
Modelling Technical Constraints and Preconditions
for Alternative Design Decisions ∗

Alexander Pacholik, Matthias Riebisch
Ilmenau University Technology

{matthias.riebisch | alexander.pacholik}@tu-ilmenau.de

Abstract: For architectural design decisions, a high number of goals and constraints
has to be considered. For a proper management of their complexity and as a pre-
condition for tool support, they have to be modeled explicitly. Existing approaches
fail to provide a predictable, rigor decision-making as well as a to deal with incom-
plete or even partly contradicting information. This paper presents an approach for
an explicit modeling of constraints for architectural reasoning and of preconditions
for existing solutions based on the concept of technical terms. The preconditions are
modeled within the Goal Solution Scheme, and are combined with information about
the impact of existing solutions on quality goals.

1 Introduction

Development and evolution of software systems are highly complex tasks that have to be
performed with a high efficiency. Particularly, design decisions are complex because a
high number of requirements and constraints have to be considered [HKN+07], with some
of them being conflicting, vague or even undefined. Wrong decisions lead to high effort
for revision. Furthermore, the utilization of solutions instruments – such as architectural
patters, styles, frameworks, and evolution patterns in form of refactorings – is important
for the efficiency of the development process, and for the quality of the resulting design.
Many of them demand for preconditions for applicability, for example the provision of a
platform, or the availability of a service. These preconditions have to be considered in
design decisions as well. Most of them are of a technical nature. Embedded systems have
to meet even more kinds of constraints than other systems, for example regarding platform,
energy consumption, and cost [Kop08].

Different kinds of goals, requirements, and constraints have been considered by design
methodologies. While functional ones are obviously in the focus of customers, newer ar-
chitectural design approaches concentrate on quality goals when selecting existing solution
instruments, for example the Goal Solution Scheme (GSS) [BR10] explained in section 3.
However, the consideration of constraints and preconditions is not yet sufficiently solved
for complex design situations, as they are typical for embedded system design.

∗This research has been partly funded by the federal state Thuringia and the European Regional Development
Fund ERDF through the Thüringer Aufbaubank under grant 2007 FE 9041 and under grant 2010 FE 9094.



The contribution of this paper consists in an explicit representation and evaluation of con-
straints and preconditions for the selection of existing solution instruments in order to
support decision-making and problem-solving during design. The new concept extends
the goal-oriented decision-making approach of the GSS. The formalization is achieved by
using technical terms as references, and a set of operators to evaluate the satisfaction of
constraints and preconditions. The evaluation can be performed by tools, thus reducing
the complexity and error-proneness of decision-making.

2 Related Work

As a source of solution instruments, patterns and styles [HA07] are used. The architect’s
set of solution instruments is frequently collected in form of a toolbox, thus representing a
knowledge base of design knowledge. A toolbox should contain a catalogue of approved
methods and solution templates (e.g. patterns and tactics [BKB02]), as well as a catalogue
of fundamental technologies and tools (e.g. frameworks).

For a goal-oriented way of selecting solution elements, the impact of the toolbox elements
on quality properties is required as a decision criterion. Usually, pattern catalogues (e.g.
[BMR+96, GHJV94]) provide descriptions for context, problem, and solution. The con-
text part covers some of the needed information on preconditions. However, an impact on
quality properties of the resulting architecture is not provided as a decision criterion. Influ-
ences on quality properties are considered as impact relations by our prior works [BR10].

Design constraints restricting the design or the solution space are described by [TvV09].
However, the relation between constraints and requirements as well as the modelling of
preconditions for solution instruments requires for further elaboration. Modelling restric-
tions can be expressed by the Object Constraint Language (OCL) [LO03]. For the def-
inition of preconditions and constraints, ontologies are applied as means of description
[BL10]. The need for a firm set of relationships, however, contradicts to the open character
of an ontology but is required for evaluation. The concept of technical terms [TNAKN11]
constitutes another candidate for defining preconditions and constraints.

