphs can be applied to the
metamodels described using EMF. This enables us to gener-
alize our approach for the family of languages which are
expressed in EMF, such as UML. In the following, we
map the elements of the EMF metamodel onto our labeled
graph representation. Thus, any instance of a model which
is defined in EMF can also be presented as a labeled graph.

1) Nodes: EPackage, ECLass, EDataType, EEum, EAn-
notation, EOperation, EAttribute, EEnumLiteral.

2) Edges: EReference, Inheritance, EAnnotationLink.
3) Properties: The attributes of the classes classified as

nodes and edges will be mapped to properties.
EMF classes are used to describe the concepts of the

language. According to the mappings presented above, they
can be mapped onto the nodes in the graph. EMF classes
can have attributes and relations to other classes. The classes
EReference, Inheritance, and EAnnotationLink of the EMF
metamodel represent the relations in a model. We map these
classes onto edges in our metamodel, as presented in the

mappings above. The attributes of the EClasses, which have
been classified as nodes and edges, will be mapped onto
properties in our labeled graph, as shown by Figure 1. Using
these mappings, we are able to represent all the elements of
EMF based models as a labeled graph.

C. Atomic Changes

After introducing the labeled graph representation in
Section III-A, we are now able to introduce our set of atomic
change operations, OPatomic. This set is similar to the one
proposed by Fluri and Gall [5], and will be used to model
composite change types in Section III-D.

OPatomic := {addnode, deletenode, addedge, deleteedge,

update property}

In contrast to Fluri and Gall, we do not consider move
as an atomic operation, since it can be modeled by delete
and add operations. We further distinguish between the
addition of nodes and edges, which also applies for the
delete operation. A detailed comparison to the work of Fluri
and Gall [5] is depicted by Figure 2, and a mapping of
change types is presented by Table II in the appendix.

D. Composite Changes

Our proposed composite change types consist of se-
quences of atomic operations and are based on previous
research on regression testing [15] and traceability main-
tenance [23]. As previously stated, we consider move as
an composite change type, since it can be modeled by
a sequence of add and delete operations. Proposed com-
posite change types also share some similarities with the
refactoring activities proposed by Baldwin and Clark [20].
Therefore, the set of composite operations OPcomposite is
defined as follows.

OPcomposite := {move, replace, split,merge, swap}

• Move - move one sub-graph to another node.
• Replace - replace one sub-graph by another sub-graph.
• Split - split one sub-graph into several sub-graphs.
• Merge - merge several sub-graphs into one.
• Swap - exchange two sub-graphs.
The following subsections will explain each composite

change type and how it can be modeled as a sequence of
atomic operations. The function P (x) denotes the ”direct
parent” of node x, i.e. one of its predecessors which is
related to x via a relation of the type DefinedBy, ConsistsOf
or similar. For example, a method m can have more than
one predecessor, i.e. one class C it belongs to and several
other artifacts, which call this method (e.g. related via Calls).
Thus, we consider C as the ”parent” of m, and m as the
”child” of C likewise.



1) Move-operation: We support two versions of the move
operation. First, the developer can move an entire sub-graph
x to another node y, e.g. when moving a class to another
package (all methods and attributes are also moved).

move(x, y) := deleteedge(x, P (x)), addedge(x, y).

On the other hand, a developer might want to move a node
x to another node y only, leaving potential child nodes xi in
place, e.g. when moving an attribute up to the parent class.

move′(x, y) :=

n∧
i=0

move(xi, P (x)),move(x, y).

Depending on the context, the move operation may also be
modeled as a sequence of deletenode and addnode operations.
This might occur in the context of version control reposito-
ries, when extracting change operations from log files, such
as CVS or SVN.

2) Replace-operation: In a similar fashion, a developer
can replace the entire sub-graph x by another sub-graph y,
e.g. when overloading a method which is inherited from the
superclass.

replace(x, y) := deletenode(x),move(y, P (x)).

The developer may also replace a node x by node y only,
i.e. leaving all the child nodes xi of x in place.

replace′(x, y) :=

n∧
i=0

move(xi, y), replace(x, y).