3 Design Decision Procedure with the Goal Solution Scheme

For design decisions regarding reusable solution instruments, goals and constraints have
to be fulfilled, and applicable solution instruments have to be identified. A set of solutions
instruments is usually collected by architects and is therefore referred to as architect’s
toolbox. Such a toolbox may cover architectural patters, styles, frameworks, evolution pat-
terns in form of refactorings, and even heuristics and design principles. Design decisions
regarding the selection of solution instruments demand for a mapping of the goals and
constraints – which are part of the problem space – onto solution instruments – which are
part of the solution space – along with the impact of solution instruments on quality goals
and preconditions for applicability. Recently, the Goal Solution Scheme (GSS) [BR10]
was developed to represent this mapping between problem and solution space regarding



quality goals. In the GSS, this mapping is represented explicitly by impact relationships
between solution instruments and quality goals. Different layers have been introduced
(see Figure 1) to reduce the gap between goals and solution instruments by goal refine-
ment. The GSS achieves a further reduction of the gap by introducing design principles
(layer III) to represent the impact relationships independently of concrete circumstances
of a project.

An evaluation of the applicability of solution instruments stored in the toolbox can be
performed, if the constraints for a specific design decision are compared with the precon-
ditions of the solution instruments. This evaluation is the first part in the decision making
chain, which is typically embedded into the incremental design process according to the
specific conditions of a software project.

Figure 1: Layers of the Extended
Goal Solution Scheme Figure 2: Decision Procedure with Two Selection Steps

Figure 2 depicts the general procedure of selecting solution instruments as candidate solu-
tions within one design cycle. The preselection is performed as the first step, which which
enables the reduction of the set of solution instruments to the applicable ones. Its input
is acquired by analysing constraints stemming from the existing design and constraints
defined by requirements. Missing information is collected interactively from the designer.
To perform the preselection, constraints are compared to the preconditions of solution in-
struments. In the second step, the preselected solution instruments are ranked according
to their impact on the desired quality goals, in order to propose the most suitable solutions
to the architect. This two-step selection procedure is supported by the open source tool
QUARC as a part of the EMFTrace suite [EMF].

4 Constraints, Preconditions and Technical Properties

For the second step, impact relationships are sufficiently covered by the concepts of the
GSS. However, constraints and preconditions and thus, restrictions and interdependencies
between solution instruments demand for an explicit representation to enable the preselec-
tion as the first step. This representation is required to manage the complexity of decision-
making, and to provide a foundation for method and tool support of this preselection step.



In this paper we focus on design constraints regarding technology and resource aspects,
and their influence on architectural design decisions as restrictions of the solution space.
A constraint constitutes a restriction which must be satisfied by a viable design solution.

Preconditions express requirements for the applicability of a solution instrument in terms
of e.g. expected services, platforms, resources or standards. Furthermore, preconditions
can be used to express interdependencies between the application of solution instruments,
e.g. caused by a conflict in resource consumption. The evaluation of preconditions and
constraints in the preselection step described above requires an assessment of the com-
pliance with information on the current and future design that we refer to as technical
properties. The concept of technical properties provides a common foundation for both
preconditions and constraints and expresses are used to express the properties provided by
a solution instrument, e.g. provided interfaces, services, features definitions, and resources
that can satisfy the preconditions of other solution instruments. Each technical property is
bound to a technical term. Compared to the GSS, the technical terms constitute a semantic
layer, which contains facts used for evaluating restrictions and interdependencies within
the solution space.

Technical terms are semantically defined in the solution space or in the application domain,
in order to enable reasoning about the design. A technical term is composed of a unique
identifier and type information. The actual value is contained an associated technical prop-
erty object, as depicted in in Figure 3. The technical property is an OCL LiteralExpression
as will be explained in Section 5, and contains the desired value for the technical term.
A precondition refers to one or multiple technical term and contains instructions for their
further evaluation. Not until evaluation, the associated technical properties are accessed.

Figure 3: Implementation of Technical Terms and Technical Properties

5 Formalization of Constraints and Preconditions

For the definition of constraints and preconditions, the Object Constraint Language (OCL)
is used, because the OCL is widely accepted as an industrial standard, and it is supported
by various tools. The OCL is by concept a declarative, side effect free language.

Technical properties are defined as OCL literal expressions, which when evaluated, re-
turn a primary data type, such as Boolean, Integer, Real, String or a Collection data type.
For the definition of constraints and preconditions we use the set of OCL’s pre-defined
operations for these standard types, such as boolean operators, arithmetic operators, com-
parators, and collection operators. The operators can be used to evaluate the technical
properties and to build complex OCL expressions for constraints and preconditions, whose
evaluation results in a Boolean type. The mapping from technical terms of the GSS to OCL



expressions is depicted in Figure 3. The technical property itself is an OCL literal expres-
sion, which can be accessed by an OCL constraint expression using the technical term as
a reference object, which already contains the type information.