3) Split-operation: The split-operation creates a set of n
nodes (n ∈ N, n ≥ 2) which are of the same type as x, and
moves all child elements of x to the respective new node
x′i. An example for this operation is the extraction of a class
from another class. A new class is created and all methods
and attributes which should be extracted are moved to the
new class. A tuple (sa, db) denotes, that the sa-th sub-graph
of the node x should be moved to the db-th sub-graph of
the resulting set x′.

split(x, n, (s0, d0) . . . (sm, dm)) :=

n∧
i=0

addnode(x
′
i, P (x)),

m∧
j=0

move(ysj , x
′
dj
)), where x = P (ysj ).

4) Merge-operation: The inverse operation to split is
merge, which bundles n entities (n ∈ N, n ≥ 2) of the
same type into one, where yij is the j-th sub-graph of xi.

merge(x0 . . . xn) :=

n∧
i=1

(

m∧
j=0

move(yij , x0)).

5) Swap-operation: Swapping allows exchanging two
entities by another.

swap(x, y) :=move(x, P (y)),move(y, P (x)).

We also support exchanging nodes only, which attaches the
child nodes of x, xi, to y, and vice versa.

swap′(x, y) :=

n∧
i=0

move(xi, y),

m∧
j=0

move(yj , x),

swap(x, y).
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Figure 2. A comparison between Fluri and Gall [5] and our approach

Further combinations of atomic and composite changes
presented here are possible. A developer for example might
want to add two or more methods to a class, which cor-
responds to a sequence of atomic add operations, and is
accompanied by a series of property update operations.
Inverting the hierarchy between two entities can also be
realized, using a series of composite and atomic changes.
If the inheritance hierarchy between two classes shall be
inverted, one would swap both nodes (i.e. the classes)
and then resolve attributes and methods by either adding,
deleting or moving them between both classes. Likewise,
the inversion and porting operations of Baldwin and Clark
[20] can be modeled using our approach.

IV. A TAXONOMY OF CHANGE TYPES

In this section, we introduce a set of classification criteria
which contribute to our taxonomy. We distinguish between
generic and concrete change types by the criterion abstrac-
tion level, as change types presented so far were generic
ones, i.e. they have to be instantiated for the concrete case.
Secondly, we distinguish between atomic and composite
changes. We refer to this criterion as composition type.
For example, ”moving an entity” is an abstract, composite
change. In contrast, ”adding a class X to package Y ” is
a concrete, atomic operation. Our third criterion type of



operation reflects the either atomic or composite type of
change, e.g. add or move. The forth criterion scope of
change is required to associate a possible change type with
the kind of software artifacts it can be applied on, e.g. object
oriented source code or architectural models. Therefore, our
taxonomy is established as illustrated by Figure 3.
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Figure 3. A taxonomy for change types.

Before we demonstrate how our taxonomy can be used in
practice, we want to exemplify the classification of change
types using the taxonomy. The change ”set the return type
of method X to integer” would be classified as follows.
• Abstraction level: concrete.
• Composition type: atomic.
• Type of operation: property update.
• Scope of change: Architecture, Source Code.

V. APPLICATIONS IN PRACTICE

In this section we show how our concept of atomic
and composite changes can be used to model concrete
changes and refactoring activities, and how those operations
are classified according to our taxonomy. Furthermore, we
illustrate how our taxonomy and its well-defined change
types serve as preconditions for rule-based impact analysis
and regression testing.

A. Concrete Change Types

So far, our taxonomy and the concept of atomic and
composite changes are of a rather abstract nature. In the
following section, we list a set of real changes. We begin
with listing atomic operations, where we focus on property
updates, as this allows us to demonstrate a variety of types
in contrast to add and delete.

Property Update. The amount of possible property
updates is vast, thus we will limit our listing to a few types
which may occur in OOP and architectural design.
• Declare a class as abstract.
• Change the visibility of a class, method or attribute to

either public, protected or private.
• Rename an artifact, e.g. a class.

• Change the type of an attribute, the return type of a
method or the type of a method parameter.

• Change the modifiers of code artifacts, e.g. declare
them as virtual, const, static or final.

The following lists a series of composite change types,
where their classification is summarized by Table I.

Move. Fowler [25] proposes moving of methods as
a refactoring step, where Gorp et al. [26] use move
operations to pull methods up into a superclass.

Split. Sunyé et al. [27] extract sub-states from UML
state machines by splitting them into a set of states.

Merge. Merging transitions in UML state machines is
illustrated by Sunyé et al. [27], where Boger et al. [28] also
support the merge of states.

Swap. Swapping may occur whenever two entities are
replaced by another. For example, two program statements
may be swapped, if their order of execution shall be changed.

Replace. The extraction of a method, which replaces
statements by method calls, is proposed by Gorp et al.
[26]. Other examples can be found in the work of Sunyé
et al. [27], who replace UML state machine transitions,
and in the work of Westhuizen and Hoek [29] who replace
architectural elements during architectural evolution.

Author Abstraction Composition Type of Scope of
Level Type Operation Change

Fowler [25] concrete composite Move Code

Gorp et al. [26] concrete composite Move Code
concrete composite Replace Code

Sunyé et al. [27]
concrete composite Split Arch.
concrete composite Replace Arch.
concrete composite Merge Arch.

Boger et al. [28] concrete composite Merge Arch.
Westhuizen and
Hoek [29]

concrete composite Replace Arch.

Table I
A CLASSIFICATION OF THE PRESENTED CHANGES.

B. Example Application

Before we introduce our approach for impact detection
rules and show how to utilize them for regression testing,
we introduce our example application ”Student Enrollment
System” (see also Figure 1). Figure 4 presents an excerpt of
the UML class diagram of the ”Student Enrollment System”.
The complete case study and the test generation methodol-
ogy for the case study are discussed in our previous work
[15]. Every class of the ”Student Enrollment System” which
has a state dependent behavior is defined by a corresponding
state machine. Figure 5 represents one example sequence
of states and transitions from the Student-state machine.



Figure 4. Excerpt of our student enrollment case study

Transition T5 in Figure 5 shows an example, where the value
of the status variable is assigned to enrolled, and the state
of the system changes from BeingEnrolled to Enrolled.

Figure 5. An example sequence from the Student state machine

C. Rule-based Impact Analysis

In previous work [30], [31] we analyzed how impact anal-
ysis is achieved, and which methodologies are applied by re-
searchers. We identified a set of ten recurring methods [30],
for example call graph analysis (e.g. Korpi and Koskinen
[32], Vidács et al. [33]), history mining (e.g. Zimmermann
et al. [34], Hassan and Holt [35]) or information retrieval
(e.g. Poshyvanyk et al. [36], Antoniol et al. [37]).

Our research hypothesis, however, is that the impact of
a change depends on four different factors which can be
determined by a developer who is changing the software.
First, the type of change is important, since renaming a class
has a lower impact in modern IDEs than changing the return
type of a method for instance. This is also the part where
our taxonomy of change types comes to play, as it provides
a set of generic operations on which real changes can be
mapped upon. The type of the dependency relation between
the changed artifact and a possibly impacted artifact is the
second factor, since the relation-type determines if and how
a change ”ripples” across the artifacts. Last, we consider the
types of the changed and related artifact as factors, as they
influence the change propagation. We propose a technique
which is based on impact rules and belongs to the category

of ”Explicit Rules”, according to our taxonomy of impact
analysis [30]. Using these factors, it is possible to create
a set of rules to react on changes and to propose possibly
impacted artifacts to the developer, which we will explain by
example. Therefore, assume we want to add the method get-
Course to class Registration, to enable querying for a certain
course using its identifier. Traditional dependency analysis
would propose class Student as impacted, since it contains
an instance of Registration. History mining would propose
Student as impacted, if both classes were frequently com-
mitted together, which might be coincidence or due to habits
of the developer(s). Finally, a call graph analysis would also
yield Student as impacted, since the class calls a method of
a changed class. However, no adaptation is required. There
would be an impact in class Student, if we would change the
attribute type of registrationNumber, since this also requires
to change the return type of getRegistrationNumber. Thus,
a set of rules can be created (Listing 1-2), where the change
types ChangeDataType and ChangeReturnType could be
mapped on the property update-operation of our taxonomy.