Figure 4 shows example preconditions between solution instruments on the left side and
technical terms, written in curled braces, on the right side. Constraints are structurally
visualized by a dotted arrow with the constraint annotated in curled braces. The OCL text
is omitted for pure required dependencies. Figure 4 contains four example preconditions
for solution instruments with references to technical terms of different types.

Figure 4: Examples for Technical Terms and Constraints

The first precondition denotes that the Thread Pool solution instrument can only be se-
lected, if a Thread Management service is available. This precondition refers to the tech-
nical term Thread Management, representing a service requirement. It is evaluated using
a boolean operator: If there is a property provider for the Thread Management capability
– either in the current design or in a candidate for solution instrument – the precondition
evaluates to true. The second precondition expresses that the ASIC solution instrument
requires a production volume of at least 1 million number of units. The technical term
#units refers to a technical property of type integer. In general, such numeric properties
are well suited to describe resource requirements, e.g. for computing or memory. The
third precondition example for the FPGA solution instrument states, that the ”Xilinx ISE”
development environment constitutes a supported target for model-based code generation
for FPGAs. It references the technical term Targets. To enable sets of requirements, a
technical property with the type collection<strings> is applied. The OCL collec-
tion operator includes is used to express the condition. The evaluation of the technical
property returns a collection of supported targets. OCL Collection types and operators
can be used to model provided capabilities and characteristics. A fourth precondition ex-
presses a mutually exclusive selection between the solution instruments ASIC and FPGA,
visualized by the shaded box, containing the {xor} keyword.

6 Conclusion and Future Work

The presented approach provides an explicit modelling of complex preconditions and con-
straints that have to be considered during design decision on architectural level. These
preconditions and constraints are expressed by references to so-called technical proper-
ties, which are evaluated by expressions. The technical properties refer to the concept of



technical terms, which have been introduced to provide the semantic definition. Technical
properties, technical terms and expressions are formally defined using the OCL.

Future works based on the approach include the extension to implementation constraints,
to cover decisions regarding code evolution and reengineering. For a semantic definition
of the technical terms, ontologies are a potential concept that has to be investigated. Using
this concept, references between terms can be expressed by ontology relations.

References

[BKB02] L. J. Bass, M. Klein, and F. Bachmann. Quality Attribute Design Primitives and
the Attribute Driven Design Method. In Revised Papers from the 4th International
Workshop on Software Product-Family Engineering, pages 169–186. Springer, 2002.

[BL10] M. Bennicke and C. Lewerentz. Towards Managing Software Architectures with On-
tologies. In G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and B. Westfechtel, edi-
tors, Graph transformations and model-driven engineering, pages 274–308. Springer,
2010.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1 edition, July 1996.

[BR10] S. Bode and M. Riebisch. Impact Evaluation for Quality-Oriented Architectural Deci-
sions regarding Evolvability. In M. Babar and I. Gorton, editors, Proc. 4th European
Conference on Software Architecture, ECSA 2010, pages 182–197. Springer, 2010.

[EMF] EMFTrace repository suite. https://pix.theoinf.tu-ilmenau.de/trac/EMFTrace/.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Softwaresystemen. Addison-Wesley Professional, 1994.

[HA07] N. Harrison and P. Avgeriou. Pattern-Driven Architectural Partitioning: Balancing
Functional and Non-functional Requirements. In Second International Conference on
Digital Telecommunications, 2007 (ICDT ’07), pages 21–26. IEEE, July 2007.

[HKN+07] C. Hofmeister, P.e Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America. A
general model of software architecture design derived from five industrial approaches.
Journal of Systems and Software, 80(1):106–126, January 2007.

[Kop08] H. Kopetz. The Complexity Challenge in Embedded System Design. In Object Ori-
ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International Sym-
posium on, pages 3 –12, may 2008.

[LO03] S. Loecher and S. Ocke. A Metamodel-Based OCL-Compiler for UML and MOF. In
OCL 2.0 - Industry standard or scientific playground?, Proc. 6th International Con-
ference on the UML and its Applications, UML 2003 in ENTCS, October 2003.

[TNAKN11] A. Tamrawi, T. Th. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Fuzzy set and cache-
based approach for bug triaging. In T. Gyimóthy and A. Zeller, editors, SIGSOFT
FSE, pages 365–375. ACM, 2011.

[TvV09] A. Tang and H. van Vliet. Modeling constraints improves software architecture de-
sign reasoning. In Software Architecture, 2009 European Conference on Software
Architecture. WICSA/ECSA 2009., pages 253 –256, September 2009.