begin r u l e ( e n t i t y x , y ; change c )
r ep or t x as a f f e c t e d when

x . t y p e == method
y . t y p e == a t t r i b u t e
c . t y p e == ChangeDataType
c . t a r g e t == y
x . r e l a t i o n T o ( y ) == R e t u r n s V a l u e

end

Listing 1. A rule to react on attribute type changes

begin r u l e ( e n t i t y x , y ; change c )
r ep or t x as a f f e c t e d when

x . t y p e == a t t r i b u t e OR v a r i a b l e
y . t y p e == method
c . t y p e == ChangeReturnType
c . t a r g e t == y
x . r e l a t i o n T o ( y ) == A s s i g n s V a l u e

end

Listing 2. A rule to react on method return type changes

We are currently implementing a set of impact rules and
a prototype tool to perform a first case study, in order to
gauge the feasibility and precision of the proposed approach.
Section V-E discusses this in more detail.

D. Rules for Regression Testing

Before we discuss the rules to identify impacted test cases,
we briefly discuss the relations of the state machine with the
test cases. A test path is a sequence of transitions, which
is derived from the state machine and is used to test the
class which corresponds to the state machine. The test suite
of the Student-class contains 58 test paths in total. The
other details, such as the test derivation methodology, are
discussed in our previous work [15]. As outlined in Section
V-B, a transition can refer to the attributes and operations
of classes. This means, a change in an attribute or method



of a class can affect the test cases as well. If such a change
occurs, the affected test cases should be identified to perform
regression testing and test suite maintenance.

To explain the effect of changes on the tests, we refer to
the example of attribute type changes, discussed in Section
V-C. In case of attribute type changes, the methods which
are returning these attributes are marked as affected, as
shown in Listing 1. In case of a method being affected,
every transition which uses this method in its events, guards,
or actions should also be marked as affected. As a result,
the test sequences which contain this transition should also
be considered as affected. These test sequences need to be
rerun to reveal the regression faults. Listings 3 and 4 present
the rules for identifying the affected transitions and their
corresponding test paths.

begin r u l e ( e n t i t y t , m)
r ep or t t as a f f e c t e d when

m. t y p e == method
t . t y p e == t r a n s i t i o n
t . r e l a t i o n T o (m) == u s e s
m. i s A f f e c t e d ( )

end

Listing 3. A rule for affected transitions

begin r u l e ( e n t i t y t , p )
r ep or t p as r e u s a b l e when

t . t y p e == t r a n s i t i o n
p . t y p e == p a t h
p . r e l a t i o n T o ( t ) == i s d e r i v e d b y
t . i s A f f e c t e d ( )

end

Listing 4. A rule for affected test paths

According to the rule presented in Listing 3, a transition is
reported as affected if it relates to the method m with the
relation type uses, and the method m is an already affected
method (obtained by applying the rule in the Listing 1).
The other rule in Listing 4 checks, if the test path and
the transition satisfy the relation is derived by, and if the
transition is already affected. If both conditions are met, the
test path is classified as affected. More complex rules to
maintain the test suites can be derived by considering other
complex change types. For example, if we split a class in
to n classes, a lot of existing test paths become invalid and
should be reported as, for example, obsolete.

E. Implementation and Evaluation

We are currently implementing our concept of impact
rules in a prototype tool, to assess their applicability and
performance. Therefore, we extend our prototype CASE
tool EMFTrace [38], which has initially been developed for
automated traceability detection among models of various
modeling languages. The tool provides a rule engine, is
based on a model repository, and supports a variety of
modeling languages (UML, OWL, BPMN, URN, Feature
Models, and factor tables & issues cards [39]).

We are planning a two-pronged evaluation strategy, con-
sisting of an initial case study to assess the feasibility
of our approach and a detailed evaluation regarding its
performance. We are following the guidelines for case study
research as established by Runeson and Höst [40] and the
Goal Question Metric (GQM) introduced by Basili et al.
[41] to ensure the quality of its results. We are currently
developing a case study protocol for the initial study, which
we plan to have peer-reviewed. We plan to use the course
management example presented in Section V-B, and a series
of more complex, real systems for evaluating our approach.
We are currently investigating eight different systems, in-
cluding a robot control software and a open source render
engine according to the criteria defined in our protocol.

The actual evaluation of our impact rules will be achieved
by using the metrics of recall and precision, which are
based on the actual impact set (AIS) and the estimated
impact set (EIS). The AIS contains all entities which are
affected by a change, where the EIS contains all entities
which are proposed to be affected. Precision and recall are
then determined as shown in [30]. The AIS is obtained by
developers, who assess the impact of a proposed change in
terms of artifacts which require rework. The same change
is then fed into the tool to compute the EIS. Finally, both
sets will be compared to obtain the figures for precision
and recall. Based on those numbers, we will then be able
to compare our approach to existing work in the fields of
impact analysis and regression testing.

VI. CONCLUSION

We analyzed approaches proposed for impact analysis,
regression testing, and other tasks which are based on dif-
ferent classifications of change operations. A review of the
proposed change type classifications revealed inconsistent,
partly duplicated, and incomplete taxonomies which are
incompatible to each other.

We extracted common change types from studied litera-
ture and embedded them in a new taxonomy, which is based
on the distinction between atomic and composite changes.
We illustrated how existing work can be mapped on our
taxonomy, and how real change operations can be classified
according to our criteria. We further outlined how rules for
impact analysis and regression testing can benefit from a
well-founded taxonomy of change types.

Future work is aimed at evaluating dependency relations
between artifacts, to determine the impact of changes on
refactorings and regression testing, using our impact rules.
The required impact rules, which are currently under devel-
opment, shall be evaluated and refined in a preceding case
study, to assess the feasibility of the approach. We are further
planning a thorough evaluation to compare the performance
of impact rules to other techniques. Also, we plan to perform
a more thorough investigation on the role of change types for
refactoring activities and for systems in different domains.
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VII. APPENDIX

Fluri and Gall [5] Our approach
Additional Object addnode(x, y),
State update property(x, ”type”, ”attribute”)
Condition Expression update property(x, ”expression”, ”new”)
Change
Decreasing Statement deletenode(x, y)
Delete
Decreasing Statement move(x, y)
Parent Change
Else-Part Insert addnode(x, y)
Else-Part Delete deletenode(x, y)
Increasing Statement addnode(x, y)
Insert
Increasing Statement move(x, y)
Parent Change
Removed Function deletenode(x, y)
Removed Object State deletenode(x, y)
Statement Delete deletenode(x, y)
Statement Insert addnode(x, y),

update property(x, ”type”, ”statement”)
Statement Ordering swap(x, y)
Change
Statement Parent move(x, y)
Change
Statement Update update property(x, ”value”, ”new value”)
Class Renaming update property(x, ”name”, ”new name”)
Decreasing update property(x, ”visibility”, ”value”),
Accessibility Change where value either equals private or protected
Increasing update property(x, ”visibility”, ”value”),
Accessibility Change where value either equals public or protected
Attribute Type Change update property(x, ”data type”, ”new”)
Attribute Renaming update property(x, ”name”, ”new name”)
Final Modifier Insert update property(x, ”final”, ”true”)
Final Modifier Delete update property(x, ”final”, ”false”)
Method Renaming update property(x, ”name”, ”new name”)
Parameter Delete deletenode(x, y)
Parameter Insert addnode(x, y),

update property(x, ”type”, ”parameter”)
Parameter Ordering swap(x, y)
Change
Param. Type Change update property(x, ”data type”, ”new”)
Parameter Renaming update property(x, ”name”, ”new name”)
Parent Class Delete deletenode(x, y)
Parent Class Insert addnode(x, y), addrelation(x, y, z),

update property(z, ”type”, ”IsA”)
Parent Class Update deleterelation(x, y), addrelation(x

′, y, z),
update property(z, ”type”, ”IsA”)

Return Type Delete update property(x, ”return type”, ”void”)
Return Type Insert update property(x, ”return type”, ”new”)
Return Type Update update property(x, ”return type”, ”new”)

Table II
MAPPING BETWEEN FLURI AND GALL [5] AND OUR APPROACH


